LOGIC QUALIFYING EXAM, JANUARY 1993 – RECURSION THEORY

INSTRUCTIONS: Do two elementary problems and two recursion theory problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Find three ordinals: α, β, γ such that the 6 sums:

$\alpha + \beta$, $\alpha + \gamma$, $\beta + \alpha$, $\beta + \gamma$, $\gamma + \alpha$, $\gamma + \beta$

are all distinct.

E2. Suppose T is a decidable set of axioms in a countable language, all models of T are infinite, and T has only finitely many non-isomorphic countable models. Prove that the set of all logical consequences of T is decidable.

E3. Assume ZFC is consistent. Prove that there is a Turing machine M such that:

1. M does not halt.
2. ZFC cannot prove that M does not halt.

RECURSION THEORY PROBLEMS

R1. One of the following statements is true and the other is false. Prove the true one and disprove the false one.

1. Suppose f is a recursive function such that whenever ϕ_n is total, $\phi_{f(n)}$ is total. Then there exists n such that ϕ_n is total and $\phi_{f(n)} = \phi_n$.
2. Suppose f is a recursive function such that whenever $\phi_n(0)$ is defined, $\phi_n(0) = \phi_{f(n)}(0)$. Then there exists n such that $\phi_n(0)$ is defined and $\phi_{f(n)} = \phi_n$.

R2. Prove that the index set $\{ (x, y) | W_X \subseteq W_y \}$ is Π_2-complete.

R3. A set $A \subseteq \omega$ is called **immune** if it is infinite but does not contain any infinite r.e. subset. It is called **retraceable** if there is a partial recursive function ϕ such that $\phi(x) = x$ for the least element $x \in A$, and for all other elements $y \in A$, $\phi(y)$ is the next smaller element of A. Show that every retraceable set is recursive or immune.
LOGIC QUALIFYING EXAM, JANUARY 1993 – MODEL THEORY

INSTRUCTIONS: Do two elementary problems and two model theory problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Find three ordinals: α, β, γ such that the 6 sums:

$\alpha + \beta$, $\alpha + \gamma$, $\beta + \alpha$, $\beta + \gamma$, $\gamma + \alpha$, $\gamma + \beta$

are all distinct.

E2. Suppose T is a decidable set of axioms in a countable language, all models of T are infinite, and T has only finitely many non-isomorphic countable models. Prove that the set of all logical consequences of T is decidable.

E3. Assume ZFC is consistent. Prove that there is a Turing machine M such that:

1. M does not halt.
2. ZFC cannot prove that M does not halt.

MODEL THEORY PROBLEMS

M1. Prove that the complete theory of the model $< \mathbb{Z}, \leq >$ has exactly 2 countable ω-homogeneous models up to isomorphism.

M2. Let T be a complete theory with infinite models in a countable language. Prove that there is an elementary chain \mathcal{U}_α, $\alpha < \omega_1$, of countable models of T such that whenever $\alpha < \beta < \omega_1$, $\mathcal{U}_\alpha \cong \mathcal{U}_\beta$ but $\mathcal{U}_\alpha \neq \mathcal{U}_\beta$.

M3. Let \mathfrak{A} be a model for a countable language and let $\Gamma(x)$ be a set of formulas which is consistent but not realized in \mathfrak{A}. Let $\mathfrak{B} = \Pi_U \mathfrak{A}$ be an ultrapower of \mathfrak{A} with respect to a countably incomplete ultrafilter U. Prove that $\Gamma(x)$ is satisfied by infinitely many elements of \mathfrak{B}.