LOGIC QUALIFYING EXAM, JANUARY 1992

INSTRUCTIONS: Do any four problems, including at most two elementary problems. Use a separate packet of paper for each problem, since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

ELEMENTARY PROBLEMS

E1. Answer true or false for each of the following statements. If true, indicate a reason. If false, give a counter-example. α, β, γ range over ordinals.

(Sample). $\forall\alpha\forall\beta\forall\gamma(\alpha \cdot \beta = \beta \cdot \alpha)$.
Answer: False. $\omega \cdot 2 \neq 2 \cdot \omega$.

a. $\forall\alpha\forall\beta\forall\gamma(\alpha < \beta \Rightarrow \alpha + \gamma < \beta + \gamma)$.

b. $\forall\alpha\forall\beta\forall\gamma(\alpha < \beta \Rightarrow \gamma + \alpha < \gamma + \beta)$.

c. $\forall\alpha\forall\beta\forall\gamma((\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma)$.

d. $\forall\alpha\forall\beta\forall\gamma(\gamma \cdot (\alpha + \beta) = \gamma \cdot \alpha + \gamma \cdot \beta)$.

e. $\forall\alpha\forall\beta\forall\gamma((\alpha + \beta = \beta + \alpha) \land (\beta + \gamma = \gamma + \beta) \Rightarrow (\alpha + \gamma = \gamma + \alpha))$.

E2. Let T be a recursive set of sentences in a finite language L. Assume that for each sentence ϕ of L, either $T \cup \{\phi\}$ is inconsistent or $T \cup \{\phi\}$ has a finite model. Prove that the set $\{\phi : T \models \phi\}$ is recursive.

E3. In the language with one unary function symbol f, prove that the theory $\{\forall x f(f(x)) = x\}$ has countably many complete extensions, and describe them.
M1. Let $D(\mathfrak{A})$ denote the diagram of a model \mathfrak{A}, that is, the set of all atomic and negated atomic sentences true in \mathfrak{A}. Suppose that T is a complete theory, \mathfrak{A} is a model of T, and $T \cup D(\mathfrak{A})$ is complete. Prove that for every elementary submodel \mathfrak{B} of \mathfrak{A}, $T \cup D(\mathfrak{B})$ is complete.

M2. Let \mathfrak{A} be an arbitrary model of Peano arithmetic. Prove that \mathfrak{A} has an ultrapower \mathfrak{B} with an element $b \in B$ such that $\{c \in B : \mathfrak{B} \models c \leq b\}$ has size 2^ω.

M3. Let T be a complete theory in a countable language and let κ be a cardinal. Prove that T has a countable model \mathfrak{A} and a model \mathfrak{B} of size κ such that every countable elementary submodel of \mathfrak{B} is elementarily embeddable in \mathfrak{A}. Hint: Use indiscernibles.
LOGIC QUALIFYING EXAM, JANUARY 1992, RECURSION THEORY

Notation: ϕ_n is the recursive function with Gödel number n and W_n is the domain of ϕ_n. \leq_T means Turing reducible, and \equiv_T means Turing equivalent. B' denotes the jump of B.

R1. a. Show that there is an index n such that $W_n = \{n\}$.
b. Use this and the Padding Lemma to show that

$$K = \{e \mid \phi_e(e) \text{ converges}\}$$

is not an index set.

R2. Given a nonrecursive r.e. set A, give a construction to show that there is a simple set S such that $S \leq_T A$.

R3. Prove that for all sets $A, B \subseteq \omega$, if $A \leq_T B'$ then there is a binary relation $C \equiv_T B$ such that $\lim_s C(s, \cdot) = B$.
S1. Prove that there is a totally ordered set \((X, <)\) of size \(\aleph_1\) such that every ordinal \(\alpha < \omega_2\) is isomorphic to a subset of \(X\). \textit{Don't} assume CH. \textit{Hint.} Consider \(\omega_1^{<\omega}\) ordered lexically, and use induction.

S2. In the following, forcing always refers to the Cohen partial order – that is, finite partial functions from \(\omega\) into 2. In the ground model, \(M\), assume that \(F\) is a \textit{closed} set of real numbers. Prove that the following are equivalent:
1. \(1 \models (\bar{F} \text{ is closed})\).
2. \(F\) is countable in \(M\).

\textit{Hint.} Uncountable closed sets contain a copy of the Cantor set.

S3. \textit{Notation:} An antichain is a pairwise incompatible family.

Let \(T = \{s \mid (\exists \alpha < \omega_1)(s : \alpha \to \omega \text{ and } s \text{ is } 1 - 1)\}\), ordered by inclusion.

Prove:

a. \(T\) has no \(\omega_1\)-branches.

b. Every uncountable subset of \(T\) contains an uncountable antichain.