Qualifying Exam
Logic
Aug 27 1987

Instructions: Do any four problems, but at most two elementary. Please use a separate packet of paper for each problem since not all of your answers will be graded by the same person. If you think a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.
DEFINITIONS

1. \(\omega = N \) = the set of natural numbers.

2. \(A \preceq B \) means \(A \) is elementarily embeddable in \(B \).

3. \(C^{<\omega} \) are all finite sequences from \(C \).

4. \(\{W_e(n) \mid e^{<\omega}\} \) is the standard enumeration of all r.e. subsets of \(\omega^n \). \(W_e = W_e^{(1)} \).

5. \(K = \{e \mid e \in W_e\} \).

6. \(Tr \subseteq \omega^{<\omega} \) is a tree iff \(\forall \alpha, \beta \in \omega^{<\omega} : \alpha \subseteq \beta \) and \(\beta \in Tr \), then \(\alpha \in Tr \).

7. \(A \preceq B \) means \(A \) is an elementary submodel of \(B \).

8. \(A \preceq_T B \) means \(A \) is Turing reducible to \(B \).
Elementary

1. Given a countable set of students and a countable set of classes. Suppose each student wants one of a finite set of classes, and each class has a finite enrollment limit. Use the compactness theorem to prove that if each finite set of students can be accommodated, then the whole set can.

2. Let T and U be first order theories in a language L. Suppose that for each finite subset $T_0 \subseteq T$ and $U_0 \subseteq U$ there are models $\mathcal{A}_0 \models T_0$ and $\mathcal{B}_0 \models U_0$ such that \mathcal{B}_0 is a submodel of \mathcal{A}_0. Prove that there are models $\mathcal{A} \models T$ and $\mathcal{B} \models U$ such that \mathcal{B} is a submodel of \mathcal{A}.

3. Given a partial order $< A, <^* >$ with no infinite decreasing sequences. Prove that there is a well order $< A, < >$ such that $<^* \subseteq <$.

4. Let κ be an uncountable cardinal of countable cofinality. Show there exists $< f_\alpha : \omega \times \kappa \mid \alpha < \kappa^+ >$ such that for all $\alpha \neq \beta$ and for all but finitely many n, $f_\alpha(n) \neq f_\beta(n)$.
Recursion Theory

1. Prove that there is no recursive g such that for all e < ω:
 1) \(W_g(e) \) is finite; and
 2) if \(W_e \) is finite, then \(W_e \supseteq W_g(e) \).

2. Given an infinite r.e. set A, construct a low simple set S containing the complement of A.

3. Prove
 \[\forall A \subseteq N \exists B, C \subseteq N \exists e \left[A = \phi_e^B = \phi_e^C \text{ and } B \not{\equiv}T C \right]. \]

4. Prove that there exist a minimal triple of Turing degrees such that no two of the degrees form a minimal pair.

 \[[A, B, C \text{ are a minimal triple } \iff \text{ they are non-recursive and } \forall D (D \equiv_T A, B, C \rightarrow D \text{ recursive})] \]
Model Theory

1. Let \mathcal{A} be an infinite model of a countable language. Prove that for each $b \in \mathcal{A}$, $\text{Th}(\mathcal{A})$ is ω-categorical iff $\text{Th}(\mathcal{A}, b)$ is ω-categorical.

2. Let \mathcal{A} be a model with the property that each subset U of A is a relation of \mathcal{A} and each function $f : A \to A$ is a function of \mathcal{A}. Suppose $\mathcal{A} < \mathcal{B}$ and there is an element $b \in \mathcal{B}$ such that \mathcal{B} has no proper submodels containing b. Prove that there is an ultrafilter D over A such that $\mathcal{B} \cong \prod_D \mathcal{A}$.

3. Let T be a complete theory with infinite models in a countable language and let κ be an infinite cardinal. Prove that T has models \mathcal{A} and \mathcal{B} of power κ where \mathcal{B} is a proper submodel of \mathcal{A} and there is an automorphism f of \mathcal{A} such that

 $\mathcal{B} < f(\mathcal{B}) < f(f(\mathcal{B})) < f(f(f(\mathcal{B}))) < \ldots$

 and

 $\mathcal{A} = \mathcal{B} \cup f(\mathcal{B}) \cup f(f(\mathcal{B})) \cup f(f(f(\mathcal{B}))) \cup \ldots$.

 Hint: use indiscernibles.

4. Prove that for any consistent complete theory T there is a model $\mathcal{A} \models T$ such that

 $\forall a, b \in \mathcal{A}$ [a, b realize the same λ-type in \mathcal{A}] iff

 $\exists \theta(x, y) [\mathcal{A} \models \theta(a, b) \text{ and } \forall \sigma(x) [T \vdash \forall x, y[\theta(x, y) \to [\sigma(x) \leftrightarrow \sigma(y)]]]]$,

 where 'θ' and 'σ' range over formulas of $L(T)$.
Set Theory

1. Assume CH and let Lim be the set of limit ordinals less than ω_1. Show that there exists $\langle A_\alpha \mid \alpha \in \text{Lim} \rangle$ such that for every $\alpha \in \text{Lim}$, $A_\alpha \subseteq \alpha$ and for $\alpha < \beta$, $A_\alpha \cap A_\beta$ is finite, but there does not exist $X \in [\text{Lim}]^{\omega_1}$ and $\alpha < \omega_1$ such that for every $\gamma \not\in X$, $A_\gamma \cap A_\beta \subseteq \alpha$.

2. Assume there exists an uncountable transitive model of ZFC. Show there exists an uncountable transitive model of ZFC+$\forall \lambda \exists \theta$. Hint: Consider forcing with $P = (2^{<\kappa})^{L_\alpha}$ for appropriate α, κ.

3. Let $P=\text{FIN}(\omega_2)$ be the partial order of functions with finite domain contained in ω_2 and range $\{0,1\}$. Show that in the generic extension obtained by forcing with P that there does not exist a linear order of cardinality ω_1 such that every other linear order of cardinality ω_1 can be embedded.