Qualifying Examination in Logic

August 1981

Do 5 of the following 12 problems.

Glossary

$$\omega = IN = \{0, 1, 2, \dots\}$$

 \mathbf{R} = the set of real numbers.

 $\{\varphi_{\mathbf{e}}\colon\ \mathbf{e}\ \mathbf{\epsilon}\ \omega\}$ is a standard enumeration of all partial recursive functions.

 $W_e = dom (\varphi_e)$.

A $<_{\mathrm{T}}$ B means that A is recursive in B but B is not recursive in A .

r.e. = recursively enumerable.

0' is the maximal r.e. degree.

CH = the Continuum Hypothesis

An ultrafilter, D, over a cardinal κ is free iff

$$\forall x \in D (|x| \ge \omega),$$

and uniform iff

$$\forall x \in D(|x| = \kappa)$$
.

A. <u>Elementary Problems</u>

- Al. Assume CH is true. Show that there are ω_4 countable subsets of ω_4 .
- A2. Prove that there are models, M and N, of arithmetic such that:
 - 1) M and N satisfy the same first-order sentences as the standard model, $(\omega,+,\cdot)$.
 - 2) M and N are countable and non-standard.
 - 3) M and N are not isomorphic.

Policy on Misprints

The Doctoral Exam Committee tries to proofread the exams as carefully as possible. Nevertheless, the exam may contain misprints. If you are convinced a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.

B. Model Theory

- Bl. Let T be a complete theory with built-in Skolem functions. Let $\Gamma(x)$, $\Sigma(x)$ be complete 1-types T such that all models of T which realize $\Gamma(x)$ also realize $\Sigma(x)$. Show that the Cantor-Bendixon rank of $\Gamma(x)$ is \leq than the Cantor-Bendixon rank of $\Gamma(x)$.
- B2. Let D be a free ultrafilter over ω and E a uniform ultrafilter over ω_1 . Show that $(\omega_1,<)^\omega/D$ is not isomorphic to $(\omega_1,<)^\omega/E$.
- B3. Let $\mathfrak U$ be the structure $(\mathbb R,+,\cdot,\exp,\mathbb N)$, where $\exp(x)=e^X$. Let $S\subseteq\mathbb N$ be any set of primes and let ${}^*\mathfrak U=({}^*\mathbb R,\cdots)$ be any proper elementary extension of $\mathfrak U$. Prove that there is an $n\in{}^*\mathbb N$ such that for all primes $k\in\mathbb N$,

$$k \in S \longrightarrow k \mid n$$
.

Here, $k \mid n$ means $\exists x \in {}^*N (k \cdot x = n)$.

- C. Recursion Theory
- C1. Prove that there is an infinite recursive set A for which $e \in A \to W_e = \omega \setminus \{e\}.$
- C2. Use a priority argument to construct r.e. sets A, B, C with

$$0 <_{\mathbf{T}} A <_{\mathbf{T}} B <_{\mathbf{T}} C <_{\mathbf{T}} 0$$
.

- C3. Show that there is an $f: \omega \rightarrow \omega$ such that:
 - 1) For each recursive $g: \omega \rightarrow \omega$, $\{n: f(n) = g(n)\}$ is finite &
 - 2) $\{(n,m) \in \omega \times \omega : f(n) \neq m\}$ is r.e.
- C4. Construct a countable decidable structure $\,\mathfrak U\,\,$ such that $\,$ Th ($\mathfrak U\,$) is $\,$ $\,$ $\,$ $\,$ -categorical and the only recursive automorphism of $\,$ $\,$ $\,$ is the identity map.

- D. Set Theory
- D1. Let \mathbf{x}_{α} ($\alpha < \omega_1$) be subsets of ω_1 , where each \mathbf{x}_{α} has order type ω . Show that there is an uncountable $\mathbf{A} \subset \omega_1$ such that $\{\mathbf{x}_{\alpha} : \alpha \in \mathbf{A}\}$ forms a Δ -system —i.e., for some fixed \mathbf{r} ,

$$\forall \alpha, \beta \in A(\alpha \neq \beta \rightarrow x_{\alpha} \cap x_{\beta} = r)$$
.

- D2. Let M be a countable transitive model for ZFC plus $2^{\omega} = \omega_2$. Show that there is a c.c.c. forcing extension, M[G], of M in which $2^{\omega} = \omega_2$ and Martin's Axiom is <u>false</u>.
- D3. Let M be a countable transitive model for ZFC. In M, let IP =

 $\{p\colon p\subset\omega_1\times\omega_1\ \&\ |p|\le\omega\ \&\ p\ is\ a\ l-l\ function\}\ ;$ define $p\le q$ iff $q\subset p$. Let G be $I\!\!P$ -generic over M. Show that M[G] satisfies CH.