Qualifying Examination in Logic

January 1980

Instructions: Do 5 problems, not more than 3 from one part.
Model Theory

1. Let $L(R_0, R_1, \ldots)$ be the language formed by adding countably many relation symbols R_0, R_1, R_2, \ldots to the countable language L. Let T be a complete theory in $L(R_0, R_1, \ldots)$ and T_n the set of all consequences of T in $L(R_0, \ldots, R_n)$. Let $\Sigma(x)$ be a set of formulas of L. Suppose each T_n has a model which omits $\Sigma(x)$. Prove that T has a model which omits $\Sigma(x)$.

2. Let $(X, <)$ be an infinite set of indiscernibles in a model A with built-in Skolem functions. Show that for each $Y \subseteq X$, A has an elementary submodel B such that $B \cap x = y$.

3. Give an example of a model A for a countable language such that A has power ω_1 but every proper elementary submodel of A is countable.

4. Let D be an ultrafilter over I. Suppose that for each $i \in I$, the model A is elementarily embeddable in the model B_i. Prove that A is elementarily embeddable in the ultrapower $\pi_D B_i$.

Set Theory

1. Prove that if α and β are limit ordinals, $\alpha < \beta$, and $(R(\alpha), \varepsilon)$ is an elementary submodel of $(R(\beta), \varepsilon)$, then $(R(\alpha), \varepsilon)$ is a model of ZFC.

2. (a) Show $ZF \vdash \forall x (P(x) \neq x)$

(b) Show that if ZF is consistent then so is $ZF^+ + \exists x (P(x) \vDash x)$, where ZF^+ is ZF without the axiom of regularity.

int: Try to find a model with an x, y such that $x = \{y\}$, $y = \{x, 0\}$ (so that $y = P(x)$).
3. Assume that ZF is consistent. Show that there is a finite subtheory \(T \) of ZF such that in ZF it cannot be proved that \(T \cup \text{"there is an uncountable inaccessible cardinal"} \) is consistent.

4. Let \(M \) be a transitive model of ZF + "every uncountable cardinal is singular". Show that no transitive set \(N \) with \(M \in N \), \(M \cap \text{Ord} = N \cap \text{Ord} \), satisfies ZFC.

C. Recursion Theory

1. Let \(T \) be a recursively axiomatized theory in a countable language with finite and infinite models such that \(T \) is \(\omega_1 \)-categorical. Prove that \(T \) has a decidable model.

2. Show that there is a sequence \(f_{\alpha}, \alpha < \omega_1 \) of functions mapping \(\omega \) into \(\omega \) such that whenever \(\alpha < \beta < \omega_1 \), \(f_{\alpha} \) is recursive in \(f_{\beta} \) but \(f_{\beta} \) is not recursive in \(f_{\alpha} \).

3. Show that there is an \(e \) such that \(d_{e} \) is the characteristic function of the set \(\{0, 1, \ldots, e\} \), where \(\{d_{i} \mid i < \omega\} \) is an effective enumeration of all partial recursive functions.

4. Call a formula \(\varphi(x) \) strongly finite if in every model \(M \) of Peano arithmetic, only a finite number of \(m \in M \) satisfy \(\varphi \). Prove that the set of Gödel numbers of strongly finite formulas is r.e. but not recursive.