INSTRUCTIONS: Do five problems, at most two from part A.
Do not use the continuum hypothesis.

Glossary:
\[|x| = \text{cardinality of } x. \]
\[\operatorname{cf}(\lambda) = \text{cofinality of } \lambda. \]
\[R(\alpha) = \{x : x \text{ has rank } < \alpha\}. \]
\[U \text{ is } \omega \text{-homogeneous if whenever } (U, a_1, \ldots, a_n) \equiv (U, b_1, \ldots, b_n), \]
we have \[\forall c \exists d (U, a_1, \ldots, a_n, c) \equiv (U, b_1, \ldots, b_n, d). \]
\[\mathbb{Q} = \text{set of rational numbers}. \]
\[\Diamond(S) \text{ means that } S \subseteq \omega_1 \text{ and there is a family of sets } A_\alpha \subseteq \alpha, \alpha \in S, \]
such that for all \[A \subseteq \omega_1, \]
\[\{\alpha \in S : A \cap \alpha = A_\alpha\} \]
is stationary in \[\omega_1. \]
\[\Diamond \text{ means } \Diamond(\omega_1). \]
\[\text{ZF is Zermelo-Fraenkel set theory.} \]
A. Elementary Problems

A1. Let \(\mathbb{C} = \langle \mathbb{C}, +, \cdot, 0, 1 \rangle \) be the field of complex numbers and let \(R \subseteq \mathbb{C} \) be the set of real numbers. Show that \(R \) is not definable in \(\mathbb{C} \).

A2. Let \(\text{HF} = \langle \text{HF}, \in \rangle \) be the structure of hereditarily finite sets. State and prove a version of Tarski's Theorem on Truth which applies to \(\text{HF} \).

A3. Let \(T \) be a universal theory. Assume \(T \models \forall x \exists y P(x, y) \). Show that there are terms \(t_1(x), \ldots, t_n(x) \) such that \(T \models \forall x \bigvee_{m=1}^{n} P(x, t_m(x)) \).

A4. Let \(\kappa \) be a cardinal and let

\[
\lambda = \sup \{ 2^\alpha : \alpha < \kappa \}.
\]

Show that \(\text{cf}(\lambda) = \text{cf}(\kappa) \) or \(\text{cf}(\lambda) > \kappa \).

A5. Find the mistake in the following proof.

a) For each finite \(S \subseteq \text{ZF} \), \(\text{ZF} \models (\exists \alpha)((\alpha, \in) \text{ is a model of } S) \).

b) \(\text{ZF} \models (\text{If every finite } S \subseteq \text{ZF} \text{ has a model, then } \text{ZF} \text{ has a model}) \).

c) By a) and b) \(\text{ZF} \models (\text{ZF has a model}) \).

d) By Gödel's second theorem and c), \(\text{ZF} \) is inconsistent.
B. Model Theory

B1. Let T be the theory with the axioms
\[
\begin{align*}
\forall y \exists x & \ y = F(x) \\
\forall x \forall y & \ F(x) = F(y) \rightarrow x = y
\end{align*}
\]

Show that every complete extension of T is ω-stable and has Morley rank at most two.

B2. Let $\mathcal{U} = \langle A, <, \cdots \rangle$ be an ω-homogeneous model for a countable language such that $<$ well orders A. Prove that A has cardinality at most 2^ω.

In problems B3-B5, let T be a countable complete theory whose models are infinite.

B3. Prove that T has a family of countable models \mathcal{U}_S, $S \subseteq \omega$, such that if S is a proper subset of T then \mathcal{U}_S is a proper elementary submodel of \mathcal{U}_T. Hint: Use indiscernibles.

B4. Show that T has an ω-homogeneous model of power ω_1 with only countably many types. Hint: Similar to Vaught's two-cardinal argument.

B5. (Shelah). Let S be a set of fewer than 2^ω types $\Gamma(x)$ which are maximal consistent with T and locally omitted by T. Prove that T has a model which simultaneously omits each $\Gamma(x) \in S$.

Hint: Represent the Henkin construction by a binary tree.
C. Recursion Theory

C1. Find a function $d : \omega \times \omega \rightarrow \mathbb{Q}$ such that:
 a) d is recursive.
 b) d is a metric.
 c) the set \{n \in ω : n is isolated in the space (ω, d)\} is not recursive.

C2. Show that there is a set of Turing degrees \{d$_q$: q \in \mathbb{Q}\} such that q < r implies $0 < d_q < d_r < 0'$.

C3. Let $f : \omega \rightarrow \omega$ be recursive. Show that there is a function $g : \omega \rightarrow \omega$ such that f is primitive recursive in g and g has a primitive recursive graph.

C4. Let $C(X)$ be a Σ_1^1 predicate with no Δ_1^1 solutions. Prove that the set of solutions of $C(X)$ has cardinality 2^ω.

The following problems are based on the topics course in admissible sets.

C5. Let α be the first admissible ordinal $> \omega_1$. Show that L_α has property Beta. Conclude that there is a Δ_2^1 ordinal α which is admissible but not recursively inaccessible such that L_α has property Beta. (You may assume any theorem proved in Barwise's book.)
C6. Let \(\mathfrak{m} = (M, <, p, R, \cdots, R_y) \) be a structure where \(< \) well-orders \(M \) and \(p \) is a pairing function. Using the relation between \(\text{HYP}_\mathfrak{m} \) and inductions on \(\mathfrak{m} \) prove the following uniformization theorem:

For every inductive relation \(R \) there is an inductive relation \(S \subseteq R \) such that \(\text{dom}(R) = \text{dom}(S) \) and, for all \(x \in \text{dom}(R) \)

\[\exists ! y \; S(x, y) \]
D. Set Theory

D1. Prove that $\text{ZF} \vdash \text{Con}(\text{ZFL-P})$, where ZFL-P is ZF with the axiom of constructibility but not the power set axiom.

D2. Show that forcing with \mathbb{P} collapses \aleph_ω to ω, where \mathbb{P} is the set of all partial functions $p : \aleph_\omega \to 2$ with $|\text{domain } p| < \aleph_\omega$.

D3. For α a limit ordinal less than ω_1, let C_α be a cofinal ω-sequence in α. Show that there is an uncountable set $X \subset \omega_1$ of limit ordinals such that

$$\forall \alpha, \beta \in X (\alpha < \beta \rightarrow \alpha \notin C_\beta)$$

D4. Assume \diamondsuit. Show that there is an $S \subset \omega_1$ such that $\diamondsuit(S)$ and $\diamondsuit(\omega_1 \setminus S)$. Hint: Consider the ideal,

$$I = \{S \subset \omega_1 : \text{not } \diamondsuit(S)\}$$

D5. Let M be a countable, transitive model of ZFC, let $M[G]$ be a \mathbb{P}-generic extension of M where \mathbb{P} is c.c.c. in M. Let $X, Y \in M$. Show that for every $F \in M[G]$ with $F : X \to Y$ there is a $f \in M$ such that for every $x \in X$, we have $f(x) \subset Y$, $(|f(x)| \leq \omega)^M$ and $F(x) \in f(x)$.