A. Elementary Problems.

1. Let T be a finitely axiomatizable theory with only a countable number of complete extensions. Prove that one of these complete extensions is finitely axiomatizable.

2. Let T be a model-complete theory. Prove that T is complete if and only if for every two models M, N of T there is a model D of T such that both M, N are isomorphic to submodels of D.

3. Prove in ZFC that if $0 < \lambda \leq \kappa$ then

 \[(\kappa^+)^\lambda = \max(\kappa^\lambda, \kappa^+)\]

4. Prove that for every set X and ordinal α there is a function f with domain α such that $f(0) = X$ and for all $\beta < \gamma < \alpha$, $f(\beta) \subseteq f(\gamma)$.

5. Let $\mathcal{A} = (\mathbb{A}, <)$, $\mathcal{B} = (\mathbb{B}, <')$ be infinite linear orderings. Prove that \mathcal{B} is isomorphic to a submodel of some elementary extension of \mathcal{A}.
B. Model Theory

Always assume the language is countable.

1. Let T be a complete theory which has $2^{|T|}$ complete types. Show that for each infinite cardinal $\kappa \leq 2^{|T|}$ there are models of T of arbitrarily large cardinality which realize exactly κ complete types.

2. Let κ be an inaccessible cardinal and let \mathfrak{M} be a saturated model of power κ. Prove that \mathfrak{M} is the union of a proper elementary chain \mathfrak{M}_β, $\beta < \kappa$, of models isomorphic to \mathfrak{M}.

3. Let \mathcal{D} be an ultrafilter and let $\mathfrak{M} \times \mathfrak{N}$ be the direct product of \mathfrak{M} and \mathfrak{N}. Prove that $\mathcal{D}(\mathfrak{M} \times \mathfrak{N}) = \mathcal{D}\mathfrak{M} \times \mathcal{D}\mathfrak{N}$.

4. Prove that the complete theory of $(\mathbb{Z}, <)$ has exactly 2 non-isomorphic countably homogeneous models.
G. Recursion Theory.

1. Let \(\prec \) be a recursive well ordering of type \(\omega \). Show that there is a recursive well ordering of type \(\omega^\sigma \) (ordinal exponentiation).

2. Let \(d \) be a Turing degree with the property that
\[
\exists x \in d \, \forall y \leq_T d \left[y = x \right]
\]
Prove that \(0' \not\leq d \).

3. Prove that there is a recursive linear ordering \(\prec \) such that \(\prec \) is not a well ordering but such that \(\prec \) has no arithmetic descending sequences.

4. Suppose that for every set \(A \) of natural numbers there is a (unique) set \(B \) such that,
\[
\forall n [K_B(n) = \varphi_e^A(n)]
\]
Write \(\Upsilon(A) = B \) if the above holds. Prove that there is a recursive function \(\Upsilon \) and a recursive relation \(R \) such that for all \(A \),
\[
\Upsilon(A) = \{ n \mid R(\varphi_e^A(n)) \}
\]
D. Set Theory

1. Prove that if \(\langle R(a), a \rangle \) is a model of \(\mathcal{N} \), then \(a \) is a cardinal. Show that if there is such an \(a \) then the least such \(a \) has cofinality \(\omega \).

2. Assume that \(\text{ZFC} \) has a standard model. Let \(\mathcal{L}_n \) be the set of all sentences \(\varphi \) such that in every standard model \(M \) of \(\text{ZFC} \),

\[
M \models \left(\text{\(\mathcal{L}_n \) is a model of \(\varphi \)}\right)
\]

Prove that \(\mathcal{T}_1 \subseteq \mathcal{T}_2 \subseteq \ldots \subseteq \mathcal{T}_n \subseteq \ldots \).

3. For \(x, y \leq \omega \) define \(x \leq_L y \) iff \(x \in I[y] \). Assume that \(\forall x, y \left(x \leq_L y \text{ or } y \leq_L x \right) \). Prove that \(2^{\aleph_0} \leq \aleph_2 \).

4. Let \(\kappa \) be inaccessible. Let

\[
A = \{ \alpha < \kappa \mid R(\alpha) \models \text{ZFC} \}
\]

Prove that \(A \) is not closed but that it contains a set \(B \) which is closed and unbounded in \(\kappa \).