A. Model Theory

A1. Let T be the theory of all models (A,E) where E is an equivalence relation. Prove that T is ω-stable.

A2. Let T be a theory in a countable language. Suppose that for some infinite cardinal κ, every model of T of power κ is atomic. Prove that every model of T is atomic.

A3. Prove that every infinite saturated model has a proper elementary submodel to which it is isomorphic.

**: Give an example of a model \mathcal{M} for a countable language such that \mathcal{M} has power ω_1 but every proper elementary submodel of \mathcal{M} is countable.

B. Set Theory.

B1. Let N be a transitive class containing all the ordinals, such that for each α, $N \cap \mathbb{R}(\alpha) = N$. Assume that (N,\in) satisfies the comprehension axiom scheme. Prove that (N,\in) is a model of ZF.

B2. Assume the axiom of choice and that the union of fewer than 2^ω sets of reals of Lebesgue measure 0 is of Lebesgue measure 0. Prove that 2^ω is regular.

B3. Outline a proof of the consistency of Luzin's hypothesis ($2^\omega = 2^{\omega_1}$) with the axioms of ZFC.

B4. Assume that ZF is consistent. Show that there is a finite subtheory T of ZF such that in ZF it cannot be proved that $T \cup \text{"there is an uncountable inaccessible cardinal."}$ is consistent.
C. Recursion Theory.

C1. Let T be a recursively axiomatized theory in a countable language such that T is \mathbb{K}_0-categorical. Prove that T has a recursive model.

C2. Let A be a Π^1_1 subset of ω. Show that either θ' is hyperarithmetical in A or A is hyperarithmetical.

C3. Show that there is a sequence $f_\alpha : \alpha < \omega_1$ of functions mapping ω into ω such that whenever $\alpha < \beta < \omega_1$, f_α is recursive in f_β but f_β is not recursive in f_α.

C4. Let $\{\varphi_0, \varphi_1, \varphi_2, \ldots\}$ be an r.e. set of sentences of first order logic (i.e., the set of Gödel numbers is r.e.). Prove that there is a recursive set of sentences $\{\psi_0, \psi_1, \psi_2, \ldots\}$ such that for each n, ψ_n is logically equivalent to φ_n.

\[\psi_n = \varphi_n \]