Logic August 1972

- A. Problems for third area students only.
- Al. Show that if Permat's last theorem is consistent with Peanc arithmetic then it is true.
- A2. Prove Kuenig's theorem: $\kappa < \kappa^{\operatorname{cd}(\kappa)}$, where $\operatorname{cd}(\kappa)$ is the cofinality of κ .
- A3. Prove that if a first order theory T has no infinite models than there is an integer n such that T has no models of power greater than n.
- A4. Let $\varphi(P,Q)$, $\psi(P,R)$, $\theta(P,S)$ be pairwise inconsistent first order sentences in which only the relation symbols shown occur. Prove that there exist pairwise /inconsistent first order sentences $\varphi'(P)$, $\psi'(P)$, $\theta'(P)$ such that $\varphi(P,Q) \vdash \varphi'(P)$, $\psi(P,R) \vdash \psi'(P)$, $\theta(P,S) \vdash \theta'(P)$.

You may use Church's Thesis in the following problems.

A5. Let A and B be disjoint II_1^0 sets of integers. Show that there is a recursive set C such that $A\subseteq C$ and B nC=0.

As. Show that there is a recursive set whose characteristic function is not primitive recursive.

- B. Model Theory.
- B1. Prove that if $\mathbb{Z}F$ has a well-founded model then $\mathbb{Z}F$ has a model which is $e^{-\frac{1}{2}}$ and $e^{-\frac{1}{2}}$ and use the omitting types theorem.
- BZ. Let OX be a model of power Z^{ω} in a language with Z^{ω} symbols. Use ultrapowers to prove that OX has proper elementary extensions of power Z^{ω} and $(Z^{\omega})^{\frac{1}{4}}$, the successor cardinal of Z^{ω} .
- B3. Let T be the theory with a binary relation E and axioms stuting that:

 E is an equivalence relation.

There is exactly one equivalence class of power $n, n = 1, 2, \ldots$. Prove that T is complete but not categorical in any power.

B4. Let T be the theory in the previous problem. Let $\kappa > \omega$ be regular. Prove that every model of T of power κ has a set of indiscernibles of power κ .

C. Set theory

Cl. Show that if Fermat's last theorem is provable in ZFC, then it is provable in ZF.

C2. Outline, in 100 varies a law, a proof that if ZFG is consistent, so is $ZFC + 2^{80} > 8$.

- C3. a) Show ZF | Vx((P(x) / x).
- b) Show that if ZF is consistent, so is ZF + 3x(f)(x) = x). Hint: Try to find a model with an x, y such that $x = \{y\}$, $y = \{x, 0\}$ (so that y = f'(x)).
- C4. a) Show that if L(e) = R(e) then e is a cerdinal.
 - b) Show that if V = L, then for some uncountable a, L(a) = R(a).

D. Recursion Theory.

Alson Aug 74

D1. Let A bearre. set. Show that there is an e such that $W_a = \{n: 2^n 3^0 \in A\}$,

where We is the domain of the recursive partial function of with Godel number of

D2. Show that there are total functions f, g such that f is not recursive in g and c is not recursive in f.

D3. Let A be a non-remarke set of integers, P be Peano arithmetic formulated in a first order language L. Show that for each formula $\varphi(x)$ of L there is a model O(of P such that

 $A \neq \{n < \omega : O(\models \varphi(n) \}$ where n is the numeral for n.

D4. Let

 $A = \{ \vec{\psi} : \psi \text{ is true in all well founded models of ZI} \}$. Show that A is a Π_Z^1 set. (Here $\vec{\psi}$ is the gidel number of a sentence ψ of set theory.)