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Abstract. These are the notes for the second talk in Brian Lawrence’s reading group P1 minus
three points which happened in fall 2022. We discuss the basic notion of vector bundles with
connection on complex varieties, state and prove Riemann-Hilbert correspondence in the cases of
projective variety and (affine) algebraic curve. A good reference is [Con]. We also provide a concise
review of relative de Rham cohomology and Gauss-Manin connections, with emphasise on examples.
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1. Vector bundles with integrable connection

We discuss the basic notion of (algebraic and analytic) vector bundles with connection on complex
varieties. Tons of examples will be given.

1.1. Definitions and examples. Let X/C be a smooth variety and E over X be an algebraic
vector bundle. A connection on E is an OX -linear sheaf morphism

(1.1.1) ∇ : E → ΩX ⊗OX
E

satisfying the Leibnitz rule ∇(fs) = df ⊗ s + f · ∇(s) for local sections f of OX and s of E . An
equivalent way of rewriting (1.1.1) is

(1.1.2) ∇ : TX → EndOX
(E).

Writing ∇( ∂
∂f )s =

∂s
∂f , we can then express the Leibnitz rule as ∂gs

∂f = ∂g
∂f s+ g ∂s

∂f . Therefore one can
think of the connection as a mechanism of differentiating a vector bundle along vector fields. The
category of algebraic vector bundles over X with connection is denoted VC(X). For each i ≥ 0, ∇
induces a unique OX -linear morphism

∇i : Ωi
X ⊗OX

E → Ωi+1
X ⊗OX

E

by the rule ∇i(ω ⊗ s) = dω ⊗ s+ (−1)iω ∧∇(s). The composition

(1.1.3) R = ∇1 ◦ ∇ : E → Ω2
X ⊗OX

E
is called the curvature form of E . E is called integrable (or flat) if its curvature is 0. The full
subcategory of VC(X) consisting of vector bundles with integrable connection is denoted VIC(X).
A flat section (or horizontal section) of (E ,∇) is an analytical local section s such that ∇(s) = 0.
When restricting the connection to a curve γ : I → X, we recover the notion of parallel transport,
i.e. moving local geometric data along curves. We will see in Lemma 2.4 that the flat sections
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of (E ,∇) form a constructible sheaf (in analytic topology) of C-vector spaces, denoted ker∇. If
∇ is furthermore integrable, then the holonomies are trivial, i.e. if two paths connecting the same
starting and ending points are homotopic, then the parallel transportation of a section of E from the
starting point to the end point along both curves are equal. In this case, ker∇ is a locally constant
sheaf of rank rk E . If X is connected and x ∈ X is a point, ker∇ gives rise to the monodromy
representation

π1(X,x)→ GL(E(x)), γ → {e→ parallel transport of e along γ}.
The integrability condition guarantees that the map only depends on the homotopy class of the
loop.

Remark 1.1. The above constructions have their analytic counterparts. For example, a holomorphic
vector bundle with connection is a holomorphic vector bundle with an OXan-linear sheave morphism
∇. The categories of holomorphic vector bundle with connection and integrable connection are
denoted VC(Xan) and VIC(Xan). There are analytification functors

F an : VC(X)→ VC(Xan),

F an : VIC(X)→ VIC(Xan).

When X is projective, F an is an equivalence by GAGA (Géométrie algébrique et géométrie analy-
tique, see [Wika]). However when X is not projective, the algebraic categories are usually "larger"
than their analytic counterparts, in the sense that two non-isomorphic algebraic vector bundles with
connection may be holomorphically isomorphic, see Example 1.5.

Remark 1.2. Confusion may arise if the readers are more familiar with the notion of connections in
differential geometry. In differential geometry, a vector bundle with connection and its curvature
are still defined as (1.1.1) and (1.1.3). We shall make a clarification here.

Let X be a complex variety and (E ,∇) ∈ VC(Xan). We can forget the complex structure and
consider X has a smooth manifold over R. We shall call the smooth manifold as Xdiff , the vector
bundle as Ediff and the tangent bundle as ΩXdiff . The readers should be aware that the dimensions
of Xdiff , Ediff and ΩXdiff are doubled. More concretely, let {zα} be a set of local coordinates of
X. Then Xdiff has local coordinates {zα, zα} and ΩXdiff has local coordinates {dzα, dzα}. The
holomorphic connection ∇ also gives rise to a smooth connection

∇diff : Ediff → ΩXdiff ⊗R Ediff .

Let Rdiff = ∇diff,1 ◦ ∇diff . The readers shall try to establish a relation between R and Rdiff . In
particular, one shall verify that if R = 0 then Rdiff = 0, so there is no ambiguity in defining the
integrability. However, many frequently used connections in differential geometry are not holomor-
phic. For example, the Levi-Civita connection, which gives rise to Riemannian curvature, is usually
not holomorphic.

Example 1.3. OX is canonically equipped with a integrable connection ∇ : OX → ΩX which sends
f to df . The flatness follows from the fact that d2 = 0.

Example 1.4. A connection on a smooth curve is integrable since Ω2
X = 0. Geometrically, this means

parallel transport for a holomorphic (or algebraic) vector bundle has trivial holonomy.
Another decent perspective is from complex analysis. Consider a vector bundle (E ,∇) ∈ VIC(Xan).

Let U be an open subset where E is trivial. Pick a global section e ∈ E(U). Now let x ∈ U , and
consider a path γ : I → U with γ(0) = x. Let e(t) be the parallel transport of e(x) along γ with
e(0) = e(x). Then we have

e(t) = e−
∫ t

0
de.
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To see why this is true, simply differentiate both sides with respect to t. Now suppose γ is a
nulhomotopic loop in U . Since de is holomorphic, we see that

e(1)− e(0) =

∫
γ
de = 0.

As a result, parallel transports of a given section along homotopic curves give the same section at
the end point. Note that being holomorphic is essential here.

Example 1.5. Take X = SpecC[z] and E = OXe. For any g ∈ C[z], let ∇g be the unique algebraic
connection such that ∇g(e) = g(z)dz ⊗ e.
Claim: in the category of holomorphic vector bundles with connection, all (E ,∇g) are isomorphic to
(E ,∇0); in the category of algebraic vector bundles with connection, (E ,∇g) ≃ (E ,∇h) only when
g = h.

In fact, an isomorphism between (E ,∇g) and (E ,∇h) must be of the form f : e→ αe. By compati-
bility we have

∇h(αe) = α∇g(e),

hence α = Ce
∫ z
0 (g(v)−h(v))dv where C ∈ C∗. This isomorphism is never algebraic unless g = h.

Example 1.6. Local in analytic topology, one takes an open subset U ⊆ X such that U admits an
open embedding into Cn and E|U is trivial. Let {zα} be a basis of Cn and {eβ} be a basis of E|U .
Christoffel symobls Γγ

αβ of a connection ∇ are analytic sections of OX(U) such that

∇(eβ) = Γγ
αβdz

α ⊗ eγ (Einstein’s summation convention).

The connection 1-form is a matrix

Γ = (Γγ
αβdz

α)γ,β ∈ gl
(
Ω⊕rk E
U

)
.

So under the basis {eβ} we can write ∇ = d+ Γ. If {e′β} is another basis of the vector bundle E|U
and {e′β} = g{eβ} is the matrix of change of basis. Then under the new basis

∇ = d+ gΓg−1 + gd(g−1).

The map g ◦ Γ : Γ → gΓg−1 + gd(g−1) is called the gauge transformation. Gauge transformations
do not satisfy the cocycle relation, i.e. h ◦ g ◦ Γ ̸= (hg) ◦ Γ. This shows that Γ is a completely
local construction, i.e. we can not glue them along local patches in the same sense as gluing vector
bundles from local charts.

Now we discuss flat sections under these explicit coordinates. For s = sβeβ , an easy computation
shows that

∇(s) =
(
∂sβ

∂zα
+ Γγ

αβs
β

)
dzα ⊗ eβ,

R = dΓ + Γ ∧ Γ.

A flat section s is then a solution of a system of first order PDEs

(1.1.4)
∂sβ

∂zα
+ Γγ

αβs
β = 0.

See Example 1.7 for a concrete computation.
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Example 1.7. Let X = Gm = C−{0} and E = OXe1⊕OXe2. Writing X = SpecC[z, z−1], we have
ΩX = OXdz. Define a connection as follows:

Γ =

[
0 −dz

z
0 0

]
∈ gl

(
Ω⊕2
X

)
,

∇ = d+ Γ.

For a sufficiently small analytical open disk U ⊆ X, write a global section s of E(U) as s = x1e1+x2e2
for x1, x2 ∈ OXan(U). Then ∇(s) = 0 gives an equation

dx1
dz

e1 +

(
dx2
dz
− x1

z

)
e2 = 0.

Solving it, we see that ker∇(U) consist of elements

(1.1.5) s = C1e1 + (C1 log z + C2)e2, C1, C2 ∈ C.

It is clear that ker∇ is locally constant. Let U be a small disk around the point 1, and s1, s2 ∈
ker∇(U) such that s1(1) = e1 and s2(1) = e2. We see that s1 = e1 + e2 log z and s2 = e2.
Let γ be the unit circle, with counterclockwise direction, representing the element 1 ∈ π1(Gm, 1).
The sections s1, s2 analytically continue along the path, giving the following unipotent monodromy
representation:

π1(Gm, 1)→ GL(E(1)), 1→
[
1 2πi
0 1

]
.

In general, a strict upper-triangular Γ always yields a unipotent representation of π1(Gm, 1).

Example 1.8 (Example 1.7 in a different flavor). Now we give a complex analytic perspective towards
Example 1.7, in the same spirit as Example 1.4. Suppose γ is a curve based at 1. Let e = C1e1+C2e2
be a global section of E . As explained in Example 1.4, the parallel transport e(1) along γ is

s = e−
∫
γ
de

= e+

∫
γ
C1e2

dz

z

= e+

∫
γ
C1e2 d log z

= e+ C1e2 log z − C1

∫
γ
log z de2

= C1e1 + (C1 log z + C2)e2.

This recovers (1.1.5).

Example 1.9 (important!). As a follow up of Example 1.7, we build, for a given finite dimensional
representation ρ : π1(Gm, 1) → GL(V ), an element (E ,∇) ∈ VIC(Gm) such that ρ = ker∇. Let
ρ(1) = A ∈ GL(V ), write A = e2πia for some a ∈ gl(V ). Consider

Γ = −adz
z
∈ gl(ΩGm ⊗ V ).

Consider (OX ⊗C V, d+ Γ) ∈ VIC(Gm). For a basis e of V and a row vector x in CdimV , we have

∇(xeT) =

(
dx− xa

dz

z

)
eT.
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Therefore flat sections are s = xeT satisfying dx
dz = xa

z . Solving the equation, we find that flat
sections are of the form

s = Celog(z)aeT, C ∈ CdimV .

Therefore the monodromy representation of ker(d+ Γ) is exactly given by ρ(1) = e2πia = A.

Exercise: explain this using contour integration, as in Example 1.8.

2. Riemann-Hilbert correspondence

Let X be connected and x ∈ X. As already illustrated in Example 1.7, it is a general phenomenon
that a vector bundle with integrable connection gives rise to a complex representation of π1(X,x) via
parallel transport. Conversely, for a finite dimensional complex vector space V and a representation
ρ : π1(X,x)→ GL(V ), we obtain a sheaf Kρ of complex vector spaces on X by quotienting X̃ × V

by π1(X,x), where X̃ is the universal cover of X. The vector bundle Kρ ⊗C OX with ∇ = 1⊗ d is
a vector bundle with integrable connection such that ker∇ = Kρ.

Theorem 2.1. There is an anti-equivalence of categories:

VIC(Xan)⇔
{Finite dimensional complex
π1(X,x)-representations

}
(Kρ ⊗C OXan , 1⊗ d)← ρ

(E ,∇)→ ker∇

The situation is somewhat different for algebraic vector bundles. When X is projective, one
can replace VIC(Xan) by VIC(X), as a consequence of GAGA. The problem arises when X is not
projective, as already noted in Remark 1.1. To make Theorem 2.1 still true in the algebraic setting,
one need to restrict to a suitable subcategory of VIC(X).

Definition 1 (Connection having regular singularities). A logarithmic compatification is an embed-
ding j : X ↪→ X into a smooth proper variety X such that D = X −X is a normal crossing divisor.
Such compatification always exists (Hironaka). Let ΩX(logD) be the subsheaf of j∗ΩX whose local
sections have at most simple poles along D. An (algebraic or analytic) logarithmic vector bundle
with connection is a vector bundle E ′ over X with a morphism

∇′ : E ′ → ΩX(logD)⊗OX
E ′

satisfying the Leibnitz rule. An (E ,∇) ∈ VIC(X) is said to have regular singularities, if it has
an algebraic logarithmic extension (Eext,∇ext) to some X (hence to all X). The full subcategory of
VIC(X) consists of vector bundles with connection having regular singularities is denoted VICreg(X).

Example 2.2. Consider the connection (E ,∇g) in Example 1.5. The only possible compatification is
P1. Let s = 1

z . Then the connection can be expressed as ∇g(e) = −g(1s )
ds
s2
⊗ e. Therefore ∇g has a

regular singularity at ∞ only when g = 0. The argument also shows that in general, a connection
∇ = d+ Γ on A1 has a regular singularity at ∞ if and only if Γ = f(z)dz where f(z) = O(1z ).

Also note that the connections in Example 1.7 and Example 1.9 have regular singularities.

Theorem 2.3 (Riemann-Hilbert correspondence). There is an anti-equivalence of categories:

VICreg(X)⇔
{Finite dimensional complex
π1(X,x)-representations

}
(Kρ ⊗C OX , Id⊗d)← ρ

(E ,∇)→ ker∇
5



Note that the left hand side is totally algebraic, while the right hand side is transcendental.
Therefore Riemann-Hilbert correspondence builds a bridge between the algebraic and analytic world.
In the following, we will sketch a proof of 2.1, and a proof of 2.3 only in the case of curves. After
all, P1 − {0, 1,∞} is all we care about.

Lemma 2.4. Let (E ,∇) ∈ VC(Xan). There is a natural map ker∇ → E. Let x ∈ X be a point, the
following are true:
(1) (ker∇)x → E(x) is an injection.
(2) The function dim : X → Z, x→ dim(ker∇)x is lower semi-continuous in analytic topology.
(3) The sheaf ker∇|dim−1(d) is locally constant. In particular, ker∇ is constructible.
(4) If ∇ is integrable, then X = dim−1(rk E). In particular, ker∇ is locally constant of rank rk E.

Proof. All of the statements are local, so we might restrict to a sufficiently small open neighbourhood
U containing x. Choose a trivialization of E|U , we see from Example 1.6 that ker∇ is given by the
solution of the PDEs (1.1.4). For any curve x ∈ γ ⊆ U , the restriction of (1.1.4) to γ is an ODE,
which by Picard’s theorem has unique solution once the initial condition is given. Since for any
point in U there is a γ connecting this point to γ, this shows (1).

Suppose dimx ker∇ has dimension d, i.e. in a small neighbourhood V of x the equation (1.1.4)
has d solutions s1, s2, ..., sd, whose initial conditions s1(x), s2(x)..., sd(x) are linearly independent.
The restricting to curve trick again implies that {si(y)} are linearly independent at any y ∈ V ,
showing that dim(ker∇)y ≥ d. Therefore dim−1([d,∞)) is open, this gives (2).

Let x ∈ dim−1(d). Shrinking U if necessary, we can find a subspace Λ ∈ ker∇(U) such that
Λ → (ker∇)x is an isomorphism. Consider the trivial local system i : Λ ↪→ E|U . By (2), i factors
through ker∇ in a small neighbourhood of x. Shrinking U if necessary, we see that Λ|dim−1(d)∩U ≃
ker∇|dim−1(d)∩U , and this gives (3).

If ∇ is flat, then a section v ∈ E(x) can be extended to a flat section over U by parallel transport.
This shows that dim(ker∇)x = rk E , and yields (4). □

Proof of 2.1. It suffices to show that the compositions of the given functors are isomorphic to
identities. Composition on one direction is

ρ→ (Kρ ⊗C OXan , 1⊗ d)→ ker(1⊗ d).

It is clear that ker(1⊗ d) = Kρ. Composition on the other direction is

(E ,∇)→ ker∇ → (ker∇⊗C OXan , 1⊗ d).

Lemma 2.4(4) guarantees that ker∇ is locally constant of rank rk E . By rank considerations, the
natural inclusion ker∇⊗COXan ↪→ E is an isomorphism of vector bundles. The inclusion furthermore
commutes with the connections, i.e. for local sections s⊗ f ∈ ker∇⊗C OXan we have

(1⊗ d)(s⊗ f) = s⊗ df = ∇(fs).
Therefore the inclusion induces an isomorphism (ker∇⊗C OXan , 1⊗ d) ≃ (E ,∇). □

Proof of 2.3 when X is an (affine) curve. By Theorem 2.1 it suffices to show that the analytification
functor

F an : VICreg(X)→ VIC(Xan)

is an equivalence. We show this by introducing an inverse functor G : VIC(Xan)→ VICreg(X).
In fact, pick an embedding X into a smooth projective curve C. For any P ∈ C − X, pick a

sufficiently small disk P ∈ DP ⊆ C(C). Consider (E ,∇) ∈ VICan(X), the restriction (E ,∇)|DP−{0}
is in VIC(Gan

m ). By Theorem 2.1, the restriction (E ,∇)|DP−{0} gives rise to a C-representation
of Z = π1(DP − {0}). Now by Example 1.9 and Example 2.2 we obtain a vector bundle with
logarithmic connection (EextP ,∇ext

P ) over DP extending (E ,∇)|DP−{0}. Glueing (EextP ,∇ext
P ) to (E ,∇)
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along (E ,∇)|DP−{0}, we obtain a holomorphic vector bundle with logarithmic connection (Eext,∇ext)
over C extending (E ,∇).

By GAGA (Eext,∇ext) is isomorphic to an algebraic vector bundle with logarithmic connection
(E ′,∇′) over C. We have (E ′,∇′)|X ∈ VICreg(X). Define G sending (E ,∇) to (E ′,∇′)|X . The above
discussion also applies to extension of morphisms in VIC(Xan) and we can upgrade G into a functor,
which is easily seen inverse to F an. □

3. Vector bundles with connection arising from geometry

Let S be a smooth variety. An important family of vector bundles with integrable connection over
S arise from geometry. Precisely, these vector bundles arise as the relative de Rham cohomology
Hi

dR(X/S) of a smooth morphism π : X → S. There is a canonical connection ∇GM on Hi
dR(X/S),

called the Gauss-Manin connection. In order to keep the review concise and simple, we will always
work on base field C, with π projective. The letter n will be used to denote the relative dimension of
X over S. We won’t give precise proof of the statements we make. Rather, we put more emphasise
on examples.

3.1. Algebraic de Rham cohomology. With notation and assumption as above, we define a
complex Ω•

X/S ∈ DCoh(π
−1OS) as follows:

(3.1.1) 0→ OX/S
d−→ ΩX/S

d−→ Ω2
X/S

d−→ Ω3
X/S

d−→ ...

The relative algebraic de Rham cohomology Hi
dR(X/S) is an OS-module defined by the i-th hyper-

cohomology
H i(RΓ(S,Ω•

X/S)).

When S = SpecC, Hi
dR(X/S) is just a vector space over C, conventionally denoted H i

dR(X/C).
Poincare lemma says that the analytification Ω•

Xan/San is a resolution of the constant sheaf CX .
Therefore via GAGA,

H i
dR(X/C) ≃ H i

B(X,C).
A more motivated way of viewing this is by de Rham’s theorem, which asserts the existence of a
canonical isomorphism

H i
dR(X/C) ≃−→ H i

B(X,C),

ω →
(
γ →

∫
γ
ω

)
, where γ ∈ HB

n−i(X/C).

For general X, Ω•
Xan/San is a resolution of π−1OSan . It follows from projection formula that

Hi
dR(X/S)an := Hi

dR(X/S)⊗OS
Oan

S ≃ Riπ∗(CX ⊗C π−1Oan
S ) ≃ Riπ∗CX ⊗C OSan ,

where Riπ∗CX is the relative Betti cohomology, which is a locally constant sheaf of C vector spaces.
Again, a more motivated perspective of viewing this is to apply de Rham’s theorem to the whole
family, i.e. we have a canonical isomorphism

(3.1.2)
Hi

dR(X/S)an
≃−→ Riπ∗CX ⊗C OSan ,

ω →
(
γ →

∫
γ
ω

)
.

Note that
∫
γ ω is a holomorphic function over S. This is also the reason why we base change to OSan .

An important consequence of this isomorphism is that Riπ∗CX canonically sits inside Hi
dR(X/S)an

as the sheaf of differential forms ω such that
∫
γ ω is constant for all γ.
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Remark 3.1. Algebraic de Rham cohomology can be defined, not only over C, but over any field
k of characteristic 0. When S = Spec k, the cohomology assigning a smooth projective scheme X
with the graded vector space H•

dR(X/k), is a Weil cohomology theory. This means that H•
dR(X/k)

behaves well, i.e. has expected dimension and properties (Poincare duality, Kunneth formula and
Lefchetz axioms).

Remark 3.2. The complex (3.1.1) admits a canonical bi-complex resolution Ω•
Xan/San → Ω•,•

Xan/San ,
called Dolbeault complex. The sheaf Ωp,q

Xan/San has local sections a wedge of p holomorphic differential
forms and q anti-holomorphic differential forms. The resulting cohomology is classically called
Dolbeault cohomology. As a consequence of GAGA, Dolbeault cohomology equals the algebraic de
Rham cohomology when X is projective.

Remark 3.3. There is a Hodge to de Rham spectral sequence that comes from double complex
resolution

(3.1.3) Ep,q
1 = Rqπ∗Ω

p
X/S ⇒ H

p+q
dR (X/S).

When S = SpecC, (3.1.3) degenerates at the first page, yielding the classical Hodge decomposition.
In general case, (3.1.3) gives rise to a Hodge filtration Fil• of Hp+q

dR (X/S) compatible with the Hodge
decomposition on each fibre. This provides an example of a variation of Hodge structure. As it will
not be used, we won’t go any further.

3.2. Gauss-Manin connection. In contrast to H i
dR(X/C), the relative cohomology Hi

dR(X/S)
only contains fiberwise data. However, it is possible to recover the data of the total space from
Hi

dR(X/S) by putting a connection ∇GM over Hi
dR(X/S), which tells how the fiberwise data vary

"horizontally". This is the intuition of Gauss-Manin connection.
In fact, let ω be a differential form in Hi

dR(X/S). Then the Gauss-Manin connection is the
"most natural" way of differentiating ω along vector fields. To motivate it, let S be an open subset
of SpecC[t]. Let γ denote a cycle in the (n − i)-th relative Betti homology of X/S. Then the
differential dω

dt given by ∇GM is the unique cocycle in Hi
dR(X/S)an satisfying∫

γ

dω

dt
=

d

dt

∫
γ
ω, ∀γ ∈ HB

n−i(X/S).

It is easy to see that dω
dt = 0 if and only if for every γ, the function

∫
γ ω is a constant. It follows

immediately that

ker∇GM = Riπ∗CX .

To give a formal definition of the Gauss-Manin connection, note that (3.1.2) equips the analytic
vector bundle Hi

dR(X/S)an with an integrable connection

∇(s⊗ f) := s⊗ df ∈ Riπ∗CX ⊗C ΩSan = Hi
dR(X/S)an ⊗ ΩSan ,

which is exactly the Gauss-Manin connection. Though we defined it analytically, the Gauss-
Manin connection is actually an algebraic connection with regular singularities. In other words,
(Hi

dR(X/S),∇GM) is an object of VICreg(S). There are several ways to show this. For example,
it follows from Riemann-Hilbert correspondence (Theorem 2.3), as ker∇GM = Riπ∗CX is clearly
a local system over X. Or one can stick to the theory of algebraic de Rham cohomology, defin-
ing Gauss-Manin connection algebraically, then show it coincides with the analytic definition (see
[KO68]).
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3.3. Concrete examples. In practice, one may compute∇GM directly is as follows: given a relative
local section ω ∈ Ωi

X/S , let ω be its class in Hi
dR(X/S). One can always lift ω to an absolute section

ω̃ ∈ Ωi
X/C, then projects dω̃ to Hi

dR(X/S) ⊗ ΩX . This computes ∇GM(ω). The readers shall find
out how this method fit into our motivating picture of Guass-Manin connection given in the last
section.

Example 3.4. The example is taken from [Ked]. Let U ⊆ SpecC[t] be a Zariksi open subset, and
a(t), b(t) ∈ C[t] are chosen such that the elliptic fiberation

Et : y
2 = x3 + a(t)x+ b(t)

is smooth projective over U (So U need to avoid points of bad reduction, i.e. points such that
∆ = 4a2 + 27b3 = 0). Even though we express the curve as an affine curve, what we really mean is
a projective elliptic curve, i.e. there is a point at infinity. Our goal in this example is to explicitly
compute (H1

dR(Et/U),∇GM).
Let U ⊆ Et be the affine open chart excluding the infinite section, and V ⊆ Et be the affine open

chart avoiding the locus x = 0. As a consequence, x and y are global sections of OU/U , while ω = dx
y

is a global section of ΩEt/U . The Cech resolution of the de Rham complex Ω•
Et/U

associated to the
cover {U ,V} is

OU∩V/U ΩU∩V/U

OU/U ⊕OV/U ΩU/U ⊕ ΩV/U

The total complex is then

OU/U ⊕OV/U
∂1−→ ΩU/U ⊕ ΩV/U ⊕OU∩V/U

∂2−→ ΩU∩V/U ,

∂1(a, b) = (da, db, b− a), ∂2(α, β, c) = dc+ β − α.

As a result we get

H1
dR(Et/U) =

ker ∂2
im ∂1

.

Note that ker ∂2 contains an OU -linear combination of following 1-cocycles

(ω, ω, 0), (xω, xω − d(y2/x2), −y2/x2),

here one needs to check xω−d(y2/x2) ∈ ΩU∩V/U has a continuation to a section in ΩV/U . It is easy
to check that ker ∂2/im ∂1 is generated by the two 1-cocycles listed. Projecting to the first direct
summand, we have

H1
dR(Et/U) = OU ⟨ω, xω⟩.

We now compute the Gauss-Manin connection. Let A,B ∈ OU [x] such that ω = Aydx + 2Bdy.
This is always doable, for example let P (t) = x3 + a(t)x+ b(t), then one can choose A,B such that

AP +BPx = 1.

The process of computing ∇GM is summarized in the following diagram:

ΩEt/C Ω2
Et/C

H1
dR(Et/U) H1

dR(Et/U)⊗ ΩU/C

d

∇GM
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Note that ω itself can be regarded as living in ΩEt/C. Differentiating, we find

dω = d(Aydx+ 2Bdy) = Ady ∧ dx+Atydt ∧ dx+ 2Bxdx ∧ dy + 2Btdt ∧ dy

Since dx = yω, dy = 1
2Pxω and 2ydy = Pxdx+ Ptdt, we obtain that

dx ∧ dt = yω ∧ dt,

dy ∧ dt =
1

2
Pxω ∧ dt,

dx ∧ dy =
1

2
Ptω ∧ dt.

As a result, we get the following explicit formulas

dω = (BxPt −
1

2
APt −AtP −BtPx)ω ∧ dt,

d(xω) = xdω +BPtω ∧ dt.

Projecting down to H1
dR(Et/U)⊗ ΩU/C, we find

∇GM(ω) = (BxPt −
1

2
APt −AtP −BtPx)ω ⊗ dt,

∇GM(xω) = x∇ω +BPtω ⊗ dt.

Example 3.5. With the notation as in Example 3.4, consider the elliptic fiberation

Et : y
2 = x3 + t

over Gm = SpecC[t, 1t ]. Let A = 1
t , B = − x

3t so that ω = dx
y = Aydx+ 2Bdy. The computation in

Example 3.4 shows that

∇(ω) = 1

6t
ω ⊗ dt, ∇(xω) = − 1

6t
xω ⊗ dt.

Therefore under the basis {ω, xω}, the matrix of connection 1-form (Example 1.6) is given by

ΓGM =

dt

6t
0

0 −dt

6t

 .

A flat section on a sufficiently small analytic disk U is of the form s = aω+bxω where a, b ∈ OGan
m
(U).

Therefore we get differential equations

0 =
ds

dt
= atω + a

dω

dt
+ btxω + b

dxω

dt
.

Solving, we get a = C1t
− 1

6 , b = C2t
1
6 . Therefore we get ker∇GM as a rank two local system whose

monodromy representation at the point 1 is given by

π1(Gm, 1)→ GL(Cω ⊕ Cxω), 1→
[
ζ6 0
0 ζ−1

6

]
.

The monodromy is trivial after passing to the etale cover t→ t6, corresponding to the fact that the
fiberation Et : y

2 = x3 + t becomes trivial by adjoining t
1
6 .

Example 3.6. With the notation as in Example 3.4, consider the elliptic fiberation

Et : y
2 = (x2 − t)(x− 1)
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over P1−{0, 1,∞} = SpecC[t, 1t ,
1

t−1 ]. By a similar argument one shows that the connection 1-form
of ∇GM is given by

ΓGM =

[
1

4(t−1)
1

4(t−1)
−1

4t(t−1)
−1

4(t−1)

]
dt.

Near a point z ∈ U(C), we expand −ΓGM as Laurent series

−ΓGM =
∑
n≥−1

(t− z)nΓn.

A flat section s = aω + bxω in a small analytic disk V is given by the ODEs

(at, bt) + (a, b)ΓGM = 0,

and it is easy to see that a solution (a, b) is given by

(a, b) = (C1, C2)e
Γ−1 log(t−z)+

∑
n≥0

(t−z)n+1

n+1
Γn , C1, C2 ∈ C.

Therefore the monodromy around z is completely determined by the term eΓ−1 log(t−z). Around
points 0 and 1, the corresponding Γ−1 are given by

1

4

[
0 0
−1 0

]
and

1

4

[
1 1
−1 −1

]
respectively. Let z0 ̸= 0, 1 and γ0, γ1 be simple loops based at z0 and travel around 0 and 1, so that
π1(U, z0) is the free group generated by γ0 and γ1. The monodromy representation is then given by

π1(U, z0)→ GL(Cω ⊕ Cxω), γ0 →
[

1 0
−πi

2 1

]
, γ1 → I+

πi

2

[
1 1
−1 −1

]
.

The local monodromies are unipotent, while the Zariski closure of the global monodromy is SL2.

There are strong restrictions on the monodromy of local systems that come from geometry. The
following are some big theorems underlying Example 3.5 and Example 3.6. We simply state them
without any comment. The readers shall find out how they fit into the examples.

Theorem 3.7 (Picard-Lefschetz, [Wikb]). Let X → P1 be a proper flat family of relative dimension
n. Suppose all critical points only have A1-singularities (singularities that locally look like nodes) and
lie in different fibres, with image x1, ..., xk. Let x /∈ {x1, ..., xk}, then the monodromy representation

π1(P1 − {x1, ..., xk}, x)→ GL(Hn(Xx,C))

is given by

γi(ω) = ω + (−1)
(n+1)(n+2)

2 ⟨ω, δi⟩δi,
where γi is the simple loop based at x and going around xi, and δi is the vanishing cycle corresponding
to xi. The monodromy actions on cohomologies of other degrees are trivial.

Theorem 3.8 (Griffith-Landman-Grothendieck-Katz, [Kat70]). Let X → X be a proper flat mor-
phism with X a smooth curve, suppose the morphism is smooth over the open subset X−{x1, ..., xk}.
Let x /∈ {x1, ...xk} and γi be the simple loop based at x and going around xi. Then the γi ac-
tion on GL(H i(Xx,C)) is given by a linear operator T which admits a decomposition of the form
T = DU = UD such that
1) U is unipotent with (I − U)i+1 = 0.
2) D is semisimple and all of its eigenvalues are roots of unity.

Theorem 3.9 (Deligne, [Del71]). Let U be a smooth (affine) curve, and π : X → U be a smooth
projective morphism. Then Rnπ∗CX is semisimple.
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