
INTRODUCTION TO MULTIPLE ZETA VALUES

BRIAN LAWRENCE

Abstract. This is the introductory talk in a learning seminar on Deligne’s
paper [5], which gave evidence that the pro-unipotent completion of the fun-

damental group of P1−{0, 1,∞} should be regarded as a “motive”. The ideas

in [5] are related to multiple zeta values, which arise as “periods” of the motive
attached to π1(P1 − {0, 1,∞}).

1. Multiple zeta values and periods

1.1. Some infinite series. Let

ζ(k) =

∞∑
n=1

1

nk
,

for integers k ≥ 2.

Theorem 1.1.1. (Euler [8])

ζ(2) =
π2

6
.

Remark 1.1.2. In fact, a similar method allows one to determine ζ(k) for all even
k. The values are related to Bernoulli numbers, which are beyond the scope of our
seminar.

Proof. (Following Euler, we will omit some complex-analytic details needed to make
this argument rigorous.)

The idea is to “factor sinx like a polynomial” and apply Vièta’s formula to the
x3 coefficient.

Consider the sine function sinx. On the one hand, we have the Taylor expansion

sinx = x− x3

6
+

x5

120
− · · · .

On the other hand, since sinx has zeroes at precisely the points x = nπ, with
n ∈ Z, we expect it to admit a factorization

(1) sinx = x

∞∏
n=1

(
1− x2

n2π2

)
.

Suppose for a moment that this factorization has been proven. The x3-term of
the partial product

x

N∏
n=1

(
1− x2

n2π2

)
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is
N∑
n=1

−1

n2π2
.

Taking the limit as N → ∞ (the justification for which is a routine exercise in
complex analystis), we find that

−1

6
= x3-coefficient of sinx =

∞∑
n=1

−1

n2π2
,

which is precisely what we wanted to prove.
Now we outline the proof of Equation (1).
Let us temporarily introduce the bizarre notation

s̃inx = x

∞∏
n=1

(
1− x2

n2π2

)
.

A calculation shows that this product converges uniformly on compact subsets of
C, and gives an asymptotic bound of the form∣∣∣s̃inx∣∣∣� eC|x| ln|x|

for |x| large.
The quotient

s̃inx

sinx
is a nowhere-vanishing entire holomorphic function, so it admits a global holomor-
phic logarithm

s̃inx

sinx
= ef(x).

Now f is an entire function, and our bound on
∣∣∣s̃inx∣∣∣ implies

|f(x)| � |x| ln |x|

for |x| large.
By complex analysis, our growth bound on f implies that f is a polynomial

of degree at most 1. We see that f is an even function, so in fact f is constant;
comparing x-coefficients shows that f(x) = 1 uniformly. �

Euler did not manage to find closed-form expressions for ζ(3) or other odd
zeta values. (We now expect that there is no such expression; we’ll discuss some
algebraic-independence conjectures shortly.)

Some decades later, Euler managed to relate ζ(3) to the sum of a “strange series”
now known as a multiple zeta value. For integers k1, k2 with k1 ≥ 2 and k2 ≥ 1, let

ζ(k1, k2) =
∑

n1>n2≥1

1

nk11 n
k2
2

.

Theorem 1.1.3. (Euler [7])

ζ(3) = ζ(2, 1).
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Proof. We will mimic the “partial fractions and telescoping series” trick familiar
from an elementary calculus course.

We rewrite

ζ(2, 1) =
∑
n,k≥1

1

(n+ k)2n
.

(You might think of this as “summing along the diagonals”.)
By partial fractions, we have

1

(n+ k)2n
=

−1

(n+ k)2k
+

1

nk2
− 1

(n+ k)k2
.

Hence, for each fixed k, we obtain a telescoping sum:∑
n≥1

1

(n+ k)2n
=

1

k2
+

1

2k2
+ · · ·+ 1

kk̇2
−
∑
n≥1

1

(n+ k)2k
.

Summing over all k, we obtain

ζ(2, 1) = ζ(2, 1) + ζ(3)− ζ(2, 1),

which is what we wanted to prove. �

We conclude with a third (and much easier) relation among multiple zeta values.

Theorem 1.1.4. Whenever k1, k2 ≥ 2, we have

ζ(k1)ζ(k2) = ζ(k1 + k2) + ζ(k1, k2) + ζ(k2, k1).

Proof. Evaluate the double sum ∑
n1,n2≥1

1

nk11 n
k2
2

in two different ways. The details are left as an exercise to the reader. �

1.2. Relations among multiple zeta values. The theorems above are special
cases of a more general picture, which is not yet completely understood.

First, by analogy with ζ(k1, k2), one can define multiple zeta values

ζ(k1, k2, . . . , kr) =
∑

n1>n2>···>nr≥1

1

nk11 · · ·n
kr
r

.

Both Theorems 1.1.3 and 1.1.4 generalize to give a variety of relations among
these multiple zeta values.

We can define a grading on multiple zeta values by declaring that

ζ(k1, k2, . . . , kr)

is in degree k1 +k2 + · · ·+kr, and the degree of a product is the sum of the degrees.
(So, for example, Theorem 1.1.4

ζ(k1)ζ(k2) = ζ(k1 + k2) + ζ(k1, k2) + ζ(k2, k1)

is a linear relation among multiple zeta values of degree k1+k2.) With this grading,
all known relations between multiple zeta values respect the degree.

Conjecture 1.2.1. All polynomial relations among the values ζ(k1, k2, . . . , kr) are
generated by relations homogenous in the degree.
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1.3. Reinterpretation as integrals. We want to interpret multiple zeta values
as integrals. We begin with two operations on power series. Suppose

f(x) =

∞∑
n=1

anx
n.

Then an easy calculation shows that∫
f(x) dx

x
=

∞∑
n=1

an
n
xn

and ∫
xf(x) dx

1− x
=

∞∑
n=1

(
n−1∑
k=1

ak

)
xn.

In other words, by evaluating integrals, we can perform the following manipula-
tions on power series:

• Divide the n-th coefficient by n.
• Replace each coefficient by the cumulative sum of all prior coefficients.

It is not hard to see that, starting from the constant function

f(x) = 1 = 1 + 0x+ 0x2 + · · ·

and applying the above two operations, we can obtain any power series of the form

fk1,...,kr (x) =
∑

n1>n2>···>nr≥1

xn1

nk11 · · ·n
kr
r

;

substituting x = 1 then recovers the multiple zeta value

fk1,...,kr (1) = ζ(k1, k2, . . . , kr).

For example,

ζ(2) =

∫ 1

0

(∫ t2

0

dt2
1− t2

)
dt1
t1
,

and

ζ(2, 1) =

∫ 1

0

(∫ t3

0

(∫ t2

0

dt1
1− t1

)
dt2

1− t2

)
dt3
t3
.

Such expressions are known as iterated integrals.

1.4. Cohomology and periods. We have just seen that multiple zeta values can
be interpreted as certain definite integrals of algebraic functions. Definite integrals
of algebraic functions arise often in algebraic geometry, where they are known as
“periods”. We begin with some abstract nonsense.

Let X be a smooth algebraic variety defined over Q. We consider two cohomology
theories, each of which assigns to X a Q-vector space.
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1.4.1. Betti cohomology. The first is singular (or “Betti”) cohomology

Hi
B(X,Q),

defined using classical topology by viewing X(C) as a topological space. In fancy
language: one starts with the scheme X, performs a base-change from Q to C,
applies the analytification functor to make a complex-analytic space Xan

C , and then
applies the forgetful functor to arrive at a topological space. In plain language:
Elements of Hi

B(X,Q) are dual to actual physical topological cycles on the complex
manifold X.

1.4.2. Algebraic de Rham cohomology. The second is Grothendieck’s algebraic de
Rham cohomology

Hi
dR(X/Q),

defined using sheaves of differentials on X. Grothendieck observed that de Rham
cohomology can be computed purely algebraically, without leaving the category of
coherent sheaves.

In fancy language: the algebraic de Rham cohomology of X is the hypercoho-
mology of the de Rham complex

0→ OX → Ω1
X → Ω2

X → · · ·

of sheaves of differentials on X. This “hypercohomology” combines the cohomology
of the complex (closed differentials modulo exact differentials) with the Zariski
cohomology of the individual sheaves on X (i.e. Hi(X,−)).

In plain language: de Rham cohomology classes are cooked up from algebraic
differentials on open covers of X. For example, there is an injection

Γ(X,ΩiX) ↪→ Hi
dR(X,Q),

so any global differential of order i on X gives a class in Hi
dR(X,Q).

Remark 1.4.1. (Hodge filtration; I did not mention this during the talk, and it
won’t be needed for the rest of these notes.)

In general, the machinery of “hypercohomology” gives rise to a filtration on
Hi
dR(X,Q), known as the Hodge filtration, for which Γ(X,ΩiX) is the first filtered

piece.
Specifically, we have a descending filtration

Hi
dR(X,Q) = Fil0Hi

dR ⊇ Fil1Hi
dR ⊇ Fil2Hi

dR ⊇ · · · ⊇ Fili+1Hi
dR = 0,

where

FilpHi/Filp+1Hi
dR
∼= Hp(X,Ωi−pX ).

1.4.3. The comparison theorem. Grothendieck showed [9] that algebraic de Rham
cohomology agrees with Betti cohomology over C. In other words, the Betti num-
bers (a topological invariant) of a variety X can be computed purely algebraically
from the complex of differentials on X.

Let

HB
i (X/Q) = Hi

B(X/Q)∨

be the singular homology of X. Write

HB
i (X/C) = HB

i (X/Q)⊗Q C,

and similarly for other (co)homology theories.
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Integration defines a pairing

Hi
B(X/C)×Hi

dR(X/C)→ C,

given by

(γ, ω) 7→
∫
γ

ω.

Remark 1.4.2. Technically, this definition only works for

ω ∈ Γ(X,ΩiX) ⊆ Hi
dR(X,Q);

in order to give a general definition, one would need to work with Čech cocycles in
hypercohomology.

Theorem 1.4.3. (Grothendieck’s de Rham theorem)
The linear map

Hi
dR(X/C)→ Hi

B(X/C)

defined by the integration pairing is an isomorphism of vector spaces.

Remark 1.4.4. So far we have not used the hypothesis that X is defined over Q:
Theorem 1.4.3 holds for all varieties over C.

1.4.4. Periods.

Definition 1.4.5. Let X be a smooth algebraic variety over Q. A period on X is
a complex number in the image of the Q-bilinear pairing

Hi
B(X/Q)×Hi

dR(X/Q)→ C.

Notice that this makes essential use of the fact that X is a variety over Q!
The rational structure on Hi

B(X/Q) comes from the topology of X; the rational
structure on Hi

dR(X/Q) comes from considering algebraic differentials with rational
coefficients.

Example 1.4.6. Let X = P1 − {0,∞}. Then HB
1 (X,Q) is one-dimensional,

generated by a counterclockwise loop γ around the origin; H1
dR(X/Q) is also one-

dimensional, generated by

ω =
dx

x
.

Integration gives ∫
γ

ω = 2πi,

and hence 2πi is a period on X.

Example 1.4.7. Let X be an elliptic curve y2 = x3 + ax+ b in Weierstrass form,
and choose some γ ∈ HB

1 (X,Q). Let

ω =
dx

y
.

Then ∫
γ

ω

is a period on X.
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1.4.5. Historical note: why do we call them “periods”? Let’s go back to the naive
perspective of single-variable calculus, and imagine trying to integrate algebraic
functions. For example, consider ∫

dx√
1− x2

.

(Secretly, we know this integral is sin−1(x).) We may as well work on the complex
plane; then the integrand is a “holomorphic two-valued function” for x 6= ±1. In
other words, the integrand is defined on a double cover X of P1−{−1, 1}. If we try
to define a global antiderivative of 1√

1−x2
, we will run into trouble: going around a

loop in π1(X) has the effect of translating our antiderivative by 2π.
In other words, the integral

∫
dx√
1−x2

is the inverse of the periodic function sinx.

The fact that sinx is periodic (rather than one-to-one) implies that the integral is
only defined modulo addition of 2πZ.

A similar story comes up for ∫
dx√
x3 − x

:

the inverse function of the indefinite integral is now a doubly periodic function on
C, known as an elliptic function; the two periods are precisely the integrals of the
differential dx

y on the elliptic curve

y2 = x3 − x.

1.5. Multiple zeta values and periods. We have seen that multiple zeta values
can be interpreted as certain definite integrals of algebraic functions. In fact, all
multiple zeta values arise as periods.

Theorem 1.5.1. Every ζ(k1, k2, . . . , kr) arises as a period on a variety X defined
over Q.

For a proof, see [6, SS3.1-3.3] and [4, §2.1]. The key technical difficulty is to
reinterpret an iterated integral as a period coming from classes in cohomology.
Note that an n-fold iterated integral on P1 can be seen as an integral over an n-
dimensional simplex in (P1)n; the idea is to take X = (P1)n − Z, where Z is the
union of hyperplanes in (P1)n defining the faces of this simplex.



8 BRIAN LAWRENCE

2. Motives

2.1. Motivation for motives. We want to pass from the category of algebraic
varieties to a larger category of motives. The motivating ideas behind [5] are as
follows.

• A motive should be a “cohomological piece” of a variety. Each cohomol-
ogy theory (Betti, de Rham, étale, etc.) should define functors Hi from the
category of motives to (Q-vector spaces, Hodge structures, Galois represen-
tations, etc.). Every motive should “come from geometry”: the cohomology
Hi(X) of any motive X should appear as a subquotient of the cohomology
of some bona fide algebraic variety.
• If X is an algebraic variety (or at least in the special case X = P1 −
{0, 1,∞}), then the prounipotent completion π1(X)un of π1(X) should have
the structure of a motive. (We will discuss this “prounipotent completion”
at length in coming weeks.)
• One can define periods of a motive by comparing its Betti and de Rham

cohomology. Periods of the motive π1(X)un are multiple zeta values.

2.2. Attempts at a definition. The category of motives should be an abelian
category, admitting the category of varieties as a full subcategory. We begin with
the question of morphisms.

2.2.1. Correspondences.

Definition 2.2.1. Let X and Y be finite-type schemes over a field K. A corre-
spondence from X to Y is a subscheme Z of X × Y such that Z → X is finite and
surjective onto at least one component of X.

(Some authors omit the “finite and surjective” condition, or impose other con-
ditions.)

A correspondence from X to Y gives rise to a morphism on the level of coho-
mology: if πX and πY are the projections

Z
πX

~~

πY

��
X Y

then πX∗π
∗
Y defines a map from the cohomology of Y to the cohomology of X.

We can regard a correspondence as a sort of multivalued generalization of the
notion of morphism from X to Y . Indeed, Z → X is finite of degree 1 (i.e. an
isomorphism) precisely when it is the graph of a morphism X → Y ; in this case,
the action on cohomology is simply the pullback.

2.2.2. Morphisms in the category of motives? We want our category of motives to
have the following properties.

• The category should be a Tannakian category over Q. In particular, it
should be an abelian category: kernels and cokernels should exist.
• The set of morphisms Hom(X,Y ) should be a finite-dimensional Q-vector

space, for any two motives X and Y .
• For any two varieties X and Y , every correspondence from X to Y should

give rise to a morphism from X to Y .
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• For each cohomology theory (Betti, de Rham, etc.), “taking cohomology”
should be a well-defined functor on motives: Hi(X) should be defined for
any motive X.

The problem is that it’s not clear how to define morphisms to make this happen.
Roughly speaking, the Hom-set Hom(X,Y ) should be a quotient of the set of cor-
respondences from X to Y : if two correspondences Z1 and Z2 give rise to the same
map H∗(Y )→ H∗(X), they should correspond to the same morphism in the cate-
gory of motives. But we don’t know that the condition “Z1 and Z2 give rise to the
same map on cohomology” is independent of the cohomology theory! This would
follow from the “standard conjectures” (e.g. the Hodge and Tate conjectures), but
as long as those conjectures remain unknown, it seems to be difficult to give an
unconditional definition of the category of motives. For a detailed introduction to
this whole mess, see [1, Part I].

Voevodsky [10] defined a category of motives by a derived-category approach.
Voevodsky first defines a triangulated category, which is supposed to be the derived
category; the abelian category of motives is then constructed as the core of a certain
t-structure on this triangulated category. We will not discuss Voevodsky’s approach
further.

2.3. Deligne’s non-definition: systems of realizations. Deligne makes an ad-
hoc definition of motive: a motive is nothing more than a package of cohomological
data coming from geometry. We will sketch the definition here; for the details, see
[5, 1.11].

Definition 2.3.1. A system of realizations (for a motive over Q) consists of the
following objects:

• A Q-vector space MB (the “Betti realization”), with a “weight” filtration;
• A Q-vector space MdR (the “de Rham realization”), with “weight” and

“Hodge” filtrations;
• For each prime number `, a Q`-vector space M` (the “étale realization”),

with a “weight” filtration and an action of the Galois group GalQ; and
• A Q-Hodge structure MH (the “Hodge realization”);

equipped with various “standard comparison maps” that satisfy various compatibility
axioms.

Remark 2.3.2. In some sense, the precise details of the definition are unimportant.
Deligne chose a list of comparison maps and compatibility axioms in order that:

(1) the axioms be provably satisfied for cohomology of a variety, and
(2) the category of systems of realizations be a Tannakian category.

Definition 2.3.3. A motive is a system of realizations “coming from geometry”.

Remark 2.3.4. Deligne makes no attempt to define the phrase “coming from ge-
ometry”. Of course, a typical example of a system of realizations coming from
geometry is the cohomology Hi(X) of an algebraic variety, for each of the various
cohomology theories: (Hi

B(X), Hi
dR(X), Hi

et(X,Q`), Hi
H(X)).

The whole paper [5] is a heuristic argument that one should allow other “geo-
metric” constructions as well. In particular, π1 of an algebraic variety (or more
precisely its prounipotent completion) should be regarded as a motive, even though
(at least at first glance) it is not the cohomology of any algebraic variety.
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However, see [6, SS3.1-3.3], where the prounipotent completion of π1(X) is related
to the cohomology of certain open subvarieties of powers of X.

2.4. Motives and periods. Since periods on a variety (Definition 1.4.5) depend
only on the (Betti and de Rham) cohomology of the variety, we can extend the
notion of period to arbitrary motives.

Definition 2.4.1. On any motive X, with Betti realization MB and de Rham
realization MdR, the Betti-de Rham comparison isomorphism

MB ⊗Q C→MdR ⊗Q C
gives rise to a Q-linear pairing

MB ×M∨dR → C.
An element of the image of this pairing is called a period on the motive X.

Note that periods form a Q-algebra. The sum of two periods, on motives X and
Y , is a period on the disjoint union X tY ; their product is a period on the product
X × Y .

Conjecture 2.4.2. All algebraic relations between periods are “explained by geom-
etry”.

By the above remarks, this conjecture is equivalent to the following statement:
on any motive X, the Q-linear pairing

MdR ⊗Q M
∨
B → C

is injective.

Remark 2.4.3. Conjecture 2.4.2 appears to be far out of reach. Since π is a
period (Section 1.4.5), it implies the transcendence of π as a first special case.
Some modest partial results have been proven; for a survey of the problem, see [3].

According to Theorem 1.5.1, all multiple zeta values are periods on motives.
Applying Conjecture 2.4.2 to the multiple zeta values, we expect all the many
relations among them to be “explained by geometry”. More precisely, Brown [4]
defines a ring HMT + of “motivic zeta values”; this ring comes with an “evaluation”
map

HMT+ → C.
Conjecture 2.4.2 then implies that this evaluation map is injective.

Thus, Conjecture 2.4.2 implies that Theorems 1.1.1 (ζ(2) = π2/6) and 1.1.3
(ζ(3) = ζ(2, 1)) admit motivic proofs. In Section ?? we will give a motivic proof of
Theorem 1.1.1.

Remark 2.4.4. (The reader can safely skip this: we will not use it again.)
In fact the motives that give rise to multiple zeta values are of a special form:

they are all iterated extensions of Tate motives. Let Q(1) be the motive H1(P1 −
{0,∞}) (one has to check that this is a well-defined motive!). This object has one-
dimensional realization for each of the cohomology theories; its étale representation
is the cyclotomic Galois representation Q`(1). A Tate motive is a tensor power
Q(n) = Q(1)⊗n or its dual Q(−n) = Q(n)∨. An iterated extension of Tate motives
is a motive X admitting a filtration

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = X
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such that each quotient Fi/Fi−1 is a Tate motive Q(k) (for some k depending on
i).

When we discuss unipotent π1, we will see that it has a similar structure of
iterated Tate motive.
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3. Unipotent π1

In later talks, we will discuss the prounipotent completion πun1 of π1(P1 −
{0, 1,∞}) in some detail. As we have mentioned, Deligne’s paper [5] argues that
this πun1 should be regarded as a motive. I will give a few possible interpretations
of this statement. (My understanding is that these “possible interpretations” are
all equivalent. We will discuss this in more detail in Asvin’s talk.)

Let X = P1 − {0, 1,∞}. Considering the complex analytification of X as a
topological space (the plane with two points removed), we obtain an abstract group
π1(X). It is free on two generators.

Definition 3.1. Let G be an abstract group. (We are only interested in the case
G = π1(X).) A representation of G on a vector space V is said to be unipotent if
either of the following equivalent conditions is satisfied:

(1) There is a basis for V with respect to which every element of G is upper-
triangular, with 1’s on the diagonal.

(2) There is a filtration

0 = W0 ⊆W1 ⊆ · · · ⊆Wn = V

of V by G-stable subspaces, such that the action of G on each Wi/Wi−1 is
trivial.

The “prounipotent completion” Gun of any group G is a proalgebraic group. Its
defining property is that there is a map G → Gun(Q), such that every unipotent
representation of G factors through Gun(Q). (See [5, §9] for discussion of the
prounipotent completion.)

The prounipotent completion is closely related to the lower central series of G.
Let G[0] = G, and define G[n] inductively as the commutator subgroup

G[n+1] = (G,G[n]).

Hence, G/G[n+1] is the largest quotient of G for which the image of G[n] is central.
Then any representation of G/G[n] is unipotent, and in fact [5, §9.8] Gun can be
obtained as a sort of “algebraization” of the completion lim←G/G[n].

With this preamble, here are several formulations of the claim that “πun1 is a
motive”. Let

π1 = π1(P1 − {0, 1,∞}).

(1) Let Γn = π1/π
[n]
1 be the largest n-step nilpotent quotient of π1 (that is, a

quotient of π1 by the n-th group in its lower central series). One can define
(see [5, §9]) the Lie algebra of such a group; a priori, Lie Γn is a vector
space over Q.

Then for each n, Lie Γn is the Betti realization of a motive.
(2) The prounipotent completion πun1 is a pro-algebraic group; its affine Hopf

algebra (ring of functions) can be expressed as an inductive limit lim→Rn.
Each Rn is the Betti realization of a motive.

(3) Fix a basepoint o ∈ X.
For every x ∈ X, the set of homotopy classes of path from o to x form

a torsor under π1 = π1(X, o). Algebraizing, this gives a torsor Pno,x under

Γn,alg. As it is a torsor for an algebraic group, we can write Pno,x = SpecA.
Then A is the Betti realization of a motive.
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(4) The torsors Pno,x, as x varies over X, glue together to give a torsor Pno over
X.

This torsor is the Betti realization of a motive over X.
(5) Every unipotent representation of π1(X) is the Betti realization of a motive

over X.
In particular, every unipotent representation of π1(X) underlies a vari-

ation of mixed Hodge structure on X.

Remark 3.2. I am not sure about the last two items.
We have not defined motives over X or variations of mixed Hodge structure. We

will define them as needed.
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4. A motivic proof of an identity involving periods

Conjecture 2.4.2, predicts that there should be some “geometric” or “motivic”
reason for any relation among multiple zeta values. In other words, identities like

ζ(2) =
π2

6

should admit proofs based on the interpretation of each side as a period of a motive.
In this section we will give such a proof, in the hopes that it will clarify the meaning
of Conjecture 2.4.2.

Concretely, a period of a motive is the integral of an algebraic function over a
topological cycle. The action of correspondences on cohomology is just a fancy
word for integration by substitution, familiar to any calculus student.

In Section 1.3, we interpreted multiple zeta values as iterated integrals. But of
course any iterated integral can be understood as a multiple integral on a higher-
dimensional variety. For example,

ζ(2) =

∫ 1

0

(∫ t2

0

dt2
1− t2

)
dt1
t1

=

∫∫
dt1 dt2
t1(1− t2)

,

the double integral being taken over a triangle in the (real) (t1, t2)-plane.
Unfortunately I do not know a proof of Theorem 1.1.1 using this particular

integral representation. Instead, I will give a proof (due to Apostol [2]) using the
double integral relation below.

Theorem 4.1. We have

ζ(2) =
π2

6
,

where

ζ(2) =

∫∫
dx dy

1− xy
,

the integral being taken over the unit square.

Proof. (That ζ(2) =
∫∫

dx dy
1−xy can be verified by expanding 1

1−xy as a geometric

series.)
First we rotated by 45 degrees; that is, we perform the substitution

x = u+ v, y = u− v,

which transforms the integral (up to a factor of 2) into∫∫
du dv

1− u2 + v2
,

the integral being taken over the rotated square

0 ≤ u ≤ 1, −u ≤ v ≤ u, −(1− u) ≤ v ≤ 1− u.

Next we perform the substitution (if this feels unmotivated, see Remark 4.2
below)

(u, v) = (cos 2θ, sin 2θ tanφ).

The bounds of integration become

0 ≤ θ ≤ π/4, −(π/2− θ) ≤ φ ≤ π/2− θ, −φ ≤ v ≤ 1− u;
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here the last inequality follows from the half-angle formula

tan θ =
1− cos 2θ

sin 2θ
.

We compute
du ∧ dv = 2 sin2 2θ sec2 φdθ ∧ dφ

so
du ∧ dv

1− u2 + v + 2
= 2 dθ ∧ dφ.

Hence, we are reduced to the straightforward problem of integrating dθ∧dφ over
a quadrilateral in the (θ, φ)-plane; the result follows. �

Remark 4.2. If the substitution

(u, v) = (cos 2θ, sin 2θ tanφ)

feels unnatural, imagine integrating∫∫
du dv

1− u2 + v2

by standard techniques of elementary calculus. Integrating in the v-direction first,
one is led to the trigonometric substitution

v =
√

1− u2 tanφ.

Given the appearance of
√

1− u2, it is natural to take

u = cosψ

for some ψ. Computing the boundary of the region in terms of φ and ψ, one notices
the key half-angle formula; for this reason we wrote the integral in terms of θ = ψ/2.

Remark 4.3. Trigonometric functions may appear to be non-algebraic, but in fact
it is easy to rewrite any integral involving trigonometric functions as an integral of
a rational function, by means of s = eiθ.

If we take
(s, t) = (eiθ, eiφ),

the substitution above becomes

(u, v) =

(
s2 + s−2

2
,
s2 − s−2

2
· t− t

−1

t+ t−1

)
,

and the integral ∫∫
ds dt

st
is evaluated over some subset of the torus

|s| = |t| = 1.
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[7] Leonhard Euler, Circa singule serierum genus, 1774.

[8] Leonhard Euler, De summis serierum reciprocarum, 1735.
[9] Alexander Grothendieck, On the de Rham cohomology of algebraic varieties, Pub. math.
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