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CROSS-POSITIVE MATRICES*

HANS SCHNEIDER’ AND MATHUKUMALLI VIDYASAGAR:
Dedicated to Alson Householder on the occasion ofhis 65th birthday.

1. Introduction. In recent years there has been a great deal of interest in a
matrix A which is positive on a cone C in Euclidean n-space, i.e., AC

_
C (e.g.,

Birkhoff [2] and Vandergraft [5]). Another type of positivity is considered by
Haynsworth and Hoffman 4] for symmetric A and self-polar C.

In this paper ( 3) we introduce three classes of matrices related to the class of
positive matrices: the class of cross-positive matrices on C, strongly cross-positive
on C, and strictly cross-positive on C. These classes contain respectively extensions,
by multiples of the identity matrix, of the class ofmatrices positive on C, irreducible
on C, and strictly positive on C. In this section we also investigate when equality
occurs in the various containment relations. In 4 we consider exponentials of
cross-positive matrices. Then ( 5) we prove theorems of Perron-Frobenius type
for each class of cross-positive matrices. Thus in the case of some cones C, we
obtain extensions of the standard Perron-Frobenius theorems. Sections 6 and 7
are devoted to matrices cross-positive on a polyhedral cone and symmetric cross-
positive matrices, respectively. We state some open problems in 8. We begin by
assembling in 2 some preliminary lemmas on cones in a form in which they are
used in this paper.

2. Lemmas on cones.
DEFINITION 1. A set C in real Euclidean n-space R" is said to be a cone if
(i) C is nonempty,

(ii) C is a closed subset of R",
(iii) C+ C_ C,
(iv) C

___
C for all > 0,

(v) C- C =R",
(vi) C f’l (-C)-- {0}.

It should be observed that many authors employ the term "cone" for subsets of
R" satisfying some, but not all, of the above conditions.

We shall denote the inner product in R" by (z, y) z’y and we write [z[[ 2

(z, z), zl >_- 0.
DEFINITION 2. The polar S* of a nonempty set S in R" is defined to be

S* {z e R"’(z, y) >= O forall yeS}.

Since 0 e S*, we observe that S* is nonempty. Also it is easily shown that S* is
closed.
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DEFINITION 3. If C is a cone in R" and x y- z where y C, z C* and
(z, y) 0, then y, z will be called an orthogonal decomposition of x on C. Where
convenient, we shall refer to x y z as an orthogonal decomposition on C.

Lemma is essentially to be found in 4] for C such that C*
__
C and is used

in the section of this paper dealing with symmetric matrices.
LEMMA 1. Let C be a cone in R". Then every x R has an orthogonal decomposi-

tion on C.
Proof. Let y be the vector C whose distance x y from x is minimal over

all vectors in C (such a y exists, since C is closed) and let z y x. Let v e C.
Then for all e > 0, (y + ev) C and so

Ilzll 2 <Ix- (y / v) 2 z / v 2 zl 2 / 2e(z, v)+ e2 v 2.

Hence for all e > 0, (z, v) >= -e v a/2 whence (z, v) _>_ 0. It follows that z e C*.
Next, observe that (1 e)y e C for 0 =< e =< 1. Hence

Z] 2
X (1 e)y 2

Z ey 2
Z

2 2e(z, y) + ,2 Yl 2.

so for all e, 0 < e =< 1, (z, y) e y112/2. Hence (z, y) =< 0. But y C and z e C* so
that (z, y) > 0 and so (z, y) 0. The lemma is proved.

The decomposition is in fact unique, but we shall make no use of this.
Several well-known results are consequences of Lemma 1. To illustrate this

point, we shall give a proof of Lemma 2 (cf. Fenchel I3, p. 10], Ben-Israel Ill), but
in the case of Lemmas 3 and 4 we omit the details. We shall denote the (absolute)
boundary of a set S by cS and its (absolute) interior by S.

LEMMA 2. Let C be a cone in R". Then C** C.
Proof. It is clear from the definitions that C C**. So let x C**, and let

x y- z be its orthogonal decomposition on C. Then

(z, x) (z, y) (z, z) .
But x e C** and z e C* whence (z, x) __> 0. It follows that Iz 2 0, and so z 0.
Hence x y e C. Thus C**

___
C, and the result follows.

LEMMA 3. Let C be a cone in R", and let y C. Then there exists a z C* such
that (z, y) 0 if and only if y c3C. If y =/= O, any such z c3C*.

One half of the lemma is equivalent to the existence of a support plane at
any point of the boundary of the cone, and this result may also be found in Fenchel
[3, p. 8].

COROLLARY 1. Let C be a cone in R", and let y q C. Then there exists z C*
such that (z, y) <= O.

LEMMA 4 (Fenchel [3, p. 12]). If C is a cone in R", then so is C*.
A result more general than Lemma 4 is given by Lemma 5. We identify R

with the space of all real m x n matrices.
LEMMA 5. Let C be a cone in R", and let D be a cone in R". Let F(C, D) be the

set of all matrices A R such that AC
_

D. Then F(C, D) is a cone in Rran.
Proof. Properties (i)-(iv) of Definition are easily verified for F(C, D). Since

C* is a cone, and so C* C* R", there exists a basis x, .-., x, for R" with
x e C*, 1, ..., n. Similarly, since D D Rm, there is a basis y, ..., y,, for
R with yje D, j 1, ..., m. It then follows that yjx, 1, ..., n,j 1, ..., m,
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is a basis for R"". But yjxf F(C, D), and thus F(C, D) satisfies condition (v) of
Definition for Rm". If A F(C, D) f-/(-F(C, D)), then AC

_
D; and AC

_
-D

whence AC {0}, since D 9/(-D)= {0). Since C- C R", it follows that
AR"= {0}, whence A 0. Thus condition (vi) of Definition 1 is satisfied, and
F(C, D)is a cone.

3. Cross-positive matrices.
DEFINITION 4. Let C be a cone in R". An n n matrix A is called cross-positive

on C if for all y C, z C* such that (z, y) 0 we have (z, AT) >__ O.
DEFINITION 5. Let C be a cone in R". An n n matrix A is called strongly

cross-positive on C if
(i) A is cross-positive on C,
(ii) for each y t3C, y - 0, there exists z C* such that (z, y) 0 and (z, AT) > O.
DEFINITION 6. Let C be a cone in R". An n n matrix A is called strictly

cross-positive on C if for all y C, z e C*, y 0, z - 0 such that (z, y) 0, we have
(z, AT) > O.

Let C be a cone in R", and let AC
_

C. In 5, Definition 4.13 Vandergraft has
given an interesting definition of the irreducibility of A on C. He has shown
I5, Theorem 4.1 and Lemma 4.23 that each of the following conditions (which also
have been considered by other authors) are equivalent to irreducibility as defined
by him.

CONDITION A has no eigenvector in cC.
CONDITION 2. (I 4- A)"-1(C\{0})

_
C.

Thus we shall call A irreducible on C if AC
_
C and A satisfies either of the

equivalent conditions I1 or 2.

The following symbols are introduced for the sake of convenience:

E(C) {A "A is cross-positive on C},
E’(C) {A "A is strongly cross-positive on C},
E +(C) {A "A is strictly cross-positive on C},
H(C) (A’AC

_
C},

H’(C) {A "A is irreducible on C},
H+(C) {A’A(C\{O})_ C},
Hi(C) {A’A + I H(C) for some > 0}

{A "A + 1 H(C) for some real },
H’I(C) {A’A + I rI’(c) for some __>

{A’A + 1 H’(C) for some real
I-I-(C) {A’A + I I-I+(C) for some _>_ 0}

{A’A + I H+(C) for some real }.
We shall write cl (S) for the topological closure of a nonempty set S.
LEMMA 6. Let C be a cone in R". Then in

cl (Z + (C)) Z(C).

Proof It is easily verified from Definition 4 that Z(C) is closed in R"". For
A E(C)and 6 > 0, define

Ao A + 3yzr,
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where y C and z e (C*). Then A6 e E+(C) for all 6 > 0, and limo_,o A6 A,
whence A ecl (Z + (C)). The lemma now follows since I2 + (C) Z(C).

LEMMA 7. Let C be a cone in R" and let A Z’(C). Then A has no eigenvector
in cqC.

Proof. Suppose u e c9C and Au 2u. Since A e E’(C), there is a z e C* such
that (z, u) 0 and (z, Au) > 0. But (z, Au) 2(z, u) 0. This is a contradiction,
and the lemma follows.

We postpone until 5 the fuller results on eigenvectors and eigenvalues.
THEOREM 1. Let C be a cone in R". Then H’(C) H(C) f-] Z’(C).
Proof. If n 1, the theorem is clearly valid, because every matrix is in Z + (C)

and every nonnegative matrix is in H’(C). So let n >__ 2. Suppose A H(C) I"1 E’(C).
By Lemma 7, A has no eigenvector in c3C and so A H’(C) by Condition 11.

Conversely, suppose that A H’(C). Then A H(C), and it only remains to
show that A 12’(C). It is sufficient to prove that B (A + I) E’(C). Let y
y 4: 0, and (z,y)= 0. As A eli’(C), B"-1 I-I+(C), by Condition I2, SO that
B"-yeC and so (z,B"-ly)>0. Since BeFI(C), we have (z,By)>=O
for r 1,--., n- 1. Since (z,y)- 0, there exists r, =< r =< n- l, such that
(z,By) > 0 and (z,B"-y)= 0. Let z’= (BT)-lz. Then z’ e C*, (z’,y)= 0 and
(z’, By) > 0. So B 12’(C) and the theorem is proved.

COROLLARY 2. HI(C) FI(C) f’l 12’(C).
Remark 1. A FI(C) if and only if (z, Ay) > 0 for all y C, z C*.
Note that if (z, Ay) >= 0 for all z C*, then by Lemma 2, Ay C.
Remark 2. If A E(C), so is A + aI for all real z, and similarly for A 12’(C)

and A 12 + (C).
Remark 3. From Remarks and 2 and Corollary 2, the containments shown

in Table follow easily. (In Table 1, an arrow () is used instead of "_" for
convenience.)

TABLE

n (c) n’(c) n(c)

n(c)- n’l(c)--, n,(c)

z (c) z’(c) z(c)

We now investigate the containments 12+(C)
_

I-I-(C) and 12(C)
_

1-I1(C).
THEOREM 2. 12+(C)--- FI-(C) (i.e., a matrix A is strongly cross-positive on a

cone C if and only if (A + I)(C\{0})
_
C for some ).

Proof. Clearly from Remark and Corollary 1, 12 +(C) H -(C). Suppose
A q FI -(C). Then for each real e, A + el H + (C). So for all e there exists y e C,
y 4: 0, such that (A + od)y C. Hence by Corollary 1, there exists z e C*,
z 0, such that (G, (A + eI)y) <= O. Let {ei} be a sequence of real numbers which
approach infinity, and normalize the corresponding {z,} and {y,} to unit norm.
Then {G,} and {y,} have convergent subsequences {zik and {y,k} converging to z
and y respectively. Let these be renumbered {z} and {y,}, and renumber the cor-
responding subsequence {,} as {e}. Then for all i, (zi, (A + e,I)y,) < O, whence

(Zi’ AYi) <= --Oi(Zi, Yi) <= O.
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Then, as o, we have zi z, Yi Y and therefore (z, Ay) <= O. Also

1
Iz,, y,) _-<

and since (zi, Ayi) is bounded as , it follows that (z, y) =< 0. But (z, y) >= 0 as
z C*, y e C, so that (z, y) 0. Hence there exist y C, z C*, y - 0, z -: 0 such
that (z, y) 0 and (z, Ay) <_ O. We conclude that A q E + (C). The theorem follows.

Theorem 2 shows that the containment E + (C)
_
H- (C) is actually an equality.

We now show by means of an example that this is false in the case of the contain-
ment E(C)

_
H(C). However, as we shall see in 6, I-I I(C) E(C) if C is polyhedral.

Example 1. Let C be the circular cone in R3:

C {X (X1, X2, x3)T’x1 0 and x >= x2
2 + x}.

This cone is self.polar (C* C). Let

0

; 0

Suppose y (Y l, Y2, Y3)r e cC. Then Y >_- 0, y y + y, and z C, (z, y) 0
ifand only ifz k(yl, Y2, Y3), k > 0. Hence we have (z, Ay) k(y y y)

0 for all y C, z (?C* such that (z, y) 0 and so A e E(C). On the other hand,
if x- (1,0,- 1) r, then (A + eI)x (e + 1, 1,-(e + 1))r which is not in C for
any e. It follows that A HI(C). Thus Z(C) contains HI(C) properly.

4. Exponentials of cross-positive matrices. In the case that C is the positive
orthant in R". Varga 6, pp. 257-260] has called HI(C) the class of essentially non-
negative matrices. He has shown that for this cone C, A HI(C) if and only if

1A2exp A I + A +2 + -;’A3 + + I-I(C).

For this cone, lq I(C) E(C) and more generally we have the following theorem.
THEOREM 3. Let C be a cone in R" and let A be a matrix in R"". Then A E(C)

if and only if exp (tA) FI(C) jbr all >= O, i.e., A is cross-positive on C if and only
!/ exp (tA) is positive on C for all >= O.

Proof. Let A E(C). Then by Theorem 2 and Lemma 6, there exist A FI - (C)such that lim_o A A. Since A Bi I, where B FI(C) and i is real,

exp (tAz) exp (tB 7itI) e -sit exp (tBi)

and clearly exp (tBi) lq(C) for all > 0. Hence for all >= 0, exp (tAi) H(C). But
Ai exp (tAi) is a continuous function on R"" for fixed t, and H(C) is closed, hence

exp (tA).= lim exp (tAi) H(C) for all >= 0.

Conversely, suppose that exp (tA) I-I(C) for all > 0. Since (as is easily
proved)

-olim( (exp(tA)-I)=A,
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and for all positive t,

)(exp(tA)-I)HI(C),
it follows that A cl (Fl (C)) E(C).

Remark 4. It is easily shown that if exp (tA) H(C) for all in some set P which
has accumulation point at 0, then A Z(C).

Let f(z) be an analytic function on some domain D in the complex plane. Let
A be a complex matrix such that spectrum(A)_ D. If f’(2) 0 for all 2 in
spectrum(A), then it may be proved by considering the Jordan canonical form of
A that

,/V(f(A)- vI)= Z{(A 2I)’f(2)= v},
where V’(B) is the null-space of the matrix B. Thus if f’(2)4:0 for all. 2 in
spectrum(A) and f(2) 4: f(#), if 2, # are in spectrum(A), but 2 :/, then

W(f(A)- f(2)I)= dU(A 2I)

for all 2 in spectrum(A). It follows that under these conditions A andf(A) have the
same eigenvectors. We shall apply these remarks to the function f(z) e

LEMMA 8. Let C be a cone in R" and let A be an n n matrix. Then exp (tA)
II’(C)for all positive except possibly on a countable set if and only if

(i) A Z(C)
and

(ii) A has no eigenvector on

Proof. Let exp (tA) YI’(C) for all positive except possibly on a countable
set. Then there exists a sequence {t,} such that t, > 0, lim,_ t, 0, and exp (t,A)
YI’(C) for all n. It follows from Remark 4 that A Z(C). To prove (ii), suppose by

way of contradiction that A has an eigenvector on (5C, and choose > 0 such that
exp (tA) YI’(C). Since every eigenvector of A is also an eigenvector of exp (tA),
exp (tA) also has an eigenvector on cC. But this contradicts Condition 11 as
exp (tA) YI(C). Thus (ii) follows.

Now let A 6 Z(C) and suppose A has no eigenvector on cC. From Theorem 3,
it follows that exp (tA) FI(C) for all __> O. The eigenvalues of exp (tA) are {e

1, ..., n} where {Pi, 1, ..., n} are the eigenvalues of A. Let Pk ak + io9,
k 1, -.., n, where 2 --1. Let

F t’t > 0, ,paninteger,a ,co - co

Clearly F is either empty or countable, and if F, then e" - e" whenever
p -/k. Hence by the preceding remarks, if F, every eigenvector of exp (tA)
is also an eigenvector of A. Since A has no eigenvector in (?C, it follows that for

F, exp (tA) has no eigenvector (?C. Since exp (tA)e 1-I(C) for all __> 0, and since
exp (tA) satisfies Condition I for F, it follows that exp (tA)e II’(C) for F.
The theorem follows.

Remark 5. Let E {t’exp(tA)eII(C)\II’(C)}. Clearly E F, and either
E or E is infinite. For if e E, so is mt E for all positive integers m.
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THEOREM 4. Let C be a cone in R", and let A e E’(C). Then exp (tA)e FI’(C)
for all > O, except possibly on a countable set.

Proof. The theorem follows immediately from Lemmas 7 and 8.
Example 2. Let C be the cone of Example 1, and let

0 0 0

A= 0 0

0 -1 0

Then A Z(C) but A Z’(C). Further, A has no eigenvector in cC and

0 0

exp(tA)= _sinCStt cosSintt
Thus exp (tA) FI’(C) for all positive t, except 2nk, k an integer. Indeed,
exp (tA) H’(C)\H + (C) for all such t. This example illustrates that the converse of
Theorem 4 is false, and also that the exceptional set E may be nonempty.

It is instructive to compare Lemma 7 and Theorem 4 with the following
propositions. For the case that C is the positive orthant, their proof is to be found
in Varga [6, pp. 257, 2603 and is essentially the same in the general case.

PROPOSITION 1. If A FI’(C), then

exp (tA) 1-I + (C) for all > O.

PROPOSITION 2. If A 1-II(C)I-I’(C), then

exp (tA) 1-I(C)\H’(C) for all O.

COROLLARY 3. If A 1-II(C), then

exp(tA)(FI(C)\l-I’(C)) 13 I-I+(C) for all >= O.

If Z(C) H(C), the converses hold of the above propositions and corollary.

5. Extensions of the Perron-Frobenius theorems. It may be helpful to explain
the relation of our theorems to the Perron-Frobenius theory for cones. In view of
Theorem 2 (E+(C)= FI-(C)) it is easy to extend the strong Perron-Frobenius
Theorem for cones C in R" (Vandergraft [5, Theorems 4.3 and 4.4] et al.) to E+(C)
(Theorem 5). We then use Lemma 6 (E(C) cl (E +(C))) to obtain a theorem of
Perron-Frobenius type for Z(C) (Theorem 6). In the case of Z’(C), we use Theorem
4 to derive Theorem 7.

THEOREM 5. Let C be a cone in R" and let A E + (C). Let

(*) max {Re/ "/ spectrum (A)}.
Then

(i) 2 is a simple eigenvalue of A,
(ii) 2 > Re/z for any other eigenvalue,

(iii) the unique eigenvector u of A corresponding to 2 lies in C,
(iv) A has no other eigenvector in C.
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Proof. By Theorem there is an e, e >= 0, such that B A + I e H+(C).
By the strong Perron-Frobenius Theorem [5], the spectral radius p of B is a simple
eigenvalue, with unique eigenvector u and u e C. Also B has no other eigenvector
in C. If 2 p e, then 2 satisfies (*) and (i)-(iv) follow immediately.

THEOREM 6. Let C be a cone in R" and let A e Z(C). If
2 max {Re/ "it e spectrum(A)},

then 2 is an eigenvalue of A and a corresponding eigenvector lies in C.
Proof. Let A e E(C), and for > 0, define

A A -k- yzT, y C and z (C*)
as in the proof of Lemma 6. Since A e Y + (C) for 6 > 0, we see by Theorem 5 that
there exists uo e C (assume uo without loss of generality) such that Auo
2u and such that 2 has the property 2 > Re po for all eigenvalues/ of Ao.

Let 6 - 0 through a sequence {6,} and let {u,} and {2,} be convergent subsequences
of {ui} and {2,} respectively, with u lim u, 4:0 and 2 lim 2,. Then Au 2u,
where u e C, and 2 >= Re for all eigenvalues/ of A, since we can find a sequence 6
such that limj_o t; #, where #.; is an eigenvalue of Ao.i.

THEOREM 7. Let C be a cone in R" and let A E’(C). If
2 max {Re/ "/ e spectrum(A)},

then
(i) 2 is a simple eigenvalue of A,

(ii) the unique eigenvector of A corresponding to 2 lies in C,
(iii) A has no other eigenvalue in C.
Proof. We shall first prove (i). It follows from Theorem 6 that 2 is an eigenvalue

of A. From Theorem 4, it follows that there is a > 0 such that exp (tA) H’(C).
Also et is already the spectral radius of exp (tA). Suppose by way of contradiction
that 2 is not a simple eigenvalue of A. Then et is a multiple eigenvalue of exp (tA),
which is a contradiction since the spectral radius of a matrix in I-I’(C) is a simple
eigenvalue [51. Hence (i) follows.

Condition (ii) is a direct consequence of Lemma 8.
To prove (iii), let again be chosen so that exp (tA) H’(C). Then exp (tA)

has no eigenvector in C other than the one corresponding to its spectral radius (d).
Since every eigenvector of A is an eigenvector of exp (tA), A has no eigenvector in C
other than the one corresponding to 2.

The matrix of Example 2 shows that the converse of Theorem 7 is false.
For the same cone of Example 1, a symmetric matrix which is also a counter-
example to the converse of Theorem 7 is

2 2 2

A= 2 -1

2 -1

6. Polyhedral cones.
DEFINITION 7. Let C be a conein Rn. We call the set S

___
R" a set of generators

for C if for all x e C there exist x, ..., x in S such that x : aixi, where

Oi O,i 1,’’’,S.
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DEFINITION 8. Let C be a cone in R". Then C is a polyhedral cone if and only if
C has a finite set of generators.

By a well-known theorem C is a polyhedral if and only if C* is also polyhedral
(Frenchel 3, p. 22]).

We now identify R"" with the space of all real m n matrices. For such
matrices A, B the inner product (B, A) is then given by (B, A) trace (BYA).

LEMMA 9. Let C be a polyhedral cone in R", and D a polyhedral cone in
Let F(C, D) be the set of matrices A in R"" such that AC D. Then F(C, D) is a
polyhedral cone in

Proof. By Lemma 5, F(C, D) is a cone in R"". Since C is polyhedral, there
exist generators u x,..’, us for C in R"; and since D* is polyhedral, there exist
generators vx, "’", vt for D* in R". Clearly, A F(C, D) if and only if Aui D for

1, n whence A F(C, D) if and only if (vjur, A) trace (uiv, A) (vj, Aui)
>= 0 for 1, s,j 1, t. Hence F(C, D) is the dual of the polyhedral cone
G in R"" generated by vju, 1,..., s, j 1,..., t, and hence is polyhedral.
The lemma is proved.

If C* is generated by xx,..., x, in R" and D is generated by Y x,’", Yq in
R", then yjx F(C, D). It is tempting to conjecture that the yjxr, 1,..., p,
j 1, ..., q, generate F(C, D). But this is false in general. For example, let C D
be the cone in R3 generated by Yx (1, 0, 1), Y2 (0, 1, 1) T, y3 (-- 1, 0, 1)T and
Y4 (0, 1, 1). Then C* D* is generated in R by x (- 1, 1, 1)r, X2 (-- 1,

1, 1), X =(1,- 1, 1)r, X4 (1, 1, 1). Then IF(C,D) R3, but I is not in
XTthe cone generated by the yj i, i,j 1, 2, 3.

THEOREM 8. Let C be a polyhedral cone in R". Then Z(C) I-Ix(C).
Proof. By Lemma 9, I-I(C) is a polyhedral cone in R"", say FI(C) is generated

by A x, ".., A,. It follows that H x(C) is the set of all linear combinations of -I,
A x,... Ap with nonnegative coefficients and hence FIx(C is closed (Fenchel 3],
Ben-Israel 1]). Hence by Lemma 6 and Theorem 2,

=(c) c (=+(c)) c (n(c))
_

Since E(C)
_

Ilx(C), the theorem follows.
THEOREM 9. Let C be a polyhedral cone in R". Then

z’(c) n’(c).

Proof. By Corollary 2 and Theorem 8,

n’,(c) n,(c)r z’(c)= z(c) r z’(c)= z’(c).

Obviously, and more generally, 1-I](C) E’(C) if 1-Ix(C is closed.

7. Symmetric matrices. In this section the results of 5 are strengthened for
the case of symmetric matrices.

THEOREM 10. Let C be a cone in R and let A be a real symmetric matrix in
Z + (C). Let 2 be the largest eigenvalue of A. Then

(i) 2 is a simple eigenvalue,
(ii) the unique eigenvector u corresponding to 2 lies in (C f] C*),

(iii) u is the only eigenvector of A in C U C*.
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Proof. It is clear from Definition 6 that if A Z+(C), then Ar Yr(C*).
So if A is symmetric, A Z+(C) implies A e E+(C*). Then from Theorem 5, 2
is a simple eigenvalue of A, and from Theorem 5 and its dual for C*, it follows that
the unique eigenvector u corresponding to 2 lies in CO[-) (C*)= (C C*).
Further, u is the only eigenvector in C and in C*, whence (iii) follows.

THEORFM 1. Let C be a cone in R". Let A be a real symmetric matrix and
suppose A E’(C) and A E’(C*). Let 2 be the largest eigenvalue of A. Then the
properties (i)-(iii) of Theorem 10 hold.

The proof uses Theorem 7 and is analogous to that of Theorem 10 and is
therefore omitted.

THEORFM 12. Let C be a cone in R" and let A be a real symmetric matrix in
Z(C). If 2 is the largest eigenvalue of A, then there is a corresponding eigenvector in
C f3 C*.

This theorem is a consequence ofTheorem 10 and Lemma 6. But the following
independent proof is of interest.

Proof. Let 2 be the largest eigenvalue of A. Since A is symmetric,

and

2= sup{ (v’ Av)

x }
if and only if Av 2v. So let x 4 0 and Ax 2x. By Lemma 3, there is an orthog-
onal decomposition x y z of x on C. We shall first show that both Ay 2y
and Az ;z. If either y 0 or z 0, this is obvious. So suppose both y 4= 0 and
z 4= 0. Then since (z, Ay) >= O,

(x, Ax) (y, Ay) + (z, Az) 2(z, Ay)
(x, x) (y, y) + (z, z)

< (y, Ay) + (z, Az)
(y, y) + (z,

< max { (y’ Ay) (z, Az)l

If 2 <= (y, Ay)/(y, y), then 2 (y, Ay)/(y, y) whence Ay 2y. It then follows from
Ax 2x that Az Zz. If 2 <= (z, Az)/(z, z), the argument is similar.

Since x 4= 0, either y 4= 0 or z 4= 0; say y - 0. Let -y y’- z’ be the
orthogonal decomposition of -y on C. Since C is a cone, -y C, whence z’ =/= 0.
Also z’ y’ + y e C whence z’e C CI C*. By the argument of the previous para-
graph, Az’ 2z’. If z 4= 0, the argument is similar and the theorem is proved.

The following example shows that not all eigenvectors corresponding to the
largest eigenvalue of a symmetric matrix need lie in C (3 C*.
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Example 3. Let C be the cone of Example 1 and let

A

O 0 010 -1

0 -1

Then A is cross-positive on C. Its eigenvalues are 0, 0, -2, and two eigenvectors
for 0 are (1, 0, 0)T C C f) C* and (0, 1, 1)T q C.

8. Tables and open questions. The various containment relations can be
conveniently summarized in Tables 2, 3 and 4. A cone C is smooth if for each y c3C
there is a unique z 8C* such that (z, y) 0. (Note that the polar C* of a smooth

TABLE 2

Polyhedral cones

n(c) -- n;(c) -- nl(c)

z+(c) -- z’(c) -- z(c)

TABLE 3

Smooth cones

n(c)--- n’(c) nl(c)

z+(c)--- z’(c) -- z(c)

TABI,E 4

General cones

n +(c) -- n’(c) n(c)

n(c) n;(c) n,(c)

z +(c) z’(c) -- z(c)

coneC need not be smooth.) For such cones it is obvious from Definitions 5 and 6
that Z+(C) Z’(C), whence also 1-I-(C) H’I(C (but in general H+(C) H’(C)).

Tables 2, 3, 4 should be read as follows. The symbol G(C)----H(C) means that
the sets G(C) and H(C) are equal for all cones C in the class considered. The symbol
"G(C) H(C)" means that G(C) is contained in H(C) for all C in the class and
that there exists a cone C for which the containment is proper.

The containment relations between the top two rows of Table 4 are omitted
from Tables 2 and 3 since they are the same as in Table 4. The following questions
are open.

1. For which cones C in R" is 1-II(C)= Z(C)? (Evidently, if and only if
II 1(C) is closed.)

2. Our main open problem: Is H’(C) Z’(C) for all cones C? (We know that
the equality holds if Hi(C) is closed, and therefore if C is polyhedral, and
also when C is smooth.)
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3. If AZ’(C) and 2 max {Re/:/spectrum(A)), is Re/ < 2 for /
spectrum(A),/ 4:2 (cf. Theorem 7)?

4. IfA Z’(C), is exp (tA) FI + (C) for all > 0 (cf. Theorem 4 and Proposition
1)? Observe that problems 3 and 4 are solved if H’I(C) E’(C).

5. If A E’(C), does it follow that Arre E’(C*) (cf. Theorem ll)?
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