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Three ~.quivalenc~.' reh~.qons arc em~:~idered ot~ the s<'t of n x n matrices vdth elements in Fo, 
an abelian group w:th al,sorbing zero adjoined. Th,'y ar~ the relations of diagonal similarity, 
diagonal equivalenc~, and ~estrlcted diagonal equivalence. These relatioi~s are usu,~lly consi- 
dered for matrices with elements in a field, but ~r!y multiplication is involved. Thus our 
formulation in terms of an abelian gr "up with o is ~tural. Moreover, if F is chosen to be an 
additive group, diagonal simiJarity is e .aracterized irL terms of fie,as on the pattern graph of the 
matrices and diagonal equivalence in ~erms of flows on the bipartite graph of the ~atrices. For 
restricted diago~mt equivalence a pseudo-diagonal of the graph must also be considered. When 
no pseudo-diagonal is presen-, the dMsibitity propcrtie; of the group IF play a rote. We .,how 
that the three relations are characterized by cyclic, poiTgonal, and pseudo-diagonal products for 
mulfiplicative F. Thus, our rat.hod of reducing propositions coneering the three equivalence 
relatior~s to propositions concezning flows on graphs, ~rovides a unified approach to problems 
previously considered indep~ndentl 2 , and )ields some new or improved results. Our considera- 
tion of cycles rather than circuits eliminates certain restrictions (e.g., the complete reducibility 
of the matrices) which have previou,;ly been imposed. Our results extend fileorems in Engel and 
qcbncider 115], where howe~er the ?.coup F is permitted to be non-eom3imtative. 

O. I~.~roduetio~: 

In  Se c t i on  1 we give p r e l i m i n a r i e s ,  w h i c h  have  b e e n  i n c l u d e d  for  t h e  s ake  of  

ciari ty b e c a u s e  m a n y  in tu i t ive  grapl'~ t h e o r e t i c  c o n c e p t s  h a v e  b e e n  f o r m a l i z e d  in a 

va r i e ly  of  w a y s  by  d i f f e r e n t  authc,rs .  In t h e  ma in ,  w e  have  f o l l o w e d  B e r g e  [2] o r  

P e a r l  [ t l ] ;  no  a t t e m p t  is m a d e  to  t r ace  g raph  t h e o r e t i c  resu l t s  to  t he i r  or ig ins .  

C e r t a i n  g raph  t h e o r e t i c  de f in i t i ons  will a lso  b e  f o u n 0  i.~: Sec t i ons  3 a n d  4. In  

S e c t i o n  5 we  m a k e  c o m m e n t s  c o n , : e r n i n g  a l t e rna t i ve  v e r s i o n s  of  our  t h e o r e m s  a n d  

we  r e l a t e  o u r  r e su l t s  to  t h e  p u b l i s h e d  l i t e ra tu re ,  A p p l i c a t i o n s  to  t h e  sca l ing  

p r o b l e m  for  real  o r  c o m p l e x  m a t r i c e s  will  a p p e a r  in a f o r t h c o m i n g  p a p e r .  
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06958 and MCS 76-06374. Schneider a}so acknowledges partial support from the Centr~ de 
Recherehes M;~mat iques .  Uni~'er'Atd de Mon:r6al, Qu4bec, Canada, where he was located during 
his invesligatioas~ 
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1. :Prelim~nade~ 

B.D. Smmden:, H. &broider 

Detinif ion 1,1, k set lgo, furnished with a binary oF erat ion :G is an cbelian group 
with o, if 

fi) F ; = F U { o } ,  where o C F ,  
(ii) F is an abel ian group u~der  *, 

(iii) a * o = o * r a - - - o  for all a=_Fo. 
Except  where specifically ind cated otherwise, the; compositio : * will be taken 

to be mult ipl icat ion ( juxtaposhion).  As  asuai, v,e ~wite S ~" for ~he set of all 
(column) vectors with entries in the set S m,d ~"~ for the set ::f all (m x n) 
matrices w:th entries in S. 

The three equivalence relations mea t ioned  in *he abstract are the following: 

DefinRion 1,2, L~t Fo be an  abel:an group with o and iet A, B e f t ) .  
(i) A is diagoaally similar to. B ~,;~. n = r and there cx:.,~, ": . . . . .  an :.we:~ -~'~b'e dmgoeai' 

matrix "'- '~"" A ~ o  such t h a t X A X ~ : = B .  
(ii) A is ataoonatIv equivate,,~ to B if there e>ist invertible dia~ouat matrices 

, K ~ F o ,  Y-~F ' ~  o such t h a t . . X A Y - : =  .n 
(iii) A is restricted diagonally equivalent to B i:: there exist inverti:-Ae Ga:.  . . . . . .  

matrices X e F 2  '~, Y ~ F ~  such that X \ 4 Y  -~ = B aec  de~ X -  det :" : -" : - : , w h e r e  1is  
dle ;a .:.. 

For  the sake of ",~: , ~ o  o~o ~..=~ ..... ' . . . .  ~ . . . . .  n . . . .  , we .... ~< ...... tn~t a matrix is diagonal  if ti:e 
o:Gdiagonal entries are o. thai X = d i a g ( &  . . . . .  x,,) is inve~tib!e i~ x~ ~TF, for 
i=: ? . . . . .  n, that X -~ = d i a g ( x T :  . . . . . .  v;~:), an:l ti:at det X = [ [ ~  :x~. 

Nol:lt ions L3 .  (i) The symbol o :lenotes the absorbing e lement  o[ an abel ian 
group with o, The ~ym!~ol 0 denotes the additiv.." identi ty of the addihve group Z 
of integers ov of Z" .  When  IF i., an additive gnmp,  we also use 0 for its group 
iden tity. 

(!ti) Etements  of Z or Z ~' (and occas:onatly o;~ ~'~, where Q is the r~tionat fieId) 
will be denoted by  lower case Greek  ie~:ters. M~, trices in Z ' :"  w i t  be Jeno ted  by 
upper  case G r e e k  letters. Graph ;, their etemen~t~ (arc.~), vertex sets, v..'.rtices, an, i 
posi<ive integers used for com~*_h>:: purposes wil~ be denoted  by u p p x  or low~r 
case R o m a n  letters in the range C tc V. Tl'_,e :emainder  of the Rorr an a!phabe:: 
(A--  N W -  Z)  will be reserved re:  eteme::~s o~ ~ F,, and tr 2 it: the Iov'er case a:~d 
for r,latriccs in F~' in the upper  case. 

Defi:dlion 1,4. (i) A (directed I gra:fl~ G on the vertex set V is a s fi?se~ <~f v ×  V. 
(ii/ A (directed) bipartite graph H on the pair  of vertex set~ (V~ v ,,. where 

V N  " ~' = 0, is a subset  of V x  V'. 



This definition o~' bipar~ffe graph excludes graphs which have arcs directed from 
~" to V. Such graphs are not m;ed in this paper.  Normally,  for our purposes,  
V = { 1 . 2  . . . . .  n } = ( n )  and " V ' = { ~ + ! o n + 2  . . . . .  n + r } = ( r ) ' .  For the sake of 
convenience,  we assume that a graph G has been ordered lexicographically. Thus 
C - -  ,~ . .-{~.,  . . . . .  g,~} where m =!G! .  the rmmber  of elem:ents of G and if g~ = (i,.i), 
g ~ = ( k , l )  then q < s  i f a n a  on !y i f  either i < k  or i = k  and j < l .  

Definition 1.5, Le:  G be a graph on (n) and suppo~,e that iG! =: ~'~. Then  th,: 
incidem'e mafrix , = ~ t~.~;*~-z~ is oe~. lea thus: F =  (y4) v;here 

Y ' ~ i = - I  if ~ . . . .  (i,.~ i) and i-¢j, 

-/,~ = 0 otherwise. 

vOb.,.c,~.c that v.,~ := 0 ~ ,, =: (i, i).) 

Certain not ions which have intuit ive meanings for a grapi~ G are most cavity 
defined in terms of vectors in Z"'. 

Definif ioa 1.6. k.el G be a ,,raph on (~} with 

F =  F ( G )  ~-~ Z'"". 

/i) An  Lint~:,ger) flow on G is; a vector 3' ~-Z"' such that 2 /F  = 0. 
(ii~ Let i.j:.i(~), where i~j .  A chain from i to i in (5} is a w~cto~" a ~Z" '  such 

tlmt ~,a-" ~'.~ ) ~ - -  J, . . . . . .  t a  ~ )j = -.~' a:~d (c~F)k = 0. othera, ise. The 0 vector ia Z'" is a 
chain from i to i, for any i ~ ( n ) .  

(iii) The vertex compo~.w~.ts of G are the subsets V~ . . . . .  Vp o~ the vertex set 
V =  (n)  which form the equivalence classes under  tiae relation " there  is a chain 
from i to j in G" .  Thus if (i, j )~  G, then i and j belong to the same component  V,. 
We  define the t~rc component (index set) G, of G by 

G~ = .[q c ( m ) :  g,~ = (i, j) aad i, j e  ~(~}. 

N~,te that Y,v 7:0 implies that t~ ~ G~ and i ~ t~, for some s. Then  F is a direct sum 

of matrices l ;  where 

ts  = tTqi), q ~ G , , i s V ~ .  

and each F, is not  decomposable  as a direct sum after independent  permuta t ion  cf 
rows and colmnns, tf V itself is a vertex component  then G is cailed connected. 

We simply refer to % o m p o n e n t s " ,  when we count such components  an~ it does 
r~ot mat ter  whether  are or vertex components  are intended.  For technical reasons, 
arc components  are defined as index sets, but  they correspond to the usual 
topological not ion.  

We now make ,:he association betweer: gr;tphs and matrices which is crucial for 



0ur deveiopmeat,  We begin by defining two g;raphs commonly as.,aciated ,rite 
A e g "  . . . .  - . . . .  

D e N N y :  L ? .  ( i ) :  Last :A eY ~o ,  ] 'he patwm ~.raph G(A). on @) for A consists o; ~ 
the  :set o f  pairs(/, :) such that a~ ~ o. 

(ii) bit A e~g:.: The bipartite ea~en'~ g,,~ph :-(At on ({,.}, (-')') :;!or .A consists, ol 
the set  of pairs (/, 1+ n) such that a ~ - o .  

Then for the incidence matrices we write ~ ,Li(:Q,.---, (A == ~ bu~ F(H(A)),'~ 
a(a.) = a .  

[1 ] t 1.8. Let L '  be a fixed bipartite graph on v~n}, \r) ) :rod let m := !H~ the number of 
:arcs in H. Consider the set of ali matrices A ~ ' ~ '  wi~h H(A)== kL There is a 
natural bijectio~ from this set onte F"  giver: by A - ~  a. where 

a~=aq, ifh~=(i,j+n). 

The point of the mapping s this: if F is a multiplicative group, our equivalence 
relations wiU be characterized by ccrtair~ products. If A el?'2 ~', we may ~se G(A)  
to define the same bijectioa. 

Deflat ion 7i,9, Let 8 e Z '~. Then 

= i-I "5. 
q--1 

t f ,~ is a flow fo~. G(A) or H(A), .~.~ich ~ prods, c; *viii bc caited a fic~: pr~:~d~w~ 
SimiLar terminology wiii be used for chab, pn',duc~s. :'~c. 

Thu.', if IF is additive, the product H~(A) corresponds to the sum !3t.q. Iz is 
preci.~c!y for this reason that in some proofs (where explicitly stated) we assume 
that: tF is an additive group. TL'is allows us to use the standard notations of 
Z,.modutes and matrices. ~acr example, the mulfiplicafive XAX ~ = a? correspoads 
to 

b=a+Fx, 

where X = d i a g  (x, . . . . .  x~) and x=ix~ . . . . .  x,.) ~', cf° the proof of Thee.*em 2.1. 

1.10. W,: give as  example and k?dicate the intuitive ~,,~ ~:.t..~,~.<~,t.,,~,~ ~ o! so~r~e of ~he 
terms defined. For this pur,ose, we reed some ,urth..~ staqd:~~d., , . .  ~,-~ra].,41 ~hecretic 
notions. An (elementary) cycle ~ for a ;:raph G is a flow for G who:~c e:.tries ,'re 
- t, 0, or 1 (in brief, a {--. 1, 0, i}-vector) and which iu~s minimal suppoc< wh~:;e 
Support is defined as {q e (m):  3'q ~ 0}. : m  (elementary) :i:ctdt is a {0, l}-cycte, if 
A eF;:*,a cycle for G(A) correspo>ds to a (famil) o!) sequence(s) (i, . . . . .  ik), 
k > 2  such that i~ . . . . .  i~-i rove pairwise distinct, i~ = i~ :~.nd either (iq, iq+-t) ~ G(A) 
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or  (q+, ,  (~) .~_ G ( A )  for q =  I... . . ,  ,i: - 1. ,-~" cycle, for H ( A )  cor responds  to a (family 
of) s e q u e n c e ( s  (i~,.i> i> ./2,- , - ,  i,:, ]k), k > 2, where  i~ . . . . .  i,:_z are pairwise dis- 
iin,:t, j : , . . .  ,ja_~ are pairwise distinct,  i, = i;~, j~ =iv,  and both (iq~),~)~ k2(A) and 
{i,r . j q ) ~ U ( A ) .  Because  of th locat ion of the cor responding  entries in ~he 
matr ix,  we wi!{ ca1! a cyclic p~oduct f<r H(A) a polygonial product for A, and 
ge re ra i ty  reser . 'e  the te rm cyclic ?ro&~cr.:or A to mean cyclic prodtxct for G ( A ) .  

A =  O g222 ~-1! 2 3  

L '3  O O 

G ( * " " '  " '% ? =  1 0 .... . 
i 0  0 0 !  
L0 t - ' , . !  

"->A.'Q% ~ i 0 0 - i  
h 4 a. h'T"-,"Ns [_0 1 0 0 0 - 1 }  

Let  7 = (:., -- t ,  0, i)', ? . '=  (0. G, 1, 0)', 8 = (1, - t ,  - t ,  !)k Then ± 3,, :~: T' are the 
cycles fro G . ~ ) , ±  6 are the only cycles for H(A), and the corresponding cyclic 
and ~ot,,,gon d products  for A are 

gt. vA) -- a t: ae3 /t~,,(A) = a - , ,  f l a (A)  =-~ £' ~e---£t2~2. 
' al3 ~ . . . . .  ¢~'/3 Cg22 

2. A theorem on diagenal shni]ariD" 

V(e ar~ ready to state our  first theorem.  Theorems  rela ted to the resulis of this 
:~cctio*l a~e ment ioned  i~ Comments  5.1 ao.d 5.2. 

Theorem 2.1. Let A, 13 <Fg", where F,, is a abeiian group with o. Then the 
following are equiealent: 

(i) A i~ diagonally similar to B, 
(ii) G ( A ) =  G(B)  and for at! flows "), U G(A), 

, ' U A )  = t~.,(8). 
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Pr¢~L In this ~ r o o f / F  is taken to be an additive groti F. 
(i)=~ (i~): By ctefinition, the'_e exist x+ e F ,  i =  I , .  .... n, such that b+~ --: x+ + a + , - ~ ,  

far i , i  := 1:,.+., n. Since o is zhe a~sorbing e lemen : c+f Fo, we have b- i = o if and 
t i n y  :if a~ ,=o,  and hence G ( B ] = : G ( A ) .  If the matrices are represented by 
m-veeto!s  as explained in 1 . 8  there_ the hypothesis ~- b = a + l~'. Tk~+,s i:" ?, is a flow 
fo! G(A), 

y'b -- ~'~(a + Fx)  = -da, 

since T~£ = 0. 
( i i )~ ( i ) :  Let Vt . . . . .  "~+~, be  the w:rtex compmcen:s of G(A) ,  cf. DeIi~:~Ation !.6. 

Thus for i, j ~ ( n } ,  there exists a chain from i to j i~ G ( A )  if and on!), if i and  f 
belong tc lhe same ~v~. Suppose (wkhout  loss cf ge~ e~aiky) that s ~ ~ Let i ~ ¥; 
aud let 8 be a fixed chain from i to s. We  defir~:e x+ = i~ (b  - a )  and we shall show 

that b~ ::= x; + a~ - x i for i. j = 1 . . . . .  r~. 
If a~_ .---m then bq = o and t~ere is ~othiw. +, t;, vrove + ,  so snppose that a :  ¢ o and o,o 

is su,:h thal g~ = (i, ~). Let ~ be any caain fron s to i. ~ a e n  2 + S is ~. ~ow,  whence 

~t(b - a) = 3t(a - b) = -- x+. 

Let o- be the qth trait vector "n Z C  71~en 3 -  ~r ;'. a c'+::~ n from s to i ~ ~ce, ~ a 
similar argament ,  (8+cry(!:  - a )  . . . . .  x~+ But c+~(b . . . . . . . .  , , -  b~-a,+ = ~¥" - ~,. Thus 
- x ,  + ~b.,..+: - _.,+~-~, = -- x~, and the result 5"4iows. 

tn order to check ~he next propos lion coacc~:~An~,. +tr:iq~teness in '[hc~+rcm 2, ! 
we :make a definition: 

Definition 2+2. W e  call a matrix A ~ F  .... = +, ~+..:~e~:~. cgv,,.e,:ted if the patt~r~ graph 
G ( A )  is connecte~L 

Thus A is pat:-ern connected if ae.J only if P A P :  is not  a direct sa~e of two 
matrices, for any permuta t ion  R i.e. ei ther  A is irredu :ible or A is not cc~ag te~ely 
reducible. Observe that any A~I:';~ '= is the. direo, sum of p pat tc ln  con~:ected 
principal submatrices,  where p is +.he m:+nbcr of components  of G(A}.  

Proposition 2.3. L e t  A ~F~Y:. I f  F ha~ ~+~ [.~'(~:~g ~wo di+.tir:ct eleme~u~., ,hen the 
fo l lowing are equivalent:  

(i) A is ~attern connected,  

(ii) i f  X A X -  + = X ' A  (X ' ) -  ~'+ then X'  :: IX for  ,win+" f ~. 1:. 

t[~ooL If F is taken to be a~ additive g +or:p, we shall s;~ow ti~at each c:f (i) and (ii) 
is equivalent  to 

(iii) if u~iF  '~ and F ( A ) u = 0 ,  then ~-~=fe, for some / ~ I L  ~he re  s e Z  '~ is the 
vector all of whose entries are i .  

First observe that (i) holds if and orl~ if G ( A )  is c~w,t~ected, and it is known 
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that G ( A )  is connected if and on)y if (iii) is satisfied (cf. Pearl [ i i ,  p. 390.] for a 
prot-~I tl ~t can be adapted to our situation). Next. (ii) corres~::onds 'to: if a + F ( A ) x  = 
a + f ( A ) x ' ,  then x ' =  x 4 - ) ,  where f:TF. Bat  this is clearly c~,o equivaierA to (iii? 

It is not r~ecessary to cheek all flow prodacts for A and E, as in Theorem 2.1, ~o 
prove diagonal simiJarity. Suppose K is a sp,.n~,m:, forest (tree, if G ( A )  is 
com,ecled,_ -... Comnl,~e_ ~ ~.~ each arc of G(A)  which does ~ot b~:l;m_g to K to tt?c ~n~qae 
cycle al! Ihe other arcs of whic~ are ira K. In this way ve  obtain cycies y > . . . ,  3~ 
where s = m -  n +p, n is the order  of A (o:r the number of :'e.rtices oi  G(A)) ,  m is 
the number ot ~on-zero entries of A (or the number of arcs of G(A)) ,  and p is 
the number of components of ~ ( A ) .  Then each flow ~/ ~;i! G ( A )  is linear 
c o m ~ m a m n  with i,.gegra! coefficients of y~, . .  ~o. se~ Berge [2, pp. 26-27], 
C~en [3. t~.43], and Pearl [ i  1, pp. 373. 39Ti for related re., u;ts. Tae cycles we haw." 
constructed have the property required in the following co.roi!ary. 

Corollary 2.4. Let A, B ~F~'L Let w~ . . . . .  3~ be flows fi)r C(A)  st~ch that every flow 
for G ( A )  is a linear ,ombination wid~ i~TtegraI coe)~cient~ of 71 . . . . .  7s. If  G ( A )  = 
G(B)  and !-!~,(A)= ~/'v, tB), i = 1 . . . . .  s. then A is diag(,:olIy similar to B. 

Corollary, 2.5. Le~ A ~F~',". i f  F has at least two elemen,s ~hen the following are 
eq~ivalent: 

(i) The on l / f low ebr G ( A )  is 6 (i.e. G ( A )  is a forest) 
(ii) For all J3~F2 '~ such g~a~" G(B)--: G(A) ,  B is diagomd!v similar to A. 

Proof. (i) :}  (ii): Direct application of Theorem 2.1. 
( i i ) ~  (i): By Corollary 2.4, it is enough to prove that the.re ~s no cycle for G(A).  

So~ for the sake of contradiction, suppose that 7 is a cycle for G(A) .  if F is chosen 
to be additive, then, as in the proof of Theorem 2.1. y t (b - -a )  = 0. Now let ~ ~(m)  
such that % ¢  0, and let ] '~F ,  where f ¢  0. Then we may choose b _~ I?'' such that 
b q ~ a q = f  and b ~ - - a . = 0 ,  for all req .  Flom ; / ( b - a ) : = 0  we obtain that 0 =  
bq- aq = %f .  t tence  yq¢ x: 1. But 3' is a cycle, znd so we have a contradiction. 

3. A thec~rer~ on diagonal equivalence 

Cormnents 5.3, 5.4, and 5.5 relate to this section. 
We could prove our next theorem in the same manner as Theorem 2. !. Instead, 

we prefer to lierlve it [i'osl ,fl;~{ theorem. [:or A ~F, , ,  we put 

Elo 
LO 

where c ~ow ;~ar~ds for t!~e (n x n), ( rx  n}, or ( rx  r) matrix with aI! entries equal 

to o. Then 5~ ' (A)=G(A*).  Also, if X~sF2". Y c F j  are inveetible diagonal 
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matrices a e d  Z = X ~  ~; then ),'~:t Y -  ~ = B if and o i l y  if Z A  +2 "~ t := ~ .  Hence as 
an immediate com!lary to Theorem 2,1 w~ ha~e: 

Theorem 3,1.. Let  Fo b e a n  c~b','ian gro,~p uith o. Let A ,  Be~'gL The,~ fl~e 

following are equivalent: 
O) :A is diagonally equivatem t)  B, 

(ii) H ( A )  = H(B) ,  and ~or ali J:¢zws y of H ( A ) ,  

H,(A) = &,(~). 

In the rest of this section, we ,,mit ~roofs. sincft iielit (2. [) cortes )onds to item 
(3.i) for i = 2, 3, 4, 5. 

Definition 3.2. Let A elF2 '~. The' ,  A is ca!led c~,~ai:ab~,e if the bipartite pattern 
,~raph H ( A )  ~¢ cc-nnected, 

See Sinkhor~ and Knopp [i311 aad Engel :~n:i Schneider [5] fo~ equivalent 
definitions. 

Propos~ion 3.3. Let  A e ~  ~. .[f F has a*. ~eas~* two disginc* e'emo:ts, then the 

fo~owing a ~  equivalent: 
(i) A is chai::able 

(ii) i f  2"gAY" ~ = X ' A ( Y : )  .q, ~,',e'~ ?: '  =: fX and Y' =: f v  for some f~,~ g. 

i t  is ~ao; necessary to check alt :low prodwcts fcr H(A)  as in Thco~em 3.!.  to 
prove diagouM equivalence. By a m~strt~ctio~ sire{lay to that precedi~g Corollary 
2.4, we obtain cycles Y l , - . . ,  % fO; b](A' SUCh tha'. each flow for H(_~ is a linear 
combination with integral coefficie ~s of 'y~ . . . . .  y~. In this case s ---- m - ( n  -'- r) + p '  
wi~ere m at~d n are as before and 1 ' is the number of components of H ( A ) .  (Note 
that v:~,ev ~ = ~; p ' > p ,  where p is ~he number of components of G(A). )  

" .... be f lmw .for H ( A )  such ff'.~i ~ every flow Corollary 3.4. Let  A ,  B .-=F~. Let  y~ . . . .  , % 

ii~vea, co~ "b;-'-¢i"- , , n  iacegral c o e ~ d r m s  of 3q, . . % If H ( A )  = for H(A)  is a • : ~;; ~ ...... ~.,~ ,~ ,,~ . ,  
H,,Ed. and £/v.(A), = t~v,(B), i :~ ~.. . , s, flwn A ~s ,liagonath,. , eqt.~vawn, to B. 

C~rollary 3.5. Let F be an o~betia~ g~v,.~p wi#~ more than one element and let 

A ~.F~/. Then aw following are equ:va~ent: 

(i) The only flow for U ( A )  is" O, 
(ii) For all ~E1~'~' such that U(t! )= H(A ) ,  B is Aiagoaa[b/ ca/livaie~' ro A ,  

4. Theorems on restricted diagoaa~ equivalence 

Necessary and sufficient condidor ~ ~or two matrices to. be restricted diagonally 
equivater~ ~, involve the divis ibi l iy  ~ropertie s of the grou p F and some graph 
theoretic concepts which wilt be de:ined as the need ~rises. 
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No~atiens 4,1, (i) By e we sha!! deno te  (as before)  the vector  in Z" or Z "'-~ with 
a!! entr ies  equai  to 1. 

(i~ By t? we shall deno te  ttae vector  in Z '~+~ with firs': n entr ies equa! to !,  and 
last r entr ies  equal  to - i .  

Lemm~ 4.2.. Let G be a connec,,ed graph on @), let )1~ Z". ~nd i',:t .,r'= ~'~":t~O. . . . . .  [ne 
:'olfowing arc cquiv,;fien:: 

(i) r ' ~ ,  ~ = O, 

(ii) "fT;ere exists an a ~ Z"' such ~hm a'~F .= ~ .  

Proof ,  (ii)~---~. (i): Since !'e = 0. t i fF= ¢ implies that q~e = ~ ~ ~ .... ,.,. 
(i)=~ iii): Since G is c:~nnected, the rank of F is n - - i  and a basis for ~hc rigl~I 

nu!!-sp:tce ,~f !" in Q" is {e}, ,-f. Pearl  [ t l ,  pp. 393-391] .  Suppose  that # ~  = 0 .  
Since the or thogonat  complemen t  in Q" of the ri3ht nul l-space of F is the teft 
hand r~nge of K there e,,:i.,ts an c~ ~Q'~ such that  ~ F : =  ~ .  We may supporse ihat 
the top !eft hand ( n -  !)>: ( ~ -  1) submatr ix  F~ of F is r~on-,.a6.,l,d.• d . . . . .  , Then tl:e 'Ars,~ 
( n - ! )  cows of F form a t:asis for the left hand rar,~ge, and so there exists 

where u ' E  Q"-~,  0 ~ Q'"-"+~ such that  ( a )U"  = , f ,  a~J_d so absc,, a '  F = ~ ' .  It fo!iows 
t " I t  that  (a") I ~ = ( '7)  where  

k~l"J 

and r~'~_:Z "-~, ~"t=~Z ''~-''+~. But  all minors  of F~ are 1, 0 or - 1  (cf. Chen [3, p. 
80]), whence F~t  ~_Z " - L ' - z .  It follows that  a ' =  I ' ] ~ ' a Z  ''-: and so c~ ¢-_- 7'".  

Definifit)us 4.3. Let H be a bipar t i le  graph on (~;,~ V'). 
(i) It K is a vertex componen t  of H then the excess of K is the absolute  wduc 

of iKn Vi- iKn v'i. 
(ii) The graph H is reflex-balanced if the excess of all of its 'vertex co~nponents 

is 0. Otb.erwise H is vertex-unbalanced. 

i~et A ~F[{'. The graph H ( A )  is vertex~balanced if and only if the chainabte 
direct  summands  of A are square.  Hence  if H ( A )  is ver tex-balanced,  Ihen A is 
square.  

Definitions 4.4, Let H be a bipar t i te  graph on ({n), (r)'). 
(i) A pseudo-diagonal of H is a vector  6 ~ Z " '  such that  8 L ) ~ : : ¢  (here 

n = e ( S ) ) .  
(ii) A dh~.gonat (or one-fac tor)  of. H is a {0, !}-pseudo-diagonal .  

Note  that  if ~:~ r. tbcn f !  will have no pseudo-diagonals .  An example ,)f a 
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i 
graph ~hat has a pseudo-diagonal  bu t no, d i agona l  is 

/ t  ~,': I) - 1  0 

[i o11: ti ° '  A = o 1 Zi = ~ 0 0 0 

o 03 i t~ - I  0 

furnished by t t ( A )  where 

0 \  

° i - 1  

0/ 
and the pseudo-diagonal  is ( -  1, 1, t. i[, 1). 

Intuitively, the diagonals of H ( A )  have the usual meaning  in terms of location 
in the matrix A, viz., they correspc~d to permuta : ion  matrices. A pseudo- 
diagonal corresponds to a matrix in Z "''~ x~ith all row a~d column sum~ eq~a! to I.  

Lemma 4o5. Let  H be a bipartiw gr,~p~,~ on ((n}, (r)'!. Then the f)t[m,,i~g are 
equivalent: 

(i) H is vertex-baia~,,',ced, 
(ii) H has a pse:do-diagcnaL 

Proof. (i)-~(ii):  For  any ~7 ~ Z  .. . .  w(~ ~efine ~,~' to be the vector indexed by ~,~, 
with ~ ) ' )=  "0,, i~  V,, where ~ is a ver':~ x c o m p a n e m  of/7{. For a ~ Z" ,  a <~' wilt be 
a vector indexed ~,~, the arc eomponct~l H,, where a}~; ---- a~, q e 1=i~. Fur ther  21 t') is 
a submatrix o:{ the incidence matrix ~. e ' / : J  with columr~s indexed by ~1~, and rows 
by H~. Suppose H is vertex-balanced, i~ ~: ,q Z ''~' and ~ e Z ..... are defined as above,  
then we have (@~)t'e ( ' ;=  0. Hence  b~, Lemma 4.2 applied to H~ there ~:xists a 
vector t~ (~ indexed by I:/~ such that (~ ' )~z!, ~ ~= (~0('~")'. Si~ce (after row and x,qumn 
perm~tat ion) zl is a airect sum of ,2i~ ~ . . . ,  ,2t ':~ ~t follo~vs that ~'aI = ~ ,  where 
~3 ~ Z "  is defined by ~;i =~8} ~) for ia~/-~r~, s = 1 . . . . .  p. 

( f i )~( i ) .  Lei a be ~ p seudo-d i agona  of G. Tt~en Y2I = q-~ and so for ~ach s. 
(;~(-'))tzlc~) =: ~(~. The. ~ by Lemma ~.2, (p  ~'~'~'e ('~ = 0, i t  fN?ows ~hat pt~l has as many 
l ' s  as - l ' s ,  or, in othe~ words, i "z~.~ f3\~:}!' ':= I~(~ ~-l(r}'i.: , , 

Theorem 4.6, Let ~F,, be an abeii,~ ~: r ~  witi~ o. Let ~ ,  B e F2 ~. If H ( A )  is a 
vertex-ball,need graph at~d 3 is a pseucc-d~g~mal c.f H ( 4 ) ,  !hen !he fcllowbi~g are 
equivalent  

(i) A is restricted diagonally e~uiva/eT~, :~o B, 
(ii) A is diagcmatt~.y equiva~,em w B anal 

l~ooL  It is enough to show that X A Y - ~ = B  iml;!ie~ that d e t X Y  ~ =  
I t s (A)Ha(B)  "-~. In  i:he rest of this pro:d, F wilt be a:~ additive gro:~p, l~ ~ x = 
( x x , . . , ,  x,,);, y = (Yl . . . .  , y,): and u = (~,~, tlaen the dingo,hal equivalence rciat ion 
becomes b - a  =ztu, d e t X Y  -~ correspond:; ::o ~h~, and tTs(A)ft~(B) -~ c t ~ e s -  
ponds to ~ (b - - a ) .  Since y A -  ~' ,  we obta in  

~*(b - a) = g~*zlu = ~'u. 
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Defi~,'"ion 4.7. Let F be an abel ian (multiplicative) group. 

(i) If k is a positive integer and a e F ,  ~hen a is divisible by k if t])ere e~Jsts 
b e F  s u c h  ~:hat b ~ = a. 

(ii) Let  ;¢ be a positive integer.  The group F is divisible by k if, 5or every a ~! 1~', 
a is divisibie by k, 

(ii0 The gro:,p F is divisible if. for every positive integer k, F is dMsibie  by k° 

T h e o r e m  4,.8. Le~ Fo be an abelian group with o. Let  A, g~ e ~?'o'. Let fV(A) have a 
component  with excess ~:, k > i and suppose that F is divisible by k. The~,~ ~he 
following a,e equica!e~:~. 

(i) A i e  ~.vs/rieted diagonally equivale~ to B, 
(iJ) A i,. diagonally equivalent to B. 

P r o o f .  (i):~,(ii) is t rMal .  

(ii) ~ (i). Suppose ~(. is a vertex componen t  with excess k. We assmn:: that i~' i:, 
ai~ additive group and use the notat ion of Lemma  4 . 5  By hypothesis, there is a 
,'~ ~ F "*~ st-oh. ~ha~ b -  ~ = ku. We want to find a u '~  F ~+' such that b . - a  = Aq~' 
and ¢ ' u ' = 0 .  Note that k~'~ec~:=0. Let ~?~F .... b~c defined by ,r h =e} '~ if i~  V~, 
and ~ = 0  otherwise. Then  A~I = 0 and ~#"q = k', where !k'i = h:. Then  for u ' =  
~_. -- ,/~,~, w!'.. e!'e .,~eeF .~atlsfi ~ .........../.-' t', = .,f~',.,., we have b -- a = Au'  and ~tu '=,  p ' u -  k ' f  = 0 

Core!taD ~ 4,9° Let A. B ~:~. F;{'. ,[~ i~2(A) is ?ertex-~nbalanced and k 7 is div~,~:ible, thc~ 
(i) ~md (ii) qf Theorem 4.8 are eql.dvalem. 

Observe that the mu!tiplicative group of non-zero  complex 7,umbers and ihe 
mu[tiplicati'¢e group of positive real numbers  are divisible. 

Corollary 4,10. Let A, t3 ~ 1F2'. ~f Fo- -R, ' . "  - the reals under mul@licc~tion, and H ( A )  

has a co'np'ment with odd excess, &en (i) an d  (ii) of Theorem 4.8 are eq~dvalent. 

Corollary. 4.11. Let  A ,  zgeF~ J'. I f  H ( A )  has a component with excess 1, ¢.he,t (i) 
and (ii) o,f Theorem 4.8 are eqtdvale~lt. 

We now show that, conversely, tile equivalel ce of (i) and (ii) of Theorem 4.8 
implies ihe divisibility propert ies of F. For k = ~, 2 . . . . . .  let Atk) be the matrix in 
!,'l~"' ~-~ ~ defined by 

., = 1  i f ~ = l . , j s - ~ : l o r  i @ l  . . . .  ,~, 

a i i ' = o  ott~erwise. 

Thus.  for example,  

I 
-o I 1 17 

1 o o o f  
A~2 = t 0 0 o 

. i 0 O O_J 
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0bServe that there are no 'o lvgonal  products for A (~: ( .e.  H ( A  (~)) has no ~'ycles), 
and thus, for :B~l~o ~=yc~+=) with ; ~'(B) = H(A(~>), Corollary 3.5 implies that B is 
diagonally equivalent t o  A '~. Fo,  .fv2F, we de.fiae a maWx i~(k~(f)e 
IF( ~+a}<t:+m wh;.ch has the same er, tries as A (g) except t~a{ the entry in -osi{io~ 
(t, 2) is [. 

Lemma 4,12, Let lfo be an abdian gro~ ~ wi~h :~ and le~ k be a positi 2~ in',~ge,; Le~. 
f ~F. I f  the matrices .A ~ and B(~)(f) a "~.. restri,:ted d.ag~°~ , ",,~uo.y'~l~ equivc.!em, ia~en f ~, 
divisible by k. 

ProoL In this proof lZ will be an ad:lit~ve gro~.~p. By a.,.sumption Eher<: exists 
x,~,e, ~*" such that *-,--a=zb~z and :~,~-.=0 where u=(~), and c~,b iire the 
vectors in F ;~a÷~ corresponding to A ~', B~<~(?), respective.Iy. The ecaati~ns foz 
b -- a = :1 ~ are 

f = Xi- 3~2., 

0 = x ~ -  y, j = 3  . . . . .  k + 2 ,  

O=-x~-:~, i = 2  . . . . .  k + 2 .  

O~'~ adding tllese (2k + 2) equations we o!~tain 

since 

k ~'2 

¢=: k(x,  - y~)+ S" (x , -  y~):= ~:( v~-- y,;, 

k-~2 

i = t  

Theorem 433 .  Let F o be an abc~io~ ~ro~¢i.~ wi& o. Then ~he [oIlow!ng ar~ 
equivalem: 

(i) F is a divixiNe grot~p, 
(ii) For all n and all A ~ F~" such tha: /4-(A) is ve~~c.v w~b~..:~a~ed, 6w fc. ilowi~:g 

#nptication hot&: I f  B eF2" :s diagm~.~ll~, equit,olem ~o .4, eb.en B is rcstricted 
diagonally Nuiv~!,'ent to A, 

lrroo~. (i)~(ii):  By Coretlary 4.9. 
(ii).=>(i): Sine,:: H ( A  (~) is vertex-urba:anced for k =: 1,2 . . . .  ae, d B~'~(f) i~ 

diagona!ly equi',,~ient to A (~) for all f sF, ~his ?ollows immediately by Lemm~: 
4.12. 

If is easy to p~)ve an analogous theo.~ er: in x~,hkh, in (i) F~ ~ is repl~ ced )~ F,~,'~ 
or other classes ff  matrices. 
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5. Com~leats 

5all if the matrix A is compieteiy redncib!e (i.e. for some permutat ion matrix P, 
l :AP ~ is th,: direct sum of irrcducib~.e matrices, c.f. Pearl ~ i t ,  p. 292]) then every 
arc of G(/~) !ies o_u a circuit, in this case, a proof similar *:o A e  one we have for 
Theorem :;.1, shows that in that theorem. "flow"' may be replaced by "circuit". 
The result, with the proof we have indicated, was published by Fiedier and Ptak 
[6], see also Engel and Schneider {14, Corollary 4.4], and for non-commutative F 
see Enge! and Schseider  [5]. The result was publisi~ed independen;-ly without 
proo*." by Ba;set t  el : 1. [1~. As far as we know, the simple observation has not 
previously been mad,.: in print that if c~cles are considered in plaze of circuits, the 
restriction to completely reducible matrices may be eliminated. 

5.;~. We define me flow space (over Q) for a graph G to be the subspace of Q= 
eeaerated by all (integer) flows for ~ Our remarks ~ ' p .ecemng Corollary 2.4 
indicate the we!!-knov.-n result that the dimension of the flow space is s =  

The cycles cf Corollary :2.4 form a basis for the flow space. However, the 
examples ~elo,~ shows that some condition beyond this is necessary in Corollary 
2.4. The condition in that coroila-ry is ensured by the following: The (s× m) 
matrix whose r,~ws are 7~ . . . . .  y~ has an (s x s) submatrix with :leterminant equal 
to ± 1. We also note that if A is completely reducible, it is possible to adapt  th~ 
proof of Berge [2, Theorem 9, p. 29] to show that s circuits m~y always be foupd 
with the above property.  Similar remarks may be made about Corollary 3.4. 

Examp, e: Let F = {1, b} with b z = 1 and consider the matrices A, B e F6o 6, whe~ e tooi] !;1 oco 
t 

o o t o o oo o 1 o o o 

A =  o o o I 1 B =  o o 1 5 o 
o o o o l ' o o o i o 

L I o o o o o o o o 1 
O O O O O O O O O 

Then G ( A )  = G(B) is giveu by 

I 2 
~z.7" 

The circuits corresponding to the outer hexagon and the three quadrilaterals (e.g. 
with vertices 1, 3.5,  6) form a basis for the flow space over Q, but the cizmdt 



corresponding to the inner triangie is nc~t :m h~:eg:ral li:~ear combir~ation of ~he 
basis elements. Further, f0r each ~ " e ~ e m e n t  7, II~ , (A)  = t = II .~(B),  b u t  f 3 is . . . . .  ~ ~ S l S  

the circuit correst~ndingto flae inaer tri::n~:!Ie,/'Is(A) = t ~ b = H~(B). Hen :e, by 
Theorem 2.1, A:is  not diagonaUy similar :o 8. On the other hand, a basis wi~Ja :he 
required: integrafit: propertv~ is farnish~,d by the circaks correspor:ding ~.o :he 
inner tr:ia~gle and the three quadritatera s .  

5,3. Theorem 3 A  stated in terms of pol, gc nat prod~cts is knov'n and goes back 
to Latle~i;ent and P~trieh [8, 91, cL also E ag,::t and Schnek-!er [5]. At first sigt ~, ihe 
theorem as con~taiaed in those referen~:es might appear to lack the con3it:on 
H(A'~= }t(B): bui this is not so, for poty ~o~ai pro~iuct is fl~ere defi~:ed to '" ' " . . h C l h t ' l ¢  

e.g. u~! aT~ a~ a~-~. What we have ald~d is the observation that poI)gcnal 
products are cyclic products for H(A) an< h race th~ t Theorems 2.1 and ~.I ~r: of 
the santo tL, pe and, indeed, that Theorer~ ~,.! is an application of ~Fneore~:-. 2.1. 
Also we believe that our proof is consee ae~flv~ . a Iittle sim~:~ Ier. particularly_ if the 
well-known machinery of ~rapb "~ . . . . . . . .  : ..... ~ ' ~ : a , ~ ; ~  m Section I is taken "~ 
~ a n t e d  

5.4. Corollary 3.5 formulated in *erms ;f  the polygonai products meatio~,~ed in 
1.10 above, was announced ~v G.M. " " in a __ ~: ~_~g~ talk in_ December ! ~?74 :at 
Gatlinburg VI, Mun:ch. 

5.5. Suppose H(A) has a pseudo-diagon¢.i ~. The n it is easy to see that 8 ~o~zether 
with the flow space for H(A), ef 5-2, ;e~_erate the _~me space over Q !hat is 
generated by at! pseudo-diagonMs for N(A).  If follows that this space has 
dimensio~~ m - ~ n + p ' +  i where ~..' and p' a~'c dcii~cd ;:s h~ Coreiiar~ 3.4~ I~ is 
also easy to see ~hat one may find pseu& -diagonals 3~ . . . .  ,6,, ~ = m -~ 2n + 2'q !, 
such that every int,;grM flow or pseudo<iiagonat of H(A} is a linear combi:~ation 
of 8~, . . .  ,3~ with h~ttgral coefficients. T,m~: it is enough to verify that //e;,(A} = 
17;,(B). i = t . . . .  , t, to prove the restrict :d diagonal equ valence of A and ig. 

5,6. We define a matrix A to be tomly ~upponed if for suiteble permutation 
mamces E. Q, the matrix P A Q  is tile dir~:,ct sum of fully indecomposable matrices 
(cf. ?larcus and Mine [t0, p. 123] fo~ d.'finiti-?n). Suppose that A is oral ly 
supported. It then follows from the Froi:e:n us-K6nig theorem, Marcus and Minc 
[10, p. 97]~ K6nig [7, p. 240], that each r c  ~f i.~"(A) Iies en a diagonal of ~'{A). 
Also it is known that if 8 ~ Z " ,  where 8 is non°~:gative a~td a~.4(A)= k¢, k eZ,  
k~>0, ~:ben ,3 is a combination of diagonals of H(A) wi~.i~ positive irtegrat 
coefficients. (This result is essentially };.61ig [7, p. 239. Fheorem XW, !~1: A 
non-negative integral matrix with all r~w aud colum~ sums cq~.m~ i:; a imear 
combina~don of p~rmutation matrices wi~ia i~ositive integl al coefficients.) Or~.:~ may 
use this resalt to prove that, when A is t,:,taily supported, each pseudo-diag,~nal is 
a linear combination with integral coel~]ci~ nts of diago~a!s. Hence ir~ this ease. 
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"pseudo-d i~gormi"  may  be rep laced  by "'diagonaF" in the resul s~:ated at  the end 
of 5.5. We :ake this oppo:ctunity to observe  that  KSnig 's  Theo rem XIV,  B (quoted 
above)  can be p roved  in a manner  comp!e~e!y analogous  to a resu!t  in Be:;g~: [2, F. 
91]. If A is square,  then each non- '~egative flow in G(A)  is a l inear  cerr, binat io ~ 
of circ,  :is with posit ive in tegral  coe~c ien t s .  Moreover ,  this approach  si~ows that  
we require  at most  (m - 2 n  + p ' +  1) diagonals  and (m - n + p) circuks re,~o~:e~::ve!}. 
t t  is also interes t ing that  it was known to Polya [12] a l ready in 1916 thai: (in ot~- 
terminotog,..') if A has no entr ies  equal  :~o o, the Ciagonals of t g (A;  spa ;  a spac ;  
over  Q of d imension n e -  2~ + 2(m = ~.,:", p ' =  1). With  a little IAnd-sight, one ca:~ 
easi!~: fit~d circuit, diaaon.al.., and ~..~,~oiv,~o~al . . . .  ~ t ; r oduc ts  in his y, av~r. 

5.7. W e  ~i,;e two examples  to show that  some ment ion  o[ C ( A )  (or FI(A)) i~ 
essential  tc our  theorems,  a~d that  they cannot  be formula ted  in terms of the.' 
comple te  g: 'aph G,, on ~ / .  

First.  i~? F~". if 

(o o) (o bo: ) A = and B = 
, o o 

' ~ . .  t g T  . . . .  l '  where  b~::.~!F, then all the c)cl ie  products  of ~t and B are ~:quat, r~;re cycm: 
p roduc t  i~ :iefined i~:tuitively, viz. a ~ ,  ~e2, a~2 a , ,  are the cyclic product~ of A. 
But  A a~d R are not  dla , ,oaal ly  similar (or equivalent) .  We obserxc,  however ,  
that  if a matr ix A is i r reducible  then indeed the condi : ion  H,(A.)  = !Iv(B) for all 
(intuitive) cycles or ew, n circv.its of G,: guarantees  diagonal  simitarL:v ,ci. Eta.gel 

and  Schneider  [4?). 
Seco~,.d. ~!ven i{ G ( A ) =  G(B),. it is not enou,,lla, to check a cycle basis for the, 

comple te  grapi~. Le t  

A = \ O l  o° 1 . ,  B =  oi o° 

be ia Q~~ Here it would no~ be adequa te  to compare  cyclic products  only f o  
cycles in e ~asis for the flow space of G,, if the b.~sis did not  contain the m',ique 
cycle in G i A ) =  (,:;(B). for  certainly A and B are not  diagonal ly  similar.  
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