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Three cquivalence reletions are considered on the set of n X n matrices with elements in ¥,
an abeHan group with alsorbing zero adjoined. They are the relations of diagonal similarity,
diagonal cquivalence. and restricted diagonal equivalence. These relations are usually consi-
=d for matrices with clements in a field, but oely saultiplication is involved. Thus our
formulation in terms of an abelian gr >up with o is netural, Moreover, if ¥ is chosen to be an
additive group, diagonal simiiarity is ¢ 1aracterized in texms of flows on the pattern graph of the
matrices and diagonal equivilence in werms of flows on the bipartite graph of the matrices. For
restricted diagonal equivalence a pseude-diagonal of the graph must alse be considered. When
no pseudo-diagonal is presen:, the divisibility propartie: of the group F play a role. We chow
that the three relations are characterized by cyelic, polrgonal, and pseudo-diagonal products for
multiplicative ¥. Thus, our me.hed of reducing propositions concering the three equivalence
relations to propositions concesning flows on graphs, srovides a unified approach to problems
previously considered independently, and yields some new or improved results. Our considera-
tion of cycles rather than circuits eliminates certain restrictions (e.g., the complete reducibility
of the matrices) which have previously been imposed. Our results extend theorems in Engel and
“ehaeuder {5, where however the group F is permitted to be non-comnutative.

. I frodoction

In Section 1 we give preliminarics, which have been included for the sake of
clarity boacause many intuitive graph theoretic concepts have been formalized in a
variety of ways by different authors. In the main, we have followed Berge [2] or
Pear! [11]; no attempt is made to frace graph theoretic rcsults to their origins.
Certain graph theoretic definitions will also be found in Sections 3 and 4. In
Section 5 we make comments concerning alternative versions of our theorems and
we relate our results to the published literature. Applications to the scaling
problem for real or complex matrices will appear in a forthcoming paper.
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1. Preliminaries

Definition 1.1. A set F,, furnished with a binary operation =, is an cbelian group
with o, if
{i) ¥,=FU{o}, where o¢F,

(if) F is an abelian group under =,

(iii) a*o=o*g =2 for all a zF,.

Except where specifically ind cated otherwise, the compositionn = will be taken
to Dbe multiplication (juxtzposi‘ion). As usual, we write §™ for the set of all
{column) vectors with entries n the set § zeod §7° for the set of all {(mxXn)
matrices with entries in S

The three equivalence relations mentioned in the abstract ar2 the following:

Definition 1.2. L2t F, be an abelian group with » and let A, BeF;!

(i} A is diagonally similar to B if n=r and thars oxists an inverr
matrix X 2" such that XAX ' B

(it} A is diagonglly equivalesi to B if thers exist invertible diagonal matrices
Xe¥F, YeF! such that XAY '=R

(i) A is restricied diagonally equivalent o B i there exist .invert%‘:;
matrices X e F, Y7 sych that XAY '=B arc det X - det ¥ ' =1, where
the identity o F.

¢}
Ll »
5

For the sake of completeness, we obsc thit a mairix s diagonal if the
oﬁ di&gmai entries are o, that X =diag{x,,.... x,) is inveitible i x&F, for
{ i

iy that X V=diag (x7' ..., 11, and thar det X =7 | .

N’mtuiuns 1.3. (i) The symbol o denotes the absorbing element of an abslian

cup with 0. The syinhol 0 denotes the additive identity of the additive group Z
sztggcga ov of Z™. When F i+ an additive group, we also use 0 for its group
identity.

(i} Elements of Z or Z™ {and occasonally of '}, where (} is the rizonal field)
will be deroted by lower case Greek leiters. Mutrices in 27" wil be denoted by
upper case Greek letters, Oraph. their elsments {ares), vertex sets, vertices, an
posirive integers used for countiny purposes will be denoted by upper or lower
case Roman letters in the range ¢ to V. The -emainder of the Rom an alphabe:
(A~ F, W~ Z) will be reserved for elements of B, and F? i the lower case and
for matrices in FY in the upper case.

t)?i

Defizition 1.4. () A (directed: graph ( on the verrex set V is a subset of VXV,
(ii: A (cirected) bipartite graph H on the pair of veriex sets (V. V). where
VOV =0, is a subset of VX V',
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This definition of bipartite graph excludes graphs which have arcs directed from
% to V. Such graphs are not used in this paper. Normally, for our purposes,
={1.2,....aY={(n) and V'={n+1.n+2,. .,n+ri={). For the sake of
convenience, we assume that a graph G has been ordered !exicooraphicallv Thus
G={g;,.... g} where m =|G|, the number of elemsnts of G, and if g, =i, j),

g, =(k, 1) then g<s if ana only if either i<k or i=k ané i<l

Definition 1.5. Let G be a graph on (n) and suppose that |Gl=m, Then the
incidence marrix = [{(GYe ™"

is defined thus: "= (v} where

it g, = (i, ) and i#},

ye= 1 if g,=(. i) and i# ],
Vi =0 otherwise,

i =i g, = (i, 1))

Certain notions which have intuitive meanings for a graph G are most easily
defined in terms of vectors in Z™,

Definition 1.6. Let & be a gzraph on (i) with
arap
= {{GYe T

(D} An (integer) flow on G is a vector vy & Z™ such that v\ =0.

(0 Let i.j=(n), wheve i#j. A chain fmn: i to f in G is a vector o € &™ such
that {7y =1, (a'7); =~ 1 aud (a1, =0, rwise. The 0 vector in Z™ is a
chain from i to i, for any ie!n).

(iii} The vertex components of G are the subsets \/h ..., V, o the vertex set
V= {n) which form the equivalence classes under the relation “there is a chaig
from i to jin 37, Thus if (i, j) € G, then i and j belong to the same component V..

We define the arc component (index set) G, of G by
Go={ge{m)y:g,=(and i je V.

Muote that v, 7 0 implies that a € G, and i e V. for some s. Then 1" is a direct sum
of mairices I, where

i=Ayy), qe€G,ieV,

and each I is not decomposable as a direct sum after independent permutation ¢f
rows and colunns. If V itself is a vertex component then G is called connected.

We simply refer to “components”, when we count such components anc it does
riot matter whether arc or vertex components are intended. For technical reasons,
arc compoaents are defined as index sets, but they correspond to the usual
topelogical notion.

We now make the association betweer graphs and matrices which is crucial for
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our:. development We' begm by defining two graphs commonly associated with
AeF"".» R -

i)eﬁmtlous L’L ) LP{ A EE?‘. Tﬂe patternt praph G{A)} on {r) for 4 consists of
the set oﬁ pairs (i, j) such that ;3 o.
(i) LatAc Fy. The btpam*e pattern. gruph 7 AYon {{r), ()} for A consist:. of

the set of pairs (t, j+a) such that a;3% 0.

o

Then for the incidence matrices we write I{G{AN={A =1 bu F{HA) =
A{A)y= 2

1.8. Let F' b a fixed bipartite graph on {{(n), (r)) 'md let m =H . the number of
ares in H. Consider the set of all marices A:;r with H{A)=F. There ¢ a
natural bijection from {his set onte ¥ giver: by 4 —a. where

a . =ay i hy=(ij+n)

The point of the mapping s this: If F is a multiplicative group, our equivalence
relations will be characterized by cortain products. If A €¥F), we mav use G{A)
to define the same bijection.

refinition 1.9, Let 5eZ™ Then

I (A)= § als,
q-l
I 8 s a flow for G{A) or H(A), such & produc: will be called a flow product

Similer terminology will be used for chain preducts, Sic

Thus if F is additive, the product Ig(A) corressonds to the sum 3% It is
precizely for this reason that in some proofs {where explicitly steted) we assume
that ¥ is an additive group. This sllows us to use the standard notations of
Z-modules and matrices. For example, the multiplicative NAX ™' = 3 corresponds
o

b=a+TIx,

where X =diag (x,,....%,) and x=ix;,....x ¥ cf. the proof of Thecrem 2.1

L.10, W give an example and iodicate the infuitive bk some of the
terms defined. For this purpose we reed some further st eraph theoretic
notions. An {elementary) cyele ¥ for o graph G is a flow for G whose eatries sve
=1,0, or 1 {in brief, a {1, 0, {}-vecwer) and which hes minimal suppost, where
suppori is defined as {ge(m): v, # 0} An (elementary) ~ircuit is 8 {9, 1}-cycle. If
AcFY, a cycle for G(A) COTrespor: ds to a {family of) sequence(s (zz, RN N
k=2 such that iy, ..., i_, are pairwise distinct, i, = i, =nd either (i e Bl € GLA)
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of (e i) EG{AYfor g=1, ... &k~ 1. A cycle for H{A) corresponds to a (family
ofy sequencels {§, fi b o, - oo B Ju)y k=2, where 4, ..., 1 _; are pairwise dis-

Unet, fi, ..o, foy are pairwise distinet, 1, =i, j; =i, and both (i, j. )€ H({A) and
Uig-o ) € F(A). Because of th location of the corresponding entries in the
matrix, we will call a cyclic produst for H{A) a polygonial preduct for A, and
gererally reser e the term cyclic product “er A to mean cyclic product for G(A).

Example Lt

’s [t -t 0
i1 0 1}

|

i

M= B
Tleoo0 o
(o 1 -1
N 1t ooo0 ~ @‘l
AN 1o o0 0 -1
fa 2 N = ’ i
) %”’ A=l 100 -1 0l
ha o100 o -1
. i

% i .
at = {iiga Gy Qan Aagh

e

ety=(,- L0, 0, y=(0.06,1,00 §=(1, -1, -1,3)" Then v, £y are the
cyeles for G AY,£8 are the only cycles for H(A), and the corresponding cyclic
and polygonil products for A are

s Qs e . [ 5123
HaA) =220 T (A)=a.,  H{A)=-+—=,
i3 Ga Gy

2. A theorem on diagonal similarity

We are ready to state our first theorew. Theorems related to the resulis of this
section are mentioned in Comments 5.1 and 5.2,

Theorem 2.1. Let A, BeF?", where ¥, is a abelian group with o. Then the
folloving are equivalent:

(1) A ir diagonally similar to B,

{i) G{AY= 5(B) and for all flows v of G(A),

1fA)= (B).
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Proof. In this proof, Fis taken to be an additive group.

(D =>{¥): By definition, there exist x, €F, i=1,..., n such that by = 5+ 2, —x,
for §,j=1,..., n. Since o is the aksorbing elemen: of F,, we have b, =0 i and
gnly i =0, and hence (7(B)=G(A). If the matrices are repsesemed by
m-vectors as expiamed in'1.8 then the hypothesis k b=a +I'x. Thus il y is a flow
for G(A},

y'b=y{a+Ix}=v'a

since v I =0.

(= {} Let Vy,..., V, be the vertex componens of G(A), of. Detinition L6,
Thus for i j&{n), there exists a chain from i to j iv F{A) f and only i § nnd §
belong to the same V. Suppose {without loss of geresality) that s =V, Let ie ¥
and Izt § be a fixed chain from { to 5. We define x; = (b — a) and we shall show

that by=x +a;~x for Lj=1,..., n

¥ a;=o. then by =0 and there is nothitg to prove, s suppose that a,# 0 and ¢
is such that g, ”(z ;) Lmt 8 be any caain from s to L Then 8+ 5 isa *’109 whence
by ‘a,sumpfmn, {8+ ={£+8)h. Hence

B{b—a)=8a~b) =

similar argement, (8-+ )‘ ~a)= -,
=x+{b;—a;)= —2 Test

Ay J»j‘ &

In order to check the next proposition conceriing
we make a definition:

rigueness in Theorem 1

Uefinition 2.2, We call a matrix A ¢ ¥1° panern connected i the
G(A) is connected.

Thus A is patiern connected if and only if PAP' is not a direct sain of two
matrices, for any permutation P i.e. either A is irreducible or A is not completely
reducible. Observe that any is the direc: sum of p pattern conpected
principal submatrices, where é,»; the pumboer of components of G4

x5

o

Proposition 2.3. Let Ac¥:* If F has ai lvos
following are equivalent:

{i} A is pattern connected,

(i) if XAX ' =X AV L then X' =X for some fe¥,

nct elements, then the

Prooi. 1t F is taken to be an additive group, we shall show that each of (i) and (i)
is equivalent to

(@) if uek¥* and I'Ayu=10, then v = fe, for some feF, where s Z% is the
vector all of whose entries are 1.

First observe that (i) holds if and orly if G{A) is cornected, and it is knowsn
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that G(A) 1 vonnected if and onlv if (ifl) is satisfied (¢f. Pear? [11, p. 390] for a
proof § i can be adapted to our situation). Next. (if) corresponds to: if g+ '(A)x =
a+ I {AMX, than x'= x +fe, where fé? & Bat this is clearly 2%:0 equivalent to (i)

It is not necessary to check all flow prodacts for A and E, as in Theorem 2.1,
prove diagor ml similarity. Suppose K is a spanning fovest (tree, if G{A) is
connccied). Complete each are of G{A) which does not balong to K io the unique
cycle all the eiher arcs of which are in K. In this way ve obtain cycles vy, ...,
where s =m—n+p, n is the order of A {or the number of vertices of G %‘) m is
the number of non-zero entries of A {or the number of arcs of G4 )3 and pis
the number of components of f‘( x) Then each flovv y of G(A) is linear
combination with integral ceeflicients of vy, ..., v. seu Berge {2, pp. 26-27],
Chen [3. p.43] and Pearf {11, pp. 373, 397 for related resuits. Tae cycles we have
constructed heve the property required in the following corollery.

Corollary 2.4, Ler A BeF}" Let vy, ... .9, be flows for C1(A) such that every flow
for G(A) iy a linear combination with zzregmz' coefficients of vy, ..., v, If G(A)=

G{BY and I, (A= (B) i= v then A s diagorally similar 10 E.

Corollavy 2.5, Ler A<¥ If ¥ has ar least two elemen’s then the following are
equivalent:

W) The onlv flow for G{A) is G (i.e. G(A)} is o Jorest).

(ily For all 3€®" such !kf'zr G(B) = G{A), B is diagenally siimiar 10 A,

Proof. (i)=>(il): Direct application of Theorem 2.1.

(it)=> {i): By Corollary 2.4, it is enough to prove that there is no cveie for G(A).
So, for the sake of conlmdxctlon suppose that v is a cycle for G(A). i Fis chosen
to be additive, then, as in the preof of Theorem 2.1, y'(d ~a) = 0. Now let ge(m)
such that y,# 0, and itt jeF, where f# 0. Then we may choose be¥™ such that
b,~a,=f and b,~a =0, for all r#q. From y{b—a)=0 we obtain that 0=
b,~a,=7v,f Hence y,# = 1. But y is a cycle, and s0 we have a contradiction.

3. A theorem on diagons! equivalence

Comments 5,3, 5.4, and 5.5 relate to this section.
We cculd prowe our next theerem in the same manner as Theorem 2.1, Instead,

we prefer to derive it from that theorem. For A €F), we put
= [G ‘A‘ e};n+m| r
o o °

where o now w&‘a"dﬁ for the (nxn), (rxa}, or (FXr} matrix with all entries equal
to 0. Then H{A)=GLAM. Also, f XeF™, YeF] are invertible diagonal

i
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matrices and Z=X@Y, then XAY ™' =B if and oaly if ZA"Z27" = B", Hence as
animmediate corollary to Thecrem 13.} we have:

Theorem 3.£e Let F, be an cbuian group with o. Ler A, BeE?. Then the
following are equivalent:

(i) “A is diagonally equivalen: 12 B,

ity H(A)= H(B), and for all fows y of H{A),

H,(A)=1,(B).

In the rest of this section, we ot proofs. sinez iem (2.1) corresnonds to item
3.0 fori=2,3,4,5.

5

Definition 3.2. Let AeFY, Thea A is called chainable i the b
graph H{A} is connected.

spartite patteran

See Sinkborn and Knopp [137 and Engel sni Schneider [3] for equivalent
definitions,

Proposition 3.3 Let Ac¥®. If F has oy leasr vwo distinet e'ements. then the
following me equivalent:
(i Alis

ALYY Y ther 30 fX and Y =Y, for some feF.

It is nov necessarv to check all Tow products fov H{A) as in Theoren
prove diagonal equivalence. By a construction similar to that preceding Corollary
2.4, we obtain cycles vy, ..., v for H{A such thai each flow for H(A) is a linear
sination with integral coeficiews of vy, .. ., v, Inthiscase s=m - {(n-~r}+p
m and 1 are as before and ' iz the number of components of H{4). (Note
that when =y, p">p, where p is the number of components of G{A).)

3w

Corollary 3.4, Let A BaF]. Let vy, ..., v be flows for H{A) such thay cvery flow
for H(AY is g linear combination wih integral coefficients of vy, ..., v If H{A) =
HBY and IL{AY=1,(B), i=1.. . s then A iy diagonally equivalent to B.

Corollary 2.5, Let ¥ be an abelian growp with more than one element and let
Ac¥y. Then the following are equ-oalent;

(i} The only flow for FI{A) ix 0,

(i} For alil Be¥y such that FF(E )= H(A), B is dingonally sauivalert to A,

4. Theorams on restricted diagons! equivalence
Necessary and sufficient conditiors for two matrices to be restricted diagonally

equivalen® tnvoive the divisibiliy uroperties of the group F and some graph
theoretic concepts which will be desined as the need arises.
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=
1@3
;
2
=
R
=

Notations 4.1 () By ¢ shall denote (as before) the vecior in Z" o
all entries equal to 1.

(s By ¢ we shali deuote the vector in """ with firs® # entries equal to 1, and
last r entries equal to —1.

Lemms 4.2, Ler G be ¢ connected graph « . The
fellowing ave equivalens:

@ rle=0,

({1} There exists an ¢ € &™ such thar a'f = 5",
Proof. (il {1): Since Ne=0, a'I"= »' implies timt nle=a'le =,

(= ) Since G is connected, the rank of I is n—1 and a basis for the right
nuli-spuce of I' in Q" is {s}, cf. Peart [11, pp. 393—39’1] Suppose that n'e =0.
Since tie orthogonal complement in " of the risht null-space of I' i5 the lefs

hand renge of T, Lhere exicts an e €Q3" such that o'I"= 5. We riay suppose ihat
the top left hand (n—1)> (n 1) submatrix I, of I is non-singular. Then the
{i1—1) rows of I" form a basis for the left hand range, and so there exisis

£
[af
1’:
.n,}
[

where «'€ Q7 0 Q3" such
that {a')'T", = (n")* where

]
L1’}

and n'e¢Z""Y, 7"¢Z™ """, But all minors of ', are 1,0 or ~1 (¢f. Chen [3, P
80]. whence I'T'eZ™ "L It follows that @'=I7'n'e @€ ' and so ¢ = F™.

= ', 1t follows

ja
5
=
s
[
-
oy
4
-
-
)
=
=
{
o
L]
=
4
~
=
[
]
H

T}::

Prefinitious 4.3. Let H be a bipartite graph on (V, V).

() M K is a vertex component of H then the excess of K is the absclute value
of [KNV|—-|{KNn Vi

(i) The graph H is verrex-balanced if the excess of all of its vertex components
is 0. Otherwise H is verfex-unbalanced

Let Ae¥. The graph H(A) is vertex-balanced if and only if the chainable
direct summands of A are square. Hence, if H{A) is vertex-balanced, then A4 is
square.

Definitions 4.4. Let H be a bipartite graph on ({n), ().

() A pseudo-diagonal of H is a vector d€&™ such that 8'A=¢' {here
A =T(H).

{iiy A diagonal (or one-factor) of H is a {0, 1}-pseudo-diagonal.

Note thai if p#r then F will have no pseudo-diagonals. An example of 2
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gfaph that has a pseado-diagonal but no diagonal is furnished by H{A: where

: /1 20 -1 ] 0y
, A ~
111 [rro ot 0
A= 1 o ol A=F1 SEt 0 0 -1
1 o ol ‘0 oy —1 0 .

\o 71 =1 o of

and the pseudo-diagonal is {(~1,1,1. %, 1)

Intuitively, the diagonals of H(A) have the usual meaning in em*s of iocation
in the matrix A, viz., they correspend to permufation matrices. A pseudo-
diagonal corresponds to a matrix in Z™ with all row and column sums equal to 1

Lemma 4.5. Let H be a bipartite gropk on ((w), {#Y). Then the folloving are
equivalent:

(i) H is vertex-balenced,

(1) H has a psendo-diagenal

Broof. (<> (i): For any 5 eZ™7 we cefine n®' 10 be the vector indexed by V,
with 7" =7, ie V, where V, is a verex component e H. For a 2 &™, o« will be
a vector indexed by the arc component H, where af = o, g€ H,. Further 4% is
a submatrix of the incidence matrix 4 o° H with columns mdb\ui by ¥, and rows
by H. Suppose H s vertex-balanced. It s ¢ &7 and @ €277 ave defined as above,
then we have (")'e" =0. Hence by Lomma 4.2 appiied to H, there exists a
vector 8% indexed by H, such that (8% 4° = (). Since {after row and column
permuiation) 4 s a direct sum of ,1‘ oo, AP it follows that 8'A = ¢!, where
Bed™ is defined by &, =8 foricH, s=1,....p

Gy, ’Lei § be a pseude»&‘iagnmg of G. Then 84 =¢' and so for sach s
(8N4 = . Thus by Lemma 4.2, (0 V'™ = 0. It foliows that o™ has as many
1's as ~1s or, in %)t[}f:i words, [V, N =V, N )

Taeorem 4.6, Let B, be an abefiun rroug with o, Let A, BeE™ If H(A) is a
vertex-baluonced graph and 8 is a pseuco-diagonal of H(A), ihen the following are
equivalent.

() A & restricted diagonally equiva/eni ‘o B,

(it} A is diagonally equivalent 10 B and
H&(ﬁ‘\) == iL‘(B)A

?

Proef. It is enough to show that XAY '=38 implies that detXV7's
(AT (B)Y ™. In the rest of this praof, F will be an additive group. I x=
(X1, %) y=(yy, ..., ) and u=(5}, taen the diagonal equivalence reiation
becomes b-a=4u det XY correspmd,, 0 @'y, and IL{AMIL{B)™? corres-
ponds to 8'(b—a). Since §'A = ¢!, we obtain

M —a)=8A0u=
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Definion 4.7, Let F be an abelian (multiplicative) group.
() If k is a positive integer and a €F, then a is divisible by k if there exists
b €F such that b¥ = 4.
(i) Let « be a positive integer. The group ¥ is divisible by k if, for every g e i
a is divisibie by &,
i) The group F is divisible if, for every positive integer k, ¥ is divisibie by k.

Theorem 4.8. Let ¥, be an abelian group with o. Let A, Be F, Ee{ F{AY have a
component with excess X, k=1 and suppose that ¥ is divisible by k. Then the
following are equivalent,
(Y A ic restricted diggonally equivalen o B,
i A iv diagonally equivaleni to B.
Proef. ()= (i) is trivial.
()= (@), Suppose V, is g vertex (‘ompcr;em with exce
an additive group and us

k. We asswing that ¥ is
i : hynothesis, there is «
;SF“” :1‘.:'& %hm b~a=An Jo want to fiy d au e% such that b~a=4%
and ¢ ¢te that AWeW =0, Let nef™™" b eeﬁned by n, =2 if ie V,
and ~G otherwise. Then m;—O and ¢'m=k', where [k'l=Fk Thea for u'=
where feFsatisfizs k'f = 'y, we have b—~a = A’ and o'’ =¢'u~k'f=0

2

B

Corollary 4.9, Let A, Be ¥ If H(A) is vertex-unbalanced and ¥ is divisible, then
(i) of Theorem 4.8 are equiva’ent.

Observe that the multiplicative group of non-zero complex r.umbers and the
multiplicative group of positive real numbers are divisible.

Corollary 4.10. Ler A, Be ¥ If F =R, the reals under muliiplication, and H(A)
has a component with odd excess, then (1) and (i) of Theorem 4.8 are equivalent.

Coroliary 4.11. Let A, BeF). If H(A) has a component with excess 1, then (i)
and {ii) of Theorem 4.8 are equivalent.

We now show that, conversely, the equivalerce of (1) and (ii) of Theorem 4.8
imiphies the divisibility pzopum t ¥. For k=0,2,....1let A% be the matrix in

F o defined by

(!5,“ 1 fﬁ—l"}"}:AOE'i?LL}.:L
al’=0 otherwise.
Thuas. for example,
o 11 17
1 ¢ o ol
i
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Observe that there ars no polygonal products for A® (.. H(A™®) has no cycles),
and thus, for BeFX*2%2 with [(B) = H(A®), Corcllary 3.5 implies that B is
diagonally equivalest to A'™. For feF, we define a mairx B®{Pe
FO+2042) which has the same entries as A® except thal the entry in nosition
(1,2 is f.

Lemma 4.12. Let €, be an abelian grovp with o and let k be a positise integer.
fekl. If the matrices A and B¥(f) a2 restricted diagonally equivolent, shen
divisibie by k.

Proof. In this proof F will be an adlitive group. Bv assumption thers exists
x, yer™ ™ such that b—a=4u and 't =0 where u=(9, aad ¢ b ire the
vectors in F™'? corresponding to A%, B®(j), respectively. The ecuations for

b—a= Ay are

f=xem v
O=x;~y, j=3,....k+2
kor

{5"3‘/\:3"’“,‘}, 5:32,...‘ <

On adding these {2k +2) equations we obtain

R
. = . N
Foklxg—y0+ ), (u~y)=k{s -y,
d=1
since
K42

=]
it
hs)
=
il
[} it
o
Jﬂ‘
J
ot
ot

Theorem 4.13, Lot ¥, be an abelion
equivalens:

(i) F is a divisible group,

{) For all n and all A ¥ such tha: H{A) is ve
implication holds: If Be¥." s diagonally equivelent o
diagenally equiveiens to A,

i with o, Then the following are

1, the feilowing
A, then B s restricted

Prool. ()= (ii): By Corollary 4.9,

(ii)=>(d): Sinc: H{A®™)) is vertex-urbalanced for k= 1,2,... and B i
diagonally equitulent to A™ for all f =F, this “ollows iremediately by Lemm:
4,12,

If is easy to prove an analogous theorer in which, in () FI" is replaced m F!".
or other classes of matrices.
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5. Comments

8.3 i the matrix A s completely reducible (e. for some permutation matriz P,
FAT is the divect sum of irreducible matrices, of. Pearl [11, . 292]) then svery
arc of G{A) Hes on a circuit. In this case, a proof similar o the one w2 have for
Theorem 2.1, shows that in that theorem. “flow” may be replaced by “circuit”.
The result. with the proof we have indicated, was published by Fiedler and Ptak
{61, see alss Engel and Schneider {4, Corollary 4.4}, and for non-commutative ¥
see Engel and Schpeider [S]. The result was published independen:ly without
proof by Bassett et L [1]. As far as we know, the simple observation has not
previously been made in print that if cyeles are considered in place of circuits, the
restriction o completely reducible matrices may be eliminated.

5.1, We define the flow space {over Q) for a graph G to be the subspace of ¢~
geaerated by all {(integer) flows for (. Our remarks preceding Corollary 2.4

indicate the well-known resuli that the dimension of the flow space is s=
e

The cycles of Corollary 2.4 form a basis for the flow space. However, the
examples pelows shows that some condition beyond this is necessary in Corollary
2.4, The condition in that coroilary is ensured by the followmg: The (sxm)
matrix whose raws are vy, ..., v has an {5 X 5) submatrix with determinant equal
to £1. We also note that if A is completely reducible, it is possible to adapt ths
proof of Blerge [2, Theorem 9, p. 29] to show that s circuits mey always be found
with the sbove property. Similar remarks may be made about Corollary 2.4.

Exampe: Let F={1, b} with £*= 1 and consider the matrices A, Be¥3*, whaie
Toilooa o 1 b o o o
oo 1l o o o oo 1l o o o
‘_,\‘:000110. Bﬁooolbo
T lo o0 0 o L of c 0o o o I o
I oo 0o o 1 b o o o 0o 1
I o 0 0o o of [_ioooeoﬂ
Then G(A)= G(B) is given by
i 2
\‘*\\
8 /5
//é‘/
/,/
5=-—-——é—us.¢4

The cireuits corresponding {0 the outer hexagon and the three guadrilaterals (e.g.
with vertices 1,3.5,6) form 3 basis for the flow space over €, but the circuit
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correspondmg to the inner triangle is not an imegeal near combination of the
basis elements, Further, for each basis elenwent v IL{AY=1=IL(B}, but I 7 is
the circuit corresponding to the inaer trizngle, Hﬁ(A) 1#b= 11(8} Hern e, by
Theorem 2 1, Ais not diagonally similar -0 B. On the other hand, a basis with the
rc:qun'ed mtegraht, property, is furnished by the circuirs corresponding to the
inner triangle and the three quadsilatera s.

5.3. Th=orem 3.1 stated.in terms of pol gcnal products is knovn and goes back
to Lallesient and Pztrich [8, 9), ¢f. also Eagul and Schneider [5]. At first sight, the
theorem: as contained in those references might appear to lack the conliton
H{A)= H(B); bui :his is not so, for poly jonal product is there defined to ir chude
e.g. wy 457 @y aji. What wa have aided is the obsorvation that poly goaal
products are cychic products for H{A) anc honce thet Theorsms 2.1 and 2.1 are of
the same type and, indeed, that Theoreiy (.1 is an applcation of Theorer: 2.1.

Iso we believe that our proof is conseqiently a little sirapler., pamcm“ iy if the
well-known machinery of graph theory contalsed in Section 1 is taken for
granted.

roducts mentionad in
in December 1574 at

5.4. Corollary rmulated in t
1.19 above, was announced by {
Gatlinburg VI, Mun:ch.

=

i A

5.5, Suppose H{A) has a pseude-diagon. 1 . Then it is easy to see that § iogether
with the flow space for H{A), of
generated by all pseudo-diagonals for H(A). I follows that t s spacz has

'er erate zbez same space over Q that is

dimension m—~2n+p'-+1 where » and p’ awe z.wmcd s in Corollary 3.4, Hois
also easy to see that ong may find pseudi-diagonals §,,.. .. 8, t=m~ R

such that every integral flow or pscude-ciagonal of H(A) is a linear combination
of y,. .., 8 with integral coefficients. Thus it is enough to verify that I, (Ar=
I, (By. fw L. ..t to prove the restrictod diagonal equivalence of A and 8.

§.6. We define 2 matrix A to be totally supperied if for suiteble permuiation
matrices P, Q, the matrix PAQ is the diroct sum of fully indecomposable matrices
(ef. Marcus and Minc [10, p. 123] for dofinition). Suppose that A is “otally
supperted. It then follows from the > oy us-Konig theorem, Marcus and Minc
[10, p. 971, Konig [7, p. 240], that each .rc of H{A) Hescn a diagonal of H(A).
Also it is known that if §eZ™, where § is aon-negative emd §'A{AY= ke, k=2,
k=0, then § is a combination of dt ith positive ir tegral
coefficients. (This result is essentially sa.é:,zg {!,p, f:"»k Pheorem XIV, BL A
non-negative integral matrix with all row end column sums equal s » iinear
combination of pgrmutation matrices with positive integt al coefficients.) Ons may
use this result to prove that, when A is totaily supported, each pseudo-diagoaal is
a linear combination with integral coefficients of diagonals. Hence ir this case
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“pseudo-diigonal” may be replaced by “diagonal” in the resul siated at the end
of 5.5. We :ake this opportunity to observe that Kdnig's Theorem X1V, B {quotes
above) can be proved in a mauner completely analogous to a result in Bevgs [2, 1.

1} If A is square, then each non-negative flow in G(A) is a linecr cembination
of ¢ire. 'ts with positive integral cocfficients. Moreover, this approach shows thet
we reguire &t most (m—2n + p'+ 1) diagonals and (m —~n + p) civcuits resvectively.
1t is also interesting that it was known to Polya [12] already in 1916 thai (in ou:
terminotog) if A has no entries equal 10 o, the ciagonals of H(4) spar a spac:
over © of dimension ni—~2n+2(m =7, p'= 1), With a little Lind-sight, one can
castly find cirenit, dizgonal, and polygonal products in his paper.

5.7. We give two examples to show that some meuntion of G{A) (ot H(A) i
essential t¢ our theorems, and that they cannot be formulated in terms of the
cemp‘.a&e g %p‘n G, on {a).

First, &t if

where b, E, then all the cyclic products of A and 8 are equal. Hers cyclic
product is defined irtuitively. viz. @y, (o2, @412 G2y are the cyclic products of A
But A and B are not diagorally similar {or equivalent). We observe, however,
that if 2 mzirix A is irredacible then indeed the condition 1T (A)= Uyﬁ » for all
{intuitive) cycles or even circuits of G, guarantees diagonal similarfiv {(cf. Enge!
and Schneider [47).

Second. cven if G(A)Y= G(B), it is not enough to check a cycle basis for the
complete graph, Let

/o 1o /0 2 o
A':(G o 1}, B=lo o 1
I o o i 0 o

be in Q¥ Here it would not be adﬁqmte te compare cyclic products only fo-
cyeles in & oasis for the flow space of G, if the basis did not contain the unigue
eycle in GLA)= ((B). for certainly A and B are not diagonally similas.
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