
8 ALGEBRAIC LOCI WHOSE CURVE SECTIONS ARE HYPERELLIPTIO.

We conclude with the remark, which is easily verified by considerations
precisely similar to those employed in the proofs of Theorems 8 and 9, and
which we shall accordingly not take the space to prove, that

THEOREM 11. The necessary and sufficient condition for the existence
of "Hk

n on which the general Ql-i is non-singular is
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AN INEQUALITY FOR LATENT ROOTS APPLIED TO DETER-
MINANTS WITH DOMINANT PRINCIPAL DIAGONAL

HANS SCHNEIDER*.

The absolute value of a latent root of a matrix does not exceed the
greatest of the sums of absolute values of elements in a row of the matrix.
This well-known inequality is due to G. Frobenius [3]. In § 1 this inequality
is generalized by the use of compound matrices. In § 2 further inequalities
are derived, by means of which bounds for determinants with dominant
principal diagonal elements are obtained. These bounds are improvements
of bounds due to H. v. Koch [6] and A. Ostrowski [7], which have also been
previously improved by A. Ostrowski [7, 8] and G. B. Price [10]. In § 3
conditions are found under which a matrix is similar to a matrix with
dominant principal diagonal when transformed by a diagonal matrix.
A distinction is made between singular and non-singular matrices, and it is

* Received 17 August, 1951; read 15 November, 1951; revised 29 February, 1952.



LATENT BOOTS APPLIED TO DETERMINANTS. 9

pointed out that a similar condition of A. Ostrowski [8] may fail in the
case of a singular, reducible matrix*.

§1.
Let A be an nxn matrix with complex elements and C the non-

negative matrix (cw) = (|a,v|). (We use the terms non-negative matrix C,
positive vector y, etc., to mean a matrix of non-negative elements, a vector
of positive elements, and write O > 0 , y>0.)

Let X be the diagonal matrix X = diag[#1, x2, ..., asft], x{>0,
i = 1, 2, ..., n. The vector r of generalized row sums of A is defined as

r = X~1CXe r , = ( E \du\xA x{ L where e is the column vector

e = {1, 1, ..., 1}. By Ri} i=l, 2, ..., n, we denote an arrangement of the
rt for which R1^E2^...^Rn.

The latent roots of A are \,i=l, 2, ..., n, supposed arranged so that

M \ \ \ \
We shall use some results on the A,- and Rt:

When A is irreducible, j Â  j = Rx if and only if

R1 = M2=... = Rn

and A

(1)

(2)

(3)

where D is a diagonal matrix, \dit\ = 1, and G is the non-negative matrix
denned above. The matrix A is irreducible when it cannot be put in the
form

A =
L21

by a conjugate permutation of rows and columns, where An, A22 are square
matrices and the dot represents a null-matrix.

When A is irreducible, | Aa[ = |A2| = ... = |Aft| if and only if (2) and (3)
hold, and, after a conjugate permutation of rows and columns,

. G12

. c13

'k-lk

i-Gkl

(4)

the dots in the diagonal denoting square null-matrices.

* Added 4 July, 1952 : Prof. Ostrowski has recently informed me that he is aware
of this.
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These conditions were proved by G. Frobenius [3, 4], V. Romanovsky
[12] in the non-negative case, A. Brauer [1, 2], H. Wielandt [15], for
matrices with complex elements, and others. They are usually stated for
X = I. For general X they follow from the particular case when
B = X~1AX is considered, cf. A. Brauer [1].

When A is irreducible and | A | = Rv we give a proof of the necessity
of (2), which is rather more concise than those we have found in the
literature.

Let u' be a latent row vector associated with X1:

n
X1uj = S utaip j=l, ..., n,

t=i

lAiH^K S K |K | , j=l, ...,n, (5)
i = l

|AX| S |«,|< 2 K | K | = 2 \ut\rt, (X = I), (6)
i i

j-=i t=i

This proves (1). If | Aĵ  | = JK1? we are now able to assert (2) from (6),
provided no u(ia zero. Suppose u{ ̂  0, i = 1, ..., k, u(=0, i = Jc-\-l, ..., n.
The equalities must hold in (5) and (6).

By (5),
b

o = E1\ui\= a K-|K,|, j

and hence «« = 0, * = 1, ..., h, j = k+l, ...,n,

whence A is reducible. This gives the required condition.

h k

THEOREM 1. II \\\ < II Ru l^Jc^n. (7)
«=i t=i

COROLLARY 1. |det^4|< n R^ (8)
i=l

COROLLARY 2. When A is irreducible,

n |A,|= n R{ for k=l, 2, ..., r < w , (9)
<=1 i = l

*/ a7w2 only if

\\1\ = \\2\ = ... = \K\ = R1 = R2=... = Rn. (10)

COROLLARY 3. When A is irreducible,

\detA\=YLRi (11)
i
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if and only if A is monomial or is the l x l null matrix. [We shal l call A
monomial if it has precisely one non-zero element in each row and column,
cf. Birkhoff and MacLane, "A survey of modern algebra ", The Macmillan
Company, New York (1941), 227.]

Proof of Theorem 1. Let 8T be a subset of the set 1, 2, ..., n containing

jk members. Let 8T, T = 1, ..., (, j , form all possible such distinct sets.

Let J^ be an ordered arrangement of ST and jiliT, i = 1, ..., k, the i-th
member of JMT. Let the JMT, /x = 1, ..., k\, be the possible distinct J^r for
fixed T. Evidently as p and r run through all values, the J\r represent
every manner of selecting k ordered, distinct integers from n.

Let Hy be an ordered arrangement of k integers (not necessarily all
distinct) from the set 1, ..., n, and let hiv be the *-th element of H¥. Let
the Hv, v= 1, ..., nk, be all possible distinct Hv. By A(k) we denote the
k-th. compound of A, and by a(® the element of A<k) formed from the minor
at the intersection of rows ie #«,, columns ie ST of A. Let Rik\ rf* be the
generalized row sums of A^k\

In the summations below we shall assume that the indices p, v, r*ran
through all the values indicated above. In the product i is taken over
the fixed set Sa which we shall choose as 1, ..., k.

We shall first prove the theorem for X = I. We have

r? = Sc<*> < S S n % i r<Snc i h i u = nr,. (12)
T T n i v i i

We now choose Sa so that r*J = jR^ and put 8V = 8. We have from (1)

n|A,|<e)<nr,.<ni?,, (13)
i=X ieS i=l

and (13) may be applied to B = X~XAX to yield the theorem.
Corollary 1 is the case k = n, and may be proved more simply by

applying (1) to Q>-XA, where <f> = diag [r1} r2, ..., rn], provided no rt-is zero.

Proof of Corollary 2. From (9) we have in particular \XX\ = Rv We
may now assert (2), and (10) follows. The converse is trivial. In this case
A must satisfy (3) and, after a conjugate permutation of rows and columns,
also (4) with k = r.

Proof of Corollary 3. The matrix A(n) consists of the single element
a$. When X = I we inspect (12), where the equality must hold under
the conditions of the corollary. Hence
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As A is irreducible this is satisfied only by a monomial matrix or the l x l
null-matrix. The converse is again evident. For general X we note
that deti? = det.4, and that if B is monomial (or null) so is A. This
completes the proof.

We deduce that when (11) is satisfied by an irreducible A,

l/n

Let us now suppose that (9) is satisfied with r = n, for an irreducible A.
Then

By Corollary 3 it follows that A is a monomial matrix or the l x l null-
matrix. If A is monomial, R{ = | au | xjzj, where au is the non-zero element
in the *-th row of A.

By Corollary 2,

Rx = R2
 = • • • = ^n = c> say>

and hence G: (%), (%) = (|%|), satisfies G = cXPX~1, where P is a
permutation matrix.

By Corollary 2, (3) applies. Thus

A = aD-1XPX-1D,

where D is a diagonal matrix, \da\ = 1.
If A is reducible we may suppose it decomposed as

A =

Au .
-^21 "^22

X X
x x
X X

\_Arl Ar2 x x

(14)

where the ̂ 4,-,-are square and irreducible, and the dots represent null-matrices.
The matrix A' obtained from A by putting Au — 0, i >j, has the same
latent roots as A.

Let R/, i=l, ...,«-, R±' ^ R2' ^ ... ^ Rn' be the generalized row sums
of A'.

Then i?/<-Kf, t = l n,

and by (8), ft | A,-| = \detA | < n R/ < ft R(.
»=i »=i t=i

Hence if (11) holds and no R{ equals zero, then R/ = Ri} and thus Au — 0,
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Further restrictions on A are easily found by applying the corollaries
to the irreducible Au.

§2-

Let If be a square nxn matrix whose elements satisfy mu^ 0, mti ^ 0,
i i^j. Let A be a matrix for which (|aw|) = (|wti|). Let h be the vector

h = X-1MXe, e = {1, 1, ..., 1} [i.e. hi=2\ai(\—( 2 \ait\x)j IxX When

h > 0 we shall say that A has a dominant principal diagonal with respect
to X (or that A is similar to a matrix with dominant diagonal under trans-
formation X). It was known to Hadamard [5] that A is non-singular
when h>0. Many bounds for |detJ. | have been found. Recently
G. B. Price [10] has given some that are especially simple. Using a method
of H. v. Koch [6] we shall deduce bounds which are an improvement on
some previously proved.

We shall use a lemma due to H. Weyl [14] and G. Polya [9] to prove
further inequalities between the |A,| and •#,-.

LEMMA. / / at, 6,- > 0, ax

k k

and nat<n&,., k= I, 2, ..., n,

n n

then S p(a{) < S />(&,-),
»=i <=i

provided that g(logx) = p(x) is a convex non-decreasing function of log#.

COROLLARY. Z |Af|
a< 2 jR,a, a > 0 , l ^ r < w . (15)

i l i lFor |Af|, R{ satisfy the conditions of the lemma by Theorem 1, and of1

is a convex non-decreasing function of log x.
n

Let h>0, s(= (l—^/|a,v |), 81 = ma,x8{, and 8= S s,-. Then 8t < 1
as h > 0.

For X = I Ostrowski [7] proved

I-
and Koch [6] proved

I
THEOREM 2. If h > 0

|det-4| > fi ht= ft 1 ,̂1(1—5,.); (16)
i = l t = l

IT |a,.,.|. (17)

n . I i l l
? TT /x..|(i $•) <C I d e t AI <C t = ^ /1 g\

II (1—s,)

where either inequality holds if, and only if, A is diagonal.
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Proof. Let Q = dia,g[an, ..., ann]. Then Q is non-singular as
|alV| > \ ^ 0. Let P = /—Q~XA, and let F be the non-negative matrix
{fij)= (|jp,7|). The diagonal elements of F are zero and

Let the latent roots of P be /z,-, i = 1, ..., n. Since

= det Q. det (7-P) = ft ««(!-/**),
t = l

n oo ,, v

we have £ = S log (1-/*,) = - S 2 ^-,
1 l l n1 = 1

where L = log (detA II &,-,•] and the series converges as, by (1),

oo 1 n

L=- 2 — 2 tf, (19)

n n

as 2 fa = 2 ,̂-,- = 0.

Hence | £ | < 2 — 2 |/x,|". (20)

We apply (15) to P and obtain from (20)

oo i n n co o v

whence, as s,< 1,

| L | < - £ - 2 log (1-5,-). (21)

This is equivalent to (18).
One of the equalities in (18) implies the equality in (20). Comparing

this equation with (19) we see that fjj, v — 2, 3, ..., have equal arguments.
n

Hence /u.,-^0; but 2 /i., = 0 and so ^, = 0, i=l, ..., n. This gives
n

|detu4|= II \ai{\. We have assumed one of the equalities and thus we

must have s, = 0, i= 1, ..., n. Hence A is diagonal. The converse is
obvious. This completes the proof of the theorem.

The lower bound of (18) is evidently as sharp as, or sharper than (16)
for all det A for which h > 0. That a similar relation holds between (18)
and (17) is easily proved.

The inequality (17) is equivalent to
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and

-S-S/S,log(1-^) = -S+iS/SJ 2 (SM

> -8+ S S ̂  = - £ - S log (1-5,.).
i = l , = l V i = 1

The result follows by the equivalence of (21) and (18).
It should be pointed out that other authors have found improvements

of (16) and (17) for determinants with dominant diagonal.
Ostrowski [7] has proved

| det A | > II | ai{ | e^si (1 - S^2'^2, (22)
i = l

where <r2= 2 |^-|2 < (max |^ . | )^ ; (23)
t . 3 = 1

and [8]

/ n \ [n/2] / n \ [n/2]

n|a,,| n (l-^^^-Xldet^K (n |at,.|) II (1 + 8^8*), (24)
\t=l / {=1 \t=l / i=l

where the 8i} i=l, ..., n are an arrangement of the s{ such that

8^8^...>8n

and [w/2] is the integral part of n/2. Price [10] has proved

n ( K H ) < |detil I < fl (|a,.|+«,.), (25)
i = l t = l

n

where tt= S |a,-,|.
j=»+i

For all det-4 for which h = X~1M Xe > 0, it is easily seen that (24)
and (25), like (18), yield bounds as sharp as, or sharper than (16), while (22)
[because of (23)] like (18) yields bounds as sharp as, or sharper than (17).
There does not appear to be a relation of this sort between (18), (22), (24),
and (25), e.g. (18) may appear sharper or less sharp than (22), depending on
the particular A considered. One may construct examples to suit one bound
or another. Generally speaking, however, Ostrowski's (24) gives the best
bounds. When the super-diagonal elements of A are small compared to
the sub-diagonal elements, Price's (25) is generally best*.

§3.

If M is a square matrix for which m,-,^0, m , , ^ 0 , i =fcj, and
h = X~1MXe > 0, it is known that all latent roots of M have positive real

* The following papers have appeared since this summary of results was written :
A. M. Ostrowsky, " Note on bounds for determinants with dominant principal diagonal",
Proc. American Math. Soc, 3 (1952), 26-30; Y. K. Wong, " Some inequalities of deter-
minants of Minkowski type", Duke Math. Journal, 19 (1952), 231-242.
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parts, while if h ^ 0, the latent roots of M are zero or have positive real
parts (Rohrbach [11], Taussky [13]). We shail prove these results with
some converses which are apparently new.

THEOREM 3. There is an X = diag [a ,̂ ..., xn], x(>0, i=l, ...,n,
such that h = X"1 MXe > 0, */ and only if the latent roots of M: (m,-3), mu > 0,
mti < 0, i ^j, have positive real parts.

Among the latent roots of largest modulus of a non-negative matrix
G there is one, y, that is non-negative. If a > y , then (al—O) is non-
singular and (a/— G)-1^® (Frobenius [4], Wielandt [15]).

Let us choose a^maxm,,.. Then a/—M > 0 . We shall now put
0 = OLI—M. If ft = a—y it follows that /x is a latent root of M. Let A be
any other latent root of M, A = /̂x. Then j8 = a—A is a latent root of G.
Hence |jS| < y , and as j8 ^ y , R(j8) < y , where R(j8) is the real part of j8.

We have R(A) = a—R(j8) > a—y = fi.

Hence M has a latent root, /*, which is real, and whose real part is less than
that of any other latent root.

By applying (1) to G we obtain

y = a—JU, <max [X*1 {<*.!—M]Xe\•— a—min^,-,

where (2),- denotes the i-th element of the vector z inside the bracket. Hence

min/&,-</* (26)

for all X. Thus if h > 0 it follows that /x > 0, and by R(A) > /* all latent
roots of M have positive real parts.

Suppose that all latent roots have positive real parts. Then M is
clearly non-singular and fi > 0. Hence M~x = (a/— G)~x ^ 0, as

Let k be any column vector, k > 0, and let MXe = k. We have

Xe = M~1k>0,

as, of course, every row of the non-singular matrix M contains at least one
positive element. The vector Xe determines the diagonal matrix X
uniquely. Putting X~x k = h,we have X~xMXe = h > 0 as required, and
the theorem is proved.

While k, k > 0, is arbitrary, (26) shows that h is much more restricted.
It is of some interest to construct an X for which h > 0. Let fip be the real
latent root of least real part of Mpp, where the Mu, i = 1, ..., r, are the
irreducible matrices in the diagonal of the decomposition of M, cf. (14).
Let yv be a latent vector of Mpp associated with y>p. If G is partitioned
conformably with M, we have Gpp = a.Ip~Mpp, where Ip is a unit matrix.
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Then yv is also a latent column vector of Gpp associated with yp = <*-—H<p>
where yp is a non-negative latent root of maximum modulus of Gpp. But
Gpp is irreducible, as an irreducible matrix remains irreducible when the
diagonal elements are altered. Hence yp is a single latent root of Gpp

and has a unique positive latent column vector associated with it
(Frobenius [4], Wielandt [15]). It follows that yp > 0, on suitable
normalization.

Let 7 p = d i a g [ ^ , yf, ...] and Z = diag[C l7l 5 e272, ..., <rr7r],
where the e,- are positive constants. We shall write h= {h1, ..., hr}, hP
conformable with Mpp. Similarly e = {e1, ..., er) = {1, 1, ..., 1}. We note
that fxp ^/x > 0 and 7 ; 1 Mpp Ype» = 7"1 fiptf> = ^pe^. Now

h = X~1MXe,

whence hP = e"1 7"1 £ €j Mpi Yi ej,
j=i

or hv = H.peP-e-1fP, (27)

where f*> = Y^*i e^M^Y^K (28)
3 = 1

As Mpj < 0, j < p, it follows that fp > 0. But f», p > 2, is homogeneous
and linear in €x, €2, ..., zv_x and involves no other ei3 while/1 = 0. Hence
from (27), h1 > 0, and by choosing ep sufficiently large compared to
e1} e2, ..., €p_x we shall obtain hP > 0, p ^ 2. Choosing successively
e1} e2, ..., er we may ensure that h > 0.

An implication of the conditions of Theorem 3 is worth noting. Let
us suppose that mu is the k-th element of the principal diagonal of Mpp.
Then for all M: (wifi), mti ^ 0; mu < 0, i =£j,

m,.,.> (Y-1 MppYpe»)k = np,

whence, by V>P> P> P=I,--,r,

i= 1, ..., n.

It follows that the equivalent assumptions h = X~x MXe > 0 or p > 0 of
Theorem 3 imply ra,-,->0, i=l, ...,n.

We shall use the above construction for h to prove a result corresponding
to Theorem 3 when M is not restricted to be non-singular. Let us say
that an irreducible Au of the decomposition (14) of a reducible matrix A
is isolated when Au = 0, j <i.

THEOREM 4. The matrices M and X satisfy the conditions of Theorem 3.
/ / there is an X for which h = X~* MXe ^ 0 the latent roots of M are zero
or have positive real parts.

If the latent roots of M have non-negative real parts there is an X for which
h = X-1 MXe > 0 if, and only if, M is irreducible or the singular Mu of the
decomposition of M are isolated.

JOUB. 109. Q
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We shall give all symbols the same meanings as in the proof of Theorem 3.
The considerations leading to (26) and (27) hold under the conditions of
the theorem. If /x < 0 we have from (26) that some hi^.[j,< 0, for all X.
Hence if h = X~xMXe > 0 then also /x ̂  0, and as R(A) > fx, where A is any
other latent root of M, A ^ p; the first part of the theorem follows.

Suppose that fj, > 0 and consider (27).
If np > 0, we may again prove that h1 > 0, and ftP > 0, p ^ 2, provided

that ep is sufficiently large compared to e1} e2, ..., e^^. Now suppose
[i = 0 and /xp = fj.. If Mpp is isolated, then Mpj = 0, j < p, and by (28),
fp = 0; whence hP = 0. Thus if all singular Jf^ are isolated or if
M = Mu is irreducible we have a vector h= {h1, ..., hr}, where either
liP > 0, or IP = 0. Hence /& ^ 0.

We must still consider the case when some singular Mpp is not isolated.
Partition X = diag [x1} ..., xn], x{> 0, and O = <x.I—M, conformably with
M. Then X = diag [X1} X2, ..., Xr], where the X{ are diagonal matrices
with positive diagonal elements, and the Gu are irreducible. We also
partition h conformably with M.

As h = X~1MXe,

we have hP = Z j 1 I M^X^,
3 = 1

whence ^ = ae»—»*—/*, (29)

fwhere /P = - Z " 1 *f Jf,,, Xj e* (30)
3 = 1

and oie»-rr = XJ Mpp Xp eP = X?{*IP- Opp) Xp eP.

Hence r* = X?GmXpeP. (31)

As Mpi < 0, j = 1, 2, ..., 2?— 1, and some ifpJ ^ 0, j <p, it follows from
(30) that

/P>0, /P#0. (32)

But Cpp ^ 0, and so rp is the vector of generalized row sums of Opp. The
non-negative latent root of maximum modulus of Opp is yp = oL—fip.
By (1), rP, the largest element of rp, satisfies r{

p ^ a.
If r? > a, by (29) and (32)

hP = oi-rP-fP < 0

and h is not non-negative.
Suppose rP = a. Since Gpp is irreducible (2) holds. Hence rp = <xeP

and from (29) and (32)

hP = —fp ^ 0, hP # 0

and A is not non-negative.
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As X is an arbitrary diagonal matrix with xt > 0, we have proved that
h = X - 1 MXe is not non-negative when a singular Mpp is not isolated.
This completes the proof of the theorem.

In Theorems 3 and 4 we may replace simultaneously

X = diag [xlf x2, ..., xn], x( > 0, (33)

by x>0; (34)

by k — Mx^O {k = Mx>0). (36)

For putting Xe = x, and Xh = k, we have (33) if, and only if, (34) holds,
and (35) if, and only if, (36) holds.

When /A=OC—y^O (fx = a—y > 0), then det i f = det (a/—#) and
all principal minors of M are non-negative (positive), (Frobenius [3],
Ostrowski [8]). The converse is also true. The characteristic equation
of i f is

where cr is the sum of the principal minors of i f of order r, and cn = det M.
If det M is non-negative (positive) and all principal minors of M are non-
negative it follows that all real latent roots are non-negative (positive).
Hence ft > 0 (ft > 0). We deduce that in Theorems 3 and 4 we may
replace " the latent roots of i f are zero or have positive real parts (the
latent roots of M have positive real parts)" by "detM and all principal
minors are non-negative (positive) ", or by " det M is non-negative (positive)
and all principal minors of M are non-negative ".

A theorem of Ostrowski ([8], Theorem 4) may be restated thus: "If
for M, ratl-^ 0, mlV ^ 0, i^j, det i f and all principal minors of M are
non-negative there are column vectors x > 0, k > 0, such that Mx = k.
If i f is non-singular we may restrict k to be positive."

Our preceding two remarks indicate that Theorem 3 may be reduced
to the non-singular case of Ostrowski's theorem. If M is reducible and
singular, however, a similar reduction applied to Theorem 4 shows that
any matrix M with a non-isolated singular Mpp in its decomposition will
not satisfy Ostrowski's theorem*. An example of such a matrix is:

A =

Finally we shall prove another analogue of Ostrowski's theorem.

THEOREM 5. The matrix M: (raw) has m,-,- > 0, m,-3 ^ 0, i ^j. If there
are vectors x>0, k > 0, such that Mx = k, the latent roots of M are zero or
have positive real parts.

* There does not appear to be any justification for the second sentence of [8], § 13, p. 87.
C2
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/ / the latent roots of M have non-negative real parts there are vectors
x ^ 0 (a; ^ 0), k > 0, such that Mx = k.

The first part of the theorem follows from the first part of Theorem 4
and the equivalence of (33) and (34), (35) and (36).

Suppose //, > 0. Let r be the number of irreducible Mi{ in the decom-
position of M and let x= {O1, O2, ..., Or~x, yr}, where the Oi are null-
vectors, and yr is the positive latent vector of M„. associated with fj,r, the
latent root of least real part of Mrr.

We have x > 0, x ^ 0, and

k = Mx= {O\ ..., O'~\ Mntf) = {O\ ..., O-\ firy
r} > 0,

as (jbr > p ^ 0.

I should like to thank the referee for very many helpful suggestions.
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