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1. Intrciihction 

Let G = (V, A) be a strongly connected directed graph, and let f be an arbitrary 
real-valued function defined on the arcs A (we will refer to f as a flow for G). Then 
f is called max-balanced if for every cut IV, the maximum flow over arcs leaving 
w equals the maximum flow over arcs entering IV. A max-balanced flow is a max- 
analogue of a circulation in which the summation operators are replaced by 
maximization operators. 

We describe ten characterizations of max-balanced flows. First, we prove some 
elementary characterizations of max-balanced flows using properties of graph 
contractions and maximum cycle means. Next, we pru-de a useful characterization 
using a notion of the level sets off. We then apply this characterization to prove 
a result of Schneider and Schneider [2Q] showing that f is max-balanced if and only 
if G has an f-cycle cover. Then we define a partial order on the set of flows for G 
and show that f is max-balanced if and only if it is the least element in the set of 
all flows derived from f by reweighting. Finally, we prove an analogous result for 
functions defined on the set of all cuts of G. 

Our characterizations of max-balanced flows have equivalent formulations in 
terms of matrices. Under a standard correspondence between flows and square 
nonnegative matrices, max-balanced flows correspond to square matrices with the 
property that the row maxima equal the corresponding column maxima. The 
operation of reweighting a flow corresponds (via an exponentiation transformation) 
to diagonal equivalence scaling of a square nonnegative matrix (see [21, Section 81). 
In particular, some of the characterizations we obtain produce interesting results for 
the matrix formulation of the problem. 

Max-balanced flows have been studied by Schneider and Schneider [ 19-211. See 
also Hartmann and Schneider IlO] for a discussion of max-balanced flows satisfying 
lower and upper bounds, Rothblum et al. [16] for a discussion of a related algebraic 
matrix scaling problem, and Young et al. [23] for a discussion of efficient algo- 
rithms for max-balancing. Related algebraic generalizations of network flow and 
linear programming problems have been considered by Hoffman [ 111, Cunning- 
ham-Green [3], Hamacher [6-91, and Zimmerman [24,25]. See also the survey paper 
by Burkard and Zimmermann [2] and the collection of papers in [ 11. 

We were originally motivated to study max-balanced flows by their connection 
to matrix scaling problems as described, for example, in [4,12,15,17,18]. These 
scaling problems are sum variants of the max-problems we consider in this paper, 
and they have numerous applications in economics, finance, statistics, and prob- 
ability (see [22], and the references therein). As an illustration of this connection, 
Eaves et al. [4] study the problem of identifying for a given square, nonnegative 
matrix a diagonal equivalence scaling whose row sums equal its column sums, that 
is, the Ii norm of each row must equal the II norm of the corresponding column. 
They characterize those matrices for which such scalings exist [4, Theorem 21. 
Schneider and Schneider in [17,18] study the problem of identifying for : given flow 
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a reweighting that is max-balanced, and they show that every flow on a strongly con- 
nected graph has such a reweighting [18, Theorem 61. The problem studied in 
[19,21] is the (a analogue of the I, problem studied in [4]. The lP analogue for 
1 cp< 00 can be reduced to the case of p = 1, whereas no such reduction seems 
possible for the case of p = 00. These connections are described in greater detail in 
[ 16, Section S] and [18, Section 21. In this paper, we continue our study of max- 
balanced flows initiated in [19-211. 

We now summarize our paper. In Section 2 we define the graph-theoretic 
properties we will use. In Section 3 using the level sets of a function, we consider 
a partial order 5 and a linear pre-order 5 L on the set of all functions defined on 
a finite set. In Sections 4 and 5 we give our characterizations of max-balanced flows. 
In Theoscm 6 we prove four elementary characterizations using properties of graph 
contractions and maximum cycle means. In Theorem 7 we prove that f is max- 
balanced if and only if its level sets have isolated strong components, or, 
equivalently, if and only if G has an f-cycle cover. In Theorem 8 we show that f 
is max-balanced if and only if it is the least elemenr with respect to the partial order 
5 in the set of all flows obtained from f by reweighting. Finally, in Theorem 11 

we define the cut function induced by a flow f and prove an analogous least-element 
characterization of max-balanced flows using the cut function. 

In Appendix A, we present a linear programming based proof of the existence 
result of Schneider and Schneider (Theorem 3). Our characterizations in Theorems 
8 and 11 can be proved using that result or independently using a simple descent 
argument. Since the proof of Theorem 3 in Appendix A uses only the character- 
izations of Theorem 7, there is no circularity in the application of Theorem 3. 
Consequently, this paper can be read independently of papers [P&21]. 

2. Notation and preliminaries 

Let G = (V, A) be a (directed) graph with vertex set V and arc set A c C/X V. We 
use the notation a - (u, O) to denote an arc a E A directed from vertex M to vertex u. 
We use the symbols C and E to denote, respectively, strict and weak containment. 
A subset W of V is called nontrivial if 0# WC V. A cut of G is a nontrivial subset 
of the vertices. For a cut W of G, we define the set of arcs leaving and entering W, 
written S’(W;G) and K(W;G), respectively, by 

and 
6+(W,G) = {a=(u,@EA 1 MEW, and UE V\ W>, 

(T-(W,G) = {a=(u,o)EA 1 UE V\ W, and DE W]. 

When there is no possibility of confusion, we will omit the dependence on G. 
A flow for the graph G is an arbitrary real-valued function f defined on the arcs 

A. We will use f, for a E A to denote the flow of arc a. For a cut rJ[ of G, we say 
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that the flow f is max-balanced at W if 

max 
UC&(W) 

We say that f is max-balanced if it is max-balanced at every cut W. 
A potential for the graph G is a real-valued function p defined on the vertex set 

K A potential p is called trivial if for some constant Q, pv = a for all u E I/; 
otherwise p is called nontrivial. For a flow f and a potential p for G, we define the 
p-reweighted flow off to be the flow f p defined by 

(fp)= =pU+fa--pU for a = (u,v)EA. (2) 

When there is no possibility of confusion, we will use f/' to denote the flow off p 
on arc a. We note that the operation of reweighting flows via potentials arises 
throughout network optimization (see, for example [ 141). 

Our formtdation assumes that the underlying graph G has no parallel arcs (i.e., 
two arcs directed from u to v for some pair of vertices u and v) and no loops (i.e., 
arcs of the form a= (v, v) for some vertex v). We note, however, that all of our 
results extend easily to handle the more general situation. Aiso, we will assume 
throughout that 1/#0 and A #0. For a finite set S, we will use the notation IS 1 to 
denote the number of elements of S. For example, 1 I/ 1 and IA I denote, respectively, 
the number of vertices and arcs of G. We will use iRs to denote the set of all real- 
valued functions with domain S. 

Let u and v be vertices of G. A (directed) path from u to v is a sequence of the 
form P=(vO,cll, or, . . . ,a,, ok), such that 00 = U, vk = V, and ai = (Vi- 1, Vi) for i= 

192 , . . . , k. The path P is said to start and end at the vertices u and v, respectively. 
We will identify a path containing at least one arc with its underlying arc set. In par- 
ticular, the length of a path P, written IPl, is defined to be the number of arcs in 
the sequence F. (Note that the sequence (0) is a path starting and ending at v of 
length 0.) A (simple) cycle is a path containing an arc that starts and ends at the 
same vertex and contains no other repeated vertices. Vertices u, v E V (which need 
not be distinct) are called connected if there exists a path from u to v and a path 
from v to u. 

Let G = (V; A) be a graph, and let W be a subset of the vertices V. We define the 
subgraph of G induced by W, written G(W), to be the graph (W, E) where E is the 
set of all arcs a = (u, v) E A such that u, v E W. The relation connectedness is an 
equivalence relation on V, which therefore induces a partition (I’,, V2, . . . , Fn} of 
the vertices. The resulting induced graphs G( VI), G( Vz), . . . , G(VM) are the strong 
components of G. The graph G is called strongly connected if it has exactly one 
strong component. Also, we say that G has isolated strong components if every arc 
Q of A is contained in a strong component of G. 

In the following lemma, we state (without proof) two elementary characterizations 
of graphs with isolated strong components. 
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Lemma 1. Let G = (V, A ) be a graph. Then the following are equivalent: 
(i) The graph G has isolated strong components; 

(ii) for every cut W of G, 6’ ( W) is nonempty if and only if 6- ( W) is nonempty; 
(iii) every arc of A lies on a cycle. 

Let G = (V, A) be a graph. For notational convenience, we will identify a non- 
empty subset E E A with the graph (V, E). In particular, we will say that E has 
iso.“ated strong components if the graph (V, E) has isolated strong components. 
Similarly, we will refer to the strong components of (V, E) as the strong components 
of the set E. 

Let G = (V, A) be a graph, and let f be a flow for G. For a nonempty subset E 
of A, we define the flow of E, written f(E), by 

f(E)= c f,, 
atzE 

and the mean fiow of E, written J(E), by 

In particular, we apply these definitions to a cycle C by applying them to the set 
of arcs of C. We define the maximum cycle mean off, written mcm( f), by 

mcm(f) = max{j(C) 1 C is a cycle of 6). 

A cycle C of G is a maximum mean cycle for G if 

30 = mcm(f )- 

We observe that for each potential p for G, we have f (C) = f “(C) for every cycle 
C for (3, implying that mcm(f) = mcm(JP). Next, we characterize potentials p of 
strongly connected graphs for which f = fp. 

Lemma 2. Let G be a strongly connected graph, and let f and p be, respectively, 
a flow 

Proof. 

and a potential for G. Then f = f P if and only if p is trivial. 

Clearly, if p is trivial, the f = f P. Conversely, if p is nontrivial, then define 

Since G is strongly connected and 0# WC V, it follows that 6+(W) #PI and for any 
a=@&&+(W), we have 

f,p=P14+fo-P”~fa~ 

so f =f P does not bold. •J 
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The following result was proved constructively by Schneider and Schneider in 
[ 19,211. In Appendix A, we present a proof using linear programming dualitv Y 

Theorem 3. Let G = (V, A ) be a strongly connected graph, and let f be a flow -for 
G. Then there exists a potential p (unique up to a trivial potential) for G such that 
f p is max-balanced. 

Let G = (V, A) be a graph, and let f be a flow for G. A set of cycles E’ of G is 
called and f-cycle coverfor G if there exists a map from A onto t!??, where we denote 
the image of aE A by Co, such that for all a E A 

(i) aE CO, and 
(ii) fa 5 fb for every b E Ca. 

It follows directly that G has an f-cycle cover if and only if every arc is contained 
in some cycle of G for which it is the arc with minimum flow. cycle covers were 
studied in [201, where it was shown that f is max-balanced if and only if there exists 
an f-cycle co*;rer for G. We provide an alternative proof of this result in Theorem 
7. This is an instance of a more general decomposition theory for matroid flows (see 
[9, Theorem 2.261). 

Next, we define the operation of contraction of a graph with respect to a partition 
of the vertices. Let G = (V, A) be a graph, and let n be a partition of the vertex set 
V. We define the contY ;on of G with respect to I7, written G/n, to be the graph 
(n, A’) where 

A’ = ((I,J)E ‘_ 471 3(u,v)~.A with uEIand VEJ). (3) 

It is easy to see that the operation of contraction preserves strong connectivity. 
For a flow f for G, we define the contraction off with respect to IT, written f/IT, 

to be the flow for G/H such that for a’ = (I, J) E A’, 

(f/n),, = max (f, 1 a = (u,v)EA, ud, and VEJ). (4) 

That is, G/n is derived from G by identifying all vertices of V contained in the same 
element of H, deleting arcs between identified vertices, and identifying parallel arcs. 
The flow f/l7 is defined by max-projecting f onto the arc set A’. Of course, the 
definition of A’ ensures that the maximum in (4) is taken over a nonempty set. 

In the important special case where n= ( W, V \ W) for some cut IV, we write 
G/W and f/W for G/n and f/IT, respectively. 

3. Order relations on sets of functions 

In this section we define the partial order used in Theorems 8 and 11 to char- 
acterize max-balanced flows. Further, we discuss the relation between our partial 
order and the usual lexicographic order. 

Let S be any finite set. For& !?’ and CUE R we define the a-level set off, written 
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lev,(f) = (sd 1 f,~cv). 

We define the maximum off, written inax( by 

In our applications, the set S will be the set of arcs or the set of cuts of a graph. 
Next, we consider two relations on IRS and one on lRlsl that will be useful for our 

development. First, we define the relation < on IRS as follows: For f, g E IRS, we 
define f < g if there exists a constant fl such that 

and 
lev,(f) = lev,(g) for all a>& 

(9 
levfl(f) C levfl(g)* 

(Recall, C denotes strict containment.) Further, we define f 5 g if either f< g or 
f=g. It is easy to see that iff< g, then the constant p in (5) is unique. We will denote 
this constant by p(f,g). We define P(f,f) = --oo. 

We observe that f<f, and that f= g if and only iff< g and g <f. Further, if fc g, 
and g 5 h, then fl h and p(f, h) = max( fl(f; g), j?(g, h)}. Therefore ( is a partial 
order. 

In the following lemma, we state a useful property of relation 5 that is needed 
in the proof of Lemma 10. 

Lemma 4. Let S be a finite set, and let < be defined by (5). If f < g and s E S satisfies 
.PP(f, g), then f,=g,- 

Proof. If not, then set a=max{j&j and use the definition (5) to derive a con- 
tradiction. Cl 

Next, we define the relation < ,_ on IRS as follows: For f; g E IRS we define f < L g 
if there exists a constant j3 such that 

and 
]lev,(f)] = Ilev,(g)l for all a>j3, 

(6) 

Ilq(f)i c IlqWl. 

AS before, if f < L g, then the constant /? in (6) is unique. Further, we define f < 1_ g 
if either f < L g or 

Ilev,(f)) = \lev,(g)/ for all EIR. 

We define f wL g, if f sL g and g sL f. (Note that f -L g does not imply that f =g.) 
It is easy to see that IL is a linem pre-order. That is, for f,g, h E IRS, 

(0 f Sf, 
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(ii) if&g and g&h, thenf$_h, 
(iii) either f& g or g &_ f, and 
(iv) we cannot have both f < L g and g XL f simultaneously. 
Finally, the (usual) lexicographic order on lR1sl, writen &, is defined as 

follows: For &ye IRIsI, xlleX y if either x=y or for some positive integer kin, 
Xi=yi for i= lJ,...,k- 1 and X& Pk. For f e IRS we define the rank vector off, 
written ford, tc. Lc: the vector in ?I3 such that there exists an ordering (s,,s2, . . . ,slsl) 
of the elem*c = c.2 S satisfyin: 

and 

That is, we choose a fixed ordering of the elements of S such that the values of the 
function f are ordered by decreasing size. Note that frd = max( f ). 

In the following lemma, we summarize the relationships between 5, SL, and 
&,. The implications follow directly from the respective definitions and from 
Lemma 4; the details are omitted. 

Lemma 5. Let S be a finite set, and let 5, sleh and 5 L be the orders defined 
above. Then for f, g E II?‘, 

(i) f < L g if and only if f Ord <le._ g ord , 

(ii) f h L g if and onI’, if for sotoae permutation o of S, g, = f& for all s E S, and 
(iii) if f < g, then f < L g. 

Part (i) states that the liniar prp-order <L can be derived by applying the usual 
lexicographic order to the rank vectors. It follows from part (ii) that the order sL 
is defined by identifying certain incomparable elements under the order 5. Specifi- 
cally, the set of elements equivalent to f are precisely those elements that can be 
derived from f by permuting the function values. Two such elements, if distinct, 
must be incomparable under the partial order 5. Equivalently, f -L g if the ranges 
off and g, including multiplicities, coincide. Part (iii) states that the linear pre-order 
< L is compatible with the partial order < . 

4. Arc characterizations 

In this section we prove eight necessary ant! sufficient conditions for a flow f to 
be max-balanced using contractions, level sets, cycle covers and the relations < and 

(L* 

Theorem 6. Let G = (V, A ) be a strongly connected graph, and let f be a flow for 
G. Then the following are equivalent. 

(i) f is max-balanced, 
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(ii) f/l7 is max-balanced for each partition R of V; 
(iii) f/W is max-balanced for each cut W of C; 
(iv) mcm(f/ W) = max(f/ W) for each cut W of G; artd 
(v) mcm( f/L!) = max( f/n) for each partition L! of V. 

Proof. The order of tile proof is as follows: First, we show that (i) = (ii) = (iii) =+ 
(iv)=,(i). Then we show that (i)*(v) and that (v)=(iv). 

(i)= (ii): Let n be a partition of V, and let G’ = G/n and f’ f/II. For a cut W’ 
of G’, we define the corresponding cut W of G by 

W= (DE V 1 od for some IE W’>. 

Then it follows directly from the definition off’ in (4) that 

and 

max JI;‘= 
ut~d’(W’;G’) 

max f,, 
UE6’(U’;G) 

max f,‘= max f,. 
UE6 ( W’;G’) LIEU (W’;G) 

Therefore, if f is max-balanced, thtn so is f ‘. 
(ii) * (iii): This implication is trivial. 
(iii) =$ (iv): This implication is obvious since G/W contains two vertices and two 

arcs. 
(iv) =) (i): Suppose that f is not max-balanced at some cut W. Then the two arcs 

of G/ W form a cycle for which f/ Wdiffers. It follows that mcm( f/ W) # max( f/ W). 
(i)* (v): First, we show that mcm( f) = max( f) whenever f is max-balanced. Let 

a = (u, u) be an arc of G satisfying fa= max(f ). Since f is max-balanced at the 
singleton cut (0)) it follows that there exists an arc leaving v with flow max(f ). 
Continuing in this fashion, we can construct a cycle C all of whose arcs have flow 
max(j). Clearly Cis a maximum mean cycle for G, and, therefore, mcm(f) = max(f ). 
The implication (i)=,(v) now follows for an arbitrary partition n, since f/l7 is max- 
balanced whenever f is. 

(v)*(iv): This implication is trivial. 0 

Theorem 7. Let G = (V, A ) be a strongly connected graph, and let f be a flow for 
G. Then the foliowing are equivalent. 

(11 f is max-balanced; 
(ii) every level set off has isolated strong components; 

(iii) there exists an f-cycle cover for G. 

Proof. (i)* (ii): Suppose that for some real number cy, lev,( f) does not have 
isolated strong components. Then by Lemma 1 there exists a cut W such that 
lev,(f)n6+(W)#0 and lev,(f)M-(W)=O. That is, 

fa2a for some a&+(W), 
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and 
f,<a for some aEK(W). 

Therefore f is not max-balanced at W. 

(ii) * (iii): Suppose (ii) holds. For each (I E A consider lev,( f) where a! = f,. Since 
lev,( f) has isolated strong components, it follows from Lemma 1 that a is contain- 
ed in some cycle Ca of G such that C, E lev,(f ). Now let @? = {C, 1 aE A). Then it 
follows directly from the definition of a level set that 8 is an f-cycle cover for G. 

(iii) * (i): Let %? be an f-cycle cover for G, and let W be a cut for G. Then for each 
a E 6 +( W) there exists a cycle CE %’ such that f, s fb for all b E C. Since C must also 
intersect 6-(W), it follows that there exists an arc CE S-( W) such that f+fC. 
Thus, we have shown that 

max f*l max f,. 
QE6’(W) aEd (IV) 

A similar argument shows that the 
proves that f is max-balanced. 17 

For a cycle C of G, we define the 
& (IRU (-w)}~ defined by 

c co, if aEC, 

reverse inequality in (7) is also satisfied. This 

characteristic function of C to be the function 

*-= 
Xa I_ -03, if aEA\C. 

We observe that a set of cycles g is an f-cycle cover for G if and Dnly if there 
exist real numbers czc for CE EY such that 

fa= max (cr,+& for all aEA. (8) CE Q 

To see this, note that if g is a set of cycles for G and aE A, then it follows from 
the definition of xc that 

pf; (Q+x:} = max{ac 1 ad and CE %?}, I (9) 

and therefore it suffices to show that g is an f-cycle cover if and only if 

f, = max(cr, 1 a& and CE @?>. (10) 

Now, suppose that @? is an f-cycle cover for G; define 

cyc= min fa. 
aEC 

Then ac( f, for all a E C and C E VZ, and since fa = Q, (10) Mows. 
Conversely, suppose that for some set of cycles % for G, 

fa = max(ac 1 aeC and CE ??I. (11) 
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Then it follows that f’&rwc whenever b E C and Cc %‘. For aE A, let Cd be any 
cycle at which the maximum in (11) is attained. (There must be such a cycle since 
f, > -OO. j Then a E C, and GIN =f, I& whenever b E CO, and it follows that 6!? is an 
f-cycle cover for G. 

In summary, there exists an f-cycle cover for G if and only if f is in the span of 
the cycles of G with respect to the algebra in which multiplication is replaced by 
summation and summation is replaced by maximization. Thus, characterization (iii) 
of Theorem 7 is an analogue of the well-known result that a circulation can be 
decomposed into the sum of flows around cycles (see [20] for further discussions). 
Similar cycle decompositions are described in [9]. 

The following theorem shows that a max-balanced flow $ is characterized via 
minimization with respect to the partial order < and the linear pre-order gL in the 
set of all flows f P derived from f by reweighting. 

Theorem 8. Let G = (V,A) be a strongly connected graph, and let f be a flow for 
G. Then the following are equivalent. 

(i) f is max-bar’anced; 
(ii) f < f p for each nontrivial potential p for G; 

(iii) f < L $I’ for each nontrivial potential p for G. 

Proof. (i)* (ii): Suppose that f is max-balanced, and let p be a nontrivial potential 
for G. We define 

P = SUP(~ 1 lev,(f)flev,(f p)>. 

Then --oo <PC 00 since lev,( f) = lev,( f P) = 0 for cx large and since f#f p by Lemma 
2. Also, we mFJst have levp( f) f levp( f P) since the set A is finite. 

We must show that levp( f) C levp( f p). If not, then since levg( f) # 1evJ f p, there 
is some arc a such that a E levp(f) and a $ levp( f p); that is, .@$>fup. Since by 
Theorem 7, levp(f) has isolated strong components, it follows from Lemma 1 that 
a lies on a cycle C contained in levp( f ). Since f p(C) = f (C) ihere is some arc b of 
C with fip >fb. Since b E levp( f) we must have fb 1 p. Therefore fl’=j’l >fo z/?. We 
conclude that levBr(f) #levpP(f’P) contradicting the maximality of p and thereby 
proving the desired implication. 

(ii)=+(iii): This implication follows directly from Lemma 5, part (iii). 
(iii)=(i): Suppose that f is not max-balanced. We will show then there exists a 

nontrivial potential p such that f P <L f, implying that (iii) cannot hold. Let W be 
a cut for G such that 

c+ = max fu#uEtIjyx,f, = c-. 
UE6’(W) 

By possibly exchanging W with V \ W, we may assume that c+ > c-. Let E = 
1/2(c+ - c-), and define the potential .‘I by 
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C 6, if vEV\W, 
PO = 0, if v E JV. 

Let E=A\[6+(W)U6-(W)]. Then 

if a&+(W), 

if a&-(W), 

if aEE. 

It follows directly from (12) that 

Let fl=c+. 

and 

f,P5c+--E for a&+(W)U4-(W). 

Since fa =hp for a E E, we conclude that 

lev,(fP) = lev,(f) for cr>j3, 

levp(fP) = Ieva n E = feb$f) n EC lev&f). 

Therefore f:’ if, and by Lemma 5, part (iii), we have f p <L f. 0 

We note that once the implications (i)=j (ii)* (iii) of Theorem 8 are established, 
the implication (iii) = (i) can be derived bjr a quick argument using Theorem 3. Sup- 
pose that f is not max-balanced. Then by Theorem 3 there exists a potential p (which 
must be nontrivial) such that f p is max-balanced. Then by the implication (i) * (iii), 
we have that f p < L (f p)-p = f. Thus, we do not have f < L f 4 for all nontrivial poten- 
tials 4. We observe that it follows from Theorem 8 that if f is max-bal.mced, then 
in the set of flows derived from f by reweighting, f is the (unique) least element with 
respect to the partial order 5, and f is a least element with respect to the linear pre- 
order <-r_. 

For the case of strongly connected graphs, Theorem 8 sharpens the following 
theorem of Engel and Schneider. 

Theorem 9 [5, Theorem 7.51. Let G = (l&4) be a graph containing a cycle, and let 
f be a flow for G. Then 

mcm(f) = min 
PER’ I 

yEy b4, +fa -PJ - 
I 

a = (u, 0) 

(13) 

J,et q be a potential for which f 4 is max-balanced. Since f <g whenever max(f)< 
max(g), there exists no p E R ’ such that max(f p, < max(f 4), and it follows that 
the minimum in (13) must be attained at q. Theorem 8 asserts a much stronger 
minimal property of the function f Q, since it must be minimal with respect to the 
order 5. In Appendix B, we giv a proof of Theorem 9 using linear grogramming 
duality. 
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5. Cut characterizations 

In this section we present three additional characterizations of max-balanced 
flows based on lexicographic order properties of functions defined on cuts. First, 
we need some definitions. 

Let G = (I/, A) be a strongly connected graph, and let f be a flow for G. We will 
use Cuts(G) to denote the set of all cuts of G. (Note, Cuts(G) is just the set of all 
nontrivial subsets of V.) We defined the cut yfunction induced by f, written S, to 

be the real-valued function defined on Cuts(G) such that 

s(w) = max 
aE6+(W) 

J; for W&uts(G). 

That is, @(IV) is the maximum flow over all arcs leaving IV. It follows from Lemma 
1 that the set 6+(W) is nonempty for every cut W whenever G is strongly con- 
nected. For a potential p, we will use gp to denote the cut function induced byfp. 

Note that the definitions of lev,($), max(@), and gord are given in Section 3 for 
the case of S=Cuts(G). It is easy to see that I 

WElev@) H 6+(lV)nlev,(fj#0. (14) 

We will use the followirg lemma in our next characterization of max-balanced 
flows. 

Lemma 10. Let G = (V, A ) be a strongly connected graph. Let f andp be, respective- 
ly, a flow and a potential for G such that f < f p, and let j3 = p(f, f P). Then the 
following are true: 

(i) levp( f) and levp( f p, have the same strong components; 
(ii) if b = (u, v) E Ievp( f P)\levp(f ), then u and v are contained in distinct strong 

components of levp( f ), or equivalently of levlo(f p). 

Proof. (i) Suppose that the strong components of leva(f) and leva(f p, do not 
coincide. Since levp(f )c levp( f p), it follows directly that there exists an arc b = 
(u, v) E le@f P)\levli(f) such that vertices u and v are contained in the same strong 
component of levp(fD) and in distinct strong components of le@f). Since b is 
contained in a strong component of levB(f “), there exists a cycle C such that 
b E CC 1eQf p, (see Lemma 1). 

Since f(C) = f P(C), we have 

(15) 

For each a E C, if a E levp( f ), then it follows from Lemma 4 that fO =f,“, whereas 
if a$ leva(f), then fu Prp>f,. Since be levp(f), it follows that the summation in 
(15) must be strictly positive. This contradiction completes the proof of part (i). 

(ii) If b = (u, v) E levg(f P)\leQ f) is contained in a strong component of 
levti( f ), then there exists a path PC_ levg( f) from v to u. Now we can apply the 
argument used in part (i) to the cycle C= PU (b} to derive a contradiction. Cl 



254 U.G. Rothblum et al. 

Next, we state and prove a result for cut functions that is analogous to Theorem 
8 for flows. 

Theorem II. Let G = (V, A) be a strongly connected graph, and let f be a flow from 
G. Then the foIlowing are equivalent: 

(i) f is max-balanced; 
(ii) @< V for each nontrivial potential p; and 

(iii) g < L gp for each nontrivial potential p. 

Proof. (i)* (ii): Let f be max-balanced, and let p be a nontrivial potential for G. 
Then it follows from Theorem 8 that f < f p; let p = p(f, f “). It follows directly from 
(14) and the definition of /3 in (5) that 

and 

lev,(g) = lev,(sP) for all a! > p, 

(16) 
lev@) E levfl(gP). 

We need to show that the inclusion in (16) is strict. 
It follows from Lemma 10 that any a E 1eQf p)\ levp( f) must be directed be- 

tween strong components of lev,( f ). Since levp( f) has isolated strong components, 
it follows that there exists a cut W such that 

and 
s+(w)n levD(f) = 0, 

a+(fiT)nlev,(fP)#O. 

Clearly, WE levp($P) and WB lev@). 
(ii)* (iii): This follows directly from Lemma 5, part (iii). 
(iii)*(i): Suppose that f is not max-balanced. We will show that there exists a 

potential p such that sp < LK The proof of the implication (iii)= (i) in Theorem 
8 shows the existence of a potential p for which f p <f. Thus, it follows from (14) 
that for /3=j?(f 4 f), we have 

and 

lev,(gP) = lev,(9) for all a>& 

(17) 
levp(gP) C lev@). 

Further, in the proof of the implication (iii) * (i) in Theorem 8 we identified a cut 
IV for which 6+(W) n leq( f) # 0 and 6’( IV) n levp( f p, = 0. Therefore, the inclu- 
sion in (17) is strict, and we have gp < @. It follows from Lemma 5, part (iii) that 
3-P ( &F 

1. l 0 

We observe that the remark following the proof of Theorem 8 can be used to pro- 
duce a simple proof of the implication (iii)*(i) in Theorem 11 using Theorem 3. 
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Appendix A 

In this appendix we give a linear programming based proof for the result of 
Schneider and Schneider [21] which asserts that each flow on a strongly connected 
graph can be potential reweighted to obtain a max-balanced flow. 

Let G = (V, A) be a graph, and letfbe a flow for G. The following linear program- 
ming will be key to an iterative construction of potentials that will be used to pro- 
duce a max-balanced potential reweighted flow off. Let p be a potential for G and 
let iz be a real number where levd(fP) #:A and consider the linear program 

Program(p,A). 

min Y9 

subject to Xi+-f;~-Xj~Y for (i,j) E A \ levA(fP), 

Xi+Jj-Xj=(fP)i,j for (i,j)fzlevA(fP), 

XEP, YEIR. 

The following two lemmas show that Program has an optimal solution and 
establishes useful properties of optimal solutions of that program. 

Lemma A.1. Let G be a strongly connected graph, f a flow for 5, p a potential for 
G and A a real number with levA( f p, + A. Then Program(p, A) has an optimal solu- 
tion and each optimal solution (q, p) of that program has 

PC& 

((fq), 1 aElevp(fq)) = {(fp), I aElevh(fP)W{d9 

lev,(fq) = lev,(f p, for all Gc1& 

(Al) 

642) 

643) 

levp(fq)=levA(fP)U(a~A I(fq),=p)>levA(fP). (fW 

Further, all optimal solutions (q, u) of PrograM V, 1) have a common ,u. 

Proof. We first demonstrate that Program(p, A) is feasible. Evidently, pi+Jj- 
PjC iz for all (i, j) E A \ levA( f P); hence, for some positive e, (p, il - E) is feasible for 
Program(p, A). We next show that Program(p, A) has a bounded objective. Let (x, y) 
be a feasible solution of Program(p, A) and let a* be an arc at which max {( f “), 1 aE 
A \levJ f “)} is attained. As G is strongly connected, a* lies on some cycle, say C. 
Let r= ICnlevJ(fP)l and s= ICn [A\lev16(fP)]I. Then SL 1, r+s< IV1 and 

f(C) =f”(C)r(r+s)-$(fX),*+rmax(fP)]. 

Therefore, 

yr(f”),* 1 [(r+s)/s]f(C)-(rLs)max(fP) 

2 -IVl[Jf(C)l+ ImaNfP)I1- 
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As the set of cycles is finite, j(C) is bounded from below and we conclude that 
Progranl(p, A) has a bounded objective and therefore must have an optimal 
solution. 

Next let (q, p) be an optimal solution of Program( As ..ve have seen that 
(p, I - &) is feasibl;: for some E> 0, we have that ,U 5 A - &<A, proving iAl). Also, 
we have from the feasibility and optimality of (q,p) for Program that 

and 
(fqJij = (fP)+>p for all (i,j)Elevi.(f p), (A51 

max{(fq)ii 1 (ij)EA\lev,(f p)> =pu<;Z. M) 

(Note that the assumption that iev;,(fP)#A assures that the max in (A6) is well 
defined.) Now, (AS) and (A6) combine to show (A2), (A3) and (A4). Finally the fact 
that all optimal solutions (q,p) of Program(p, h) share the same p is straight- 
forward. q 

Lemma A.2. Let G be a strongly connected graph, f a flow for G, p a potential for 
G and 1 a reai number where levJ f p, f A and where lev* ( f p, has isolated strong 
components. Also, let (q, p) be an optimal solution of Program(p, 4,) which 
minimizes the number of arcs (i, j) with qi +Jj - qj = p among all optimal solutions 
of Program(p, A). Then levJ f 4) has isolated strong components. 

Proof. Assume that lev,(fq) does not have isolated strong components. Then, by 
Lemma 1, there exists an arc (u, U) E lev,( fQ) which does not lie on a cycle all of 
whose arcs are in 1evJf y). Let W= {& V ) there exists a path I‘rom u to i with 
edges in lev,( f “)I. Then v E W, u E I/ \ W and for each i E W and j E V \ W there is 
no path i to j with arcs in lev,(f q). In particular, as Lemma A.1 implies that 
lev,(fq)31evJfP), we have that no such path exists with arcs in ievA( But, as 
levA(fP) has isoIated strong components, we conclude that there exists no path 
from j CO i with arcs in levJf P). So, if I E W and jE V \ W, then (i, j) $ lev,(f 9) 3 
lev,(f p, and (j, i) B lev,(f P). In particular, (u, o) $ lev@'). 

For (i,j)EA\levJfq), we have (fQ)&p. Hence, for some ~0, 

(f q)ii + E <p for all (i, j) E A \ lev,( f “). 

Consider the vector E we IR ’ defined by 

(p)i = 
{ 

&, if iE W, 

0, ifi&qW. 

Then 

if (i,j) E lWj.(f”), 

if (i,j) E lev,,(f”), and 

if (i, j)cA\Iev,(fq), 
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hence 

=(fqj = CfPhj9 if (i,j) E IevA( 
(fq+E”‘& afq)ijq4 if (i, j)dev,(fq)\levA(fP), and (A8) 

~~fq)ij+~~P, if (i,j) E:A \lev,(f q). 

So, (q + e w,p> is feasible for Program(p,A). 
We next argue that 

{CM EA 1 (f q+Ew hj=cc)EC(kj)EA ltfq)ij=fl}. (A9) 

To verify ,this inclusion, let (i,j) 5 A satisfy (fY+“&=p. Then, by (AS), either 
p=(fq+c”)ij=(fQ)ij or p=(fq+&” )i,s((./9)ij=p. In either case we conclude that 
(f q)ti = p, thereby establishing (A9). 

We next show that the inclusion in (A9) is strict by showing that (fg)ur, =p while 
(f@c”)ttocr(l. First, as (u, u)~A\lev~(f p), the feasibility of (q,p) for Program 

assures that (f q)llu sp; hence the assumption that (u, u) E lev,(fq) implies that 
(f Q),, =p. Further, we have that 

(f 9 +EJ”)M” = (fqnU+(&w)u-(EW)I, =p-&q.l. 

Thus, strict inclusion does hold in (A9). This fact contradicts the minimality proper- 
ty of (q, p) and thereby completes our proof. cl 

The following example shows that the minimality requirement of the solution of 
Program(p,i) cannot be dropped. Consider the graph and the flow represented by 
Fig. 1 and let (p, A.) = (0,5) E lR4 x IR. Then levA(f P) = @ has isolated strong com- 
ponents and the pair (q, p) = (0,4) E lR4 x tR is an optimal solution of Program(p, il), 
but lev,( f “) = lev.$( f) does not have isolated strong components. 

We note that the minimality property of the optimal solutions of Program 
assumed in Lemma A.2 can be weakened by assuming that there is no optimal solu- 
tion (x, ,u) of Program(p,il) for which 

Our current proof of Lemma A.2 can be used directiy to establish this stronger con- 
clusion. 

We also observe that our proof of Lemma A.2 can actually be used to construct 
an optimal solution (q, p) of Program(p, A) for which lev,(f q, has isolated strong 
components. This can be accomplished by first computing any optimal solution 
(q’, p) of Program(p,h), e.g., by applying the simplex method. The construction 
described in the proof of Lemma A.2 can then be used to eliminate, by applying 
further reweighting, arcs of the lev,(f 4’) which are not contained in a cycle all of 
whose arcs are in that level set. This can be done without adding any new arcs to 
the p-level set of the reweighted flow. The repeated use of the procedure will result 
in a potential q, where (q,p) is optimal for Program(p, A) and where every arc of 
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levJf4) is contained in a cycle of lev,(fq). By Lemma 1 we are then guaranteed 
that levP(fq) will then have isolated strong components. 

We are now ready to prove the existence of max-balanced potential reweighting 
of every flow on a strongly connected graph. 

Theorem A.3 (Schneider and Schneider [21]). Let G = (V, A) be a strongly con- 
nected graph, and let f be a flow for G. Then there exists a potential q for which 
fQ is max-balanced. Further, q is unique up to the addition of a trivial potential. 

Proof. Let p” be the zero potential and let iz”> max( f ). Then levL$fPo) = d#:A 
has isolated strong components. IterativeLy, given r= 1,2, . . . and a pair (p’, il’) where 
levdf(f P’)#A has isolated strong components, we construct a pair (p” ‘Jr+ ‘) 
which is an optimal solution of Progranz(p’, A ‘) and minimizes the number of arcs 
(i, j) with (p’+*)~+~~-(prt*~=l’+l among all optimal solutions of Program(p’, 1’). 
We observe that by Lemma A. 1, levAr(f pr) is strictly increasing. Hence, the pro- 
cedure will terminate at some stage, say k, with levdk(f p’) =A. Let q =pk and 
J.J =Ak. We will show that f q is max-balanced by showing that its level sets have 
isolated strong components, see Theorem 7. 

Lemma A. 1 implies that for r = 1, . . . , k - 1, 

((f p’yj, 1 adevp(f pr+’ )1 = ((f pr)a I aElevAJf p’)) U W+‘). 

As levj>(fPO) = 0, we get from iterating the above equation that 

((fq), 1 aEA} = ((fq), 1 aElev,(fq)) = {A’,A2,...Jk}. 

Thus it suffices to show that for r = 1 , . . . , k, levJr(fq) has isolated strong com- 
ponents. Now, by Lemma A. 1, A’ is increasing. Hence, for r= 1, . . . , k and j= 
r ,...,k-1, il’rAj>Aj+’ and therefore by (A3) of Lemma A.l, levl(fF’+‘) = 
levIJfP’). On iterating the last equation we get that for r= 1, . . . , k, levLr(f 4) = 
lev]_r(f p’). But, by Lemma A.2, our construction assures that for each r= I, . . . , k, 
levdr( f pr) has isolated strong components and therefore so does levAr(f 9), as 
asserted. 

We finally show the uniqueness up to addition of a trivial potential. of a poten- 
tial p for which fp is max-balanced. Suppose p and q are potentials for Grhich both 
fJ’ and f” are max-balanced, where p-q is nontrivial. Then, by Theorem 8, 
f”<L(fP)Q-P=fq and f q < L (f q)p-q =f p, a contradiction which proves that p-q 
is a trivial potential. III 

2 
4 & 

l 4wP 

4 4 

4 0 
.3 

Fig. 1. 
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The remark following Lemma A.2 suggests that repeated applications of the 
simplex method and some extra computation can be used to calculate a max- 
balanced potential reweighted flow whose existence is asserted in Theorem A.3. 

Appendix B 

In this appendix, we present a proof of Theorem 9 using standard linear program- 
ming duality (see [ 131 and references therein). 

Theorem 9 [5, Theorem 7.51. Let G = (V, A) be a graph containing a cycle, and let 
f be a flow for G. Then 

mcm(f) = min 
( 

T$c (p,+fa-P”) l 

p& 1 
(W 

Proof. The minimum of the right-hand side in (Bl) is equal to the optimal value 
of the linear program 

min 
(P94 

A, 

032) 
subject to I?~p~+f~-p~ for a=(u,u&A. 

The dual of (B2) is: 

max Cf X a a9 
x aEA 

subject to C Xa- C x, =0 for aeA, 
ae6 (0) aEd+ 

c x,= 1, 
aEA 

xro. 

@3) 

A nonnegative solution satisfying the first constraints in (B3) is called a circulation. 
It follows from elementary network flow theory that a circulation in a graph can 

be decomposed into a sum of nonnegative circulations around cycles and conversely 
that such a sum must also be a circulation. Let The the set of all cycles for G. Then 
for any circulation x, there exist nonnegative weights y(C) for CE r such that 

For such x, we have 

Cf x = c c f,Y(O= c c f,YC)= c f(c)Y(o a a 
aEA aEA CE~ CcTacC CEf 

aEC 
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and 

c x*= c IClY(C). 
atzA CEI- 

Thus, (B3) is equivalent to: 

max c f(C)Y(C), 

sibject to ‘i’ IC 1 y(C) = 1, 
CEI- 

y(C)20 for Ccl-. 

Making the substitution z(C) = ICI y(C), (B4) reduces to 

max 

sibject to 

&f(C)z(C), 

c z(C) = 1, 
CEI- 

z(C)20 for CEK 

Now it is obvious that C* is a maximum mean cycle if and only if 

034) 

(W 

z(C) = 
1, if C=C*, 

0, otherwise 

is an optima: solution for (B5). q 
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