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1. INTRODUCTION. The aim of this paper is to present a slice of the linear alge­
bra of the 1950s and to give some answers to questions raised by Helmut Wielandt at 
that time. It was Wielandt's habit over many years to make notes on papers that inter­
ested him in what he called "diaries" (Tagebiicher). These diaries were made available 
by his family after his death in February 2001 and are currently being transcribed. 
Many notes therein amount to summaries of papers, but in other cases Wielandt would 
add questions, ideas, or even further results . In this article we discuss one such entry, 
which appears on page 35 of Diary VII (1951) and will eventually be accessible in 
transcribed electronic form [24]. The entry concerns a paper that Wielandt reviewed 
for the Zentralblatt [23] . We next tum to this paper. 

In 1950, H. S. A. Potter, a mathematician at Aberdeen University in Scotland, pub­
lished a note in this MONTHLY [19] on the matrix equation 

AB = wBA . (1) 

He called a pair of complex n x n matrices A and B satisfying (1) quasi-commutative. 
We refer to such matrices as w-commutative (see section 2 for a definition of this 
term applicable to general rings). Otherwise we follow Potter's notation. It should be 
noted here that the term "quasicommutative" has also been used in a different sense 
(see [18]). 

Potter's principal result is the following theorem [19]: 

Theorem 1 (potter). Let A and B be complex square matrices satisfying (1), where 
w is a primitive q th root of unity. Then 

(2) 

In his note, Potter proves Theorem 1 by deriving it from the general expansion 
of (x + y)q for any nonnegative integer q and w-commutative x and y for arbitrary 
complex w. This formula, which we state as (3)-(5), involves the classical q-binomial 
coefficients and is currently referred to as the noncommutative q-binomial theorem 
(see, for example, [1, Formula 10.0.2] or [12, Exercise 1.35], but beware: the q in 
the last sentence is our w). The fact that (3)-(5) hold for w-commutative operators is 
generally attributed to Schiitzenberger [20]. In this context we call the result described 
by (3)-(5) the Potter-Schutzenberger formula. It is of considerable interest in the study 
of quantum groups (see, for example, [16, p. 75]). In fact, Potter's proof shows that it 
holds under very general conditions, which we examine in section 2. 

Potter cites and applies results from the book by Turnbull and Aitken [22, p. 148], 
where a matrix X satisfying AX = XC is called a commutant of A and C. There all 
commutants of A and C are determined under the assumption that A and C are in 
Jordan canonical form. If A and B are w-commutative, then clearly B is a com mutant 
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of A and wA. The general question of commutants was also considered by Goddard 
and Schneider [14]. One might observe that all the mathematicians mentioned in this 
paragraph were in Scotland in the early 1950s. Figure 1 shows the participants of the 
1951 Edinburgh Mathematical Society Colloquium at St.Andrews [26]. Four of the 
mathematicians who turn up in the present article are pictured. 

Figure 1. H. S. A. Potter is third from the right in the front row; A. C. Aitken and H. W. Turnbull are tenth 
and eleventh from the left, respectively, in the second row (seated); H. Schneider is the fourteenth from the left 
in the fourth row. (This photo is used with the permission of the MacTutor History of Mathematics Archive.) 

Wielandt's proof of Theorem 1 is reproduced and translated in section 3. We com­
ment on it and present a variant form of it in section 4. Wielandt's proof uses matrix 
theory non trivially and is based on an insightful observation. However, it relies heavily 
upon the assumption that w is a primitive qth root of 1, and there is no obvious way of 
obtaining the more general Theorem 2 using his methods. 

In his diary, following the proof of Potter's theorem, Wielandt also raises some 
questions. These include the construction of all identities satisfied by w-commutative 
matrices and the determination of all irreducible pairs of w-commutative matrices. 
NaturaJly unaware ofWielandt's question, M. P. Drazin (then in Cambridge, England) 
to a large extent furnished an answer to the latter question in [9]. 

In section 5 we present the prenormal form obtained by Drazin [9] and show that 
the classification problem of w-commutative mat11ces is equivalent to the classifica­
tion problem of pairs of commuting matrices, both under simultaneous similarity. In 
section 6 we demonstrate that the converse to Potter's theorem does not hold, not even 
for some of its weakened versions. In section 7 we determine all polynomial identities 
satisfied by w-commutative matrices thus answering Wielandt's first question. Finally, 
in section 8 we discuss work on w-commutative matrices preceding that of Potter and 
Wielandt. 

2. POTTER'S PROOF. We begin by examining Potter's proof of Theorem 1. In the 
first part of the proof Potter does not assume that w is a root of unity, and for w­
commutative matrices A and B he establishes the general formula (here stated in a 
slightly different but equivalent form) 

" (A + B)" = L:>k Bk Aq-k, (3) 
k=O 
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where the Ck are determined by 

(k=O, . .. ,q) (4) 

and the ¢k are given by 

k 

¢k = nO + ... + urI) (k=O, ... ,q). (5) 
s=1 

The coefficients Ck in (4), known as the q-binomial coefficients, were well studied in 
the nineteenth century in the theory of hypergeometric series (see, for example, [1, 
chap. 10]) and in the theory of partitions (see [1, chap. 11] and [21, sec. 1.3]). 

Let R be any ring with identity 1, and let w, x, and y be elements of R. Let Z 
signify the subring of R generated by 1. Thus Z is isomorphic either to the ling of 
integers Z or to Zm, the ring of integers modulo m. We call x and y w-commutative if 
the following three identities hold: 

wx = xw, wy = yw, xy = wyx. (6) 

From Potter's argument we can obtain the following version of the Potter-Schiitzen­
berger theorem: 

Theorem 2. Let R be a ring with 1, and let w be an element of R. If x and yare 
w-commutative elements of R, then 

q 

(x + y)q = LCklxq-k, (7) 
k=O 

where the Ck are given by (4) and (5). 

We observe that the coefficients Ck lie in Z[w], so there is no loss of generality by 
considering only the subring Z[w, x, y] of R. As a consequence of Theorem 2, we 
obtain: 

Corollary 3. Suppose that Z[wl is an integral domain. Under the conditions ofTheo­
rem 2, suppose further that 

¢k i= 0 (k = 1, ... , q - 1) (8) 

but that 

(9) 

Then 

(10) 

Evidently, if Z[w] is a field and w is a plimitive qth root of 1 in R, then (8) and (9) 
are satisfied. These statements also hold if Z = Zq and w = 1. We further note that 
when Z[w] is an integral domain a necessary condition for (10) to be satisfied is that 
(9) be true. 
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A ring K [x, y] in two noncommutative indeterminates x and y over a central 
field K, where x and y are subject to the relation xy = wyx for some w in K, is today 
called a quantum plane over K (see [16, p. 72]). 

3. WIELANDT'S NOTES. In Figure 2 we display a facsimile of page 35 of 
Wielandt's Diary VII [24], dated 20 March 1951. The following is a tTanslation of 
this note: 

Quasi-commutative Matrices 
New proof of a theorem of H. s. A. Potter (On the latent roots of quasi-commutative 

matrices, Amer. Math. Monthly 57,321-322 (1950)). 
If AB = wBA, and w is a primitive qth root of unity, then (*) (A + B)q = A q + Bq . 

., . ·;;p·'·S'1 . ... - .-

Figure 2. Page 35 of Wielandt's dia.ry VII (reproduced with the permission of Annemarie Wiela.ndt) . 
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Proof It is clear that (A + B)q = Aq + BlJ + Li-J CkAk Bq-k, where the scalars 
Ck do not depend on the special choice of of A, B (except for *). If one chooses 

A= ( 

. 1 

w 

(degree = q) 

then (A + B)q = 8E is a diagonal matrix: Indeed, with T = BA- J, it follows that 
T- 1 AT = wA, T- J BT = wB, and thus T- I (A + B)T = w(A + B), hence I A + B 
has eigenvalues p, pw, ... , pwq- I • Not all of them are zero due to the trace; the ma­
trix (A + B)q has only pq as eigenvalue and is, just like (A + B), transformable to 
diagonal form, so (A + B)q = pq E. This implies that Cl = ... = cq-J = 0, since oth­
erwise a particular nondiagonal element of (A + B)q would be nonzero. 

Problem: Determine all identities for A, B. Is every pair A, B with (A + B)q = 
Aq + Bq decomposable as 

S-lAS = ( AI ) 
'. AI" ' 

S-lBS = 
( 

Bl 

with 

Determination of all irreducible pairs of quasi-commutative matrices? 
Earlier work on quasi-commutative matrices? 

Apparently, in the first paragraph of the proof Wielandt is referring to the quasi­
commutativity relation rather than to relation (*) when he says "except for (*)." Also, 
he must mean that w'j, = 1, for wp is a scalar. 

4. WIELANDT'S PROOF AND A VARIANT. Wielandt's proof begins with the 
simple but insightful remark that for w-commutative matrices the coefficients Ck in 
the expansion (A + B)q = Lk=o ckBk Aq-k are independent of the particular matrices 
A and B, hence that the result will follow if he can show that the cocfficients must 
be 0 in the case of a well-chosen pair of matrices A and B. The argument requires 
the linear independence of the set of matrices Bk A"-k (k = 1, ... , q - 1). Though 
Wielandt does not say this, he chooses matrices A and B that satisfy this condition. 
He then uses an argument involving eigenvalues and the diagonalizability of matrices 
to show that CI = ... = Cq-l = O. 

We now give a variant of Wielandt's proof. Let A and B be the matrices chosen by 
Wielandt, and let sand t be arbitrary complex numbers. Since the eigenvalues of B are 
the qth roots of unity, it follows that the characteristic polynomial of s B is A q - sq . 
Because the proper principal minors of s A + t Band t B coincide and det(s A + t B) = 
(_})q-l(sq + tq), it follows that the characteristic polynomial of sA + tB is Aq -

(sq + tq). By the Cayley-Hamilton theorem [11] we obtain 

(11 ) 

J This implication is based on the primitivity of w as a root of unity. 
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But 

q-l 

(s A + t B)q = (s A)CJ + (t B)q + L Cksktq-k Ak Bq-k, 
k=l 

so each matrix coefficient CkAk Bq-k must be zero. Since A and B are both nonsingular, 
this implies that Ck = O. • 

Thus, the alternative proof demonstrates the following extension of Potter's theo­
rem: 

Proposition 4. Let A and B be w-commutative matrices satisfying (1), where w is a 
primitive qth root of unity. Then 

(sA + tB)q = (sA)q + (tB)q (12) 

for all complex numbers sand t. 

A proof in a rather similar spirit is given by R. Bhatia and L. Elsner in [4] for 
the following fact: if A and B are w-commutative, then the spectrum of A + B is 
p-Carrollian (i.e., the eigenvalues of A + B can be enumerated as 

Moreover, the same holds for all perturbations of B of the specific form given in [4, 
Theorem 2]. The term "Carrollian" was coined by R. Bhatia in honor of Lewis Carroll, 
initially to denote an n-tuple that contains -x if it contains x, and later turned into 
"p-Carrollian" for n-tuples that contain all multiples of x with pth roots of unity. It is 
used in [3] and [2] as well. 

5. NORMAL FORMS FOR w-COMMUTATIVE MATRICES. Note that Wie­
landt raises the question of classifying irreducible w-commutative pairs, having in 
mind reductions by simultaneous similarity A f---+ T-1AT and B f---+ T- 1 BT, since re­
lation (1) is invariant under simultaneous similarity. To study this question, we start 
with some preliminary observations. 

Suppose that 

AB = wBA, (13) 

where w is a nonzero complex number. By the foregoing remark on simultaneous 
similarity, we may assume that A is in Jordan canonical form. Notice that not all 
Jordan normal forms are allowed for the matrix A. For example, if B is nonsingu­
lar and A is not nilpotent, then each row and each column of B must contain at 
least one nonzero element. Thus, if A is a nonzero eigenvalue of A, so is WA. Since 
the number of eigenvalues is finite and A has a nonzero eigenvalue, it follows that 
w is a root of unity. Moreover, if Jj (Aj) is the Jordan block of largest size in A, 
then using the fact that every row and column of B has at least one nonzero ele­
ment, it follows that there is a block for WAj of equal size. Thus, we conclude that 
the maximal size of a Jordan block in A is the same for each nonzero eigenvalue. 
In case both A and B are nonsingular, the Jordan forms of both are restricted in this 
way. 
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Theorem 5. If A and Bare nonsingular matrices satisfying AB = wBA with w =1= 0, 
then w is a primitive pth root of 1 for some p and the Jordan form J of A may be 
written as 

J = diag(K1 , ••. , Kq), 

where each Ki is the direct sum of Jordan blocks of the same size corresponding to the 
eigenvalues Ai, WAi, . . . , Wp-I Ai. The Jordan form for B has the same structure. 

Proof From the assumption of the theorem we infer that A is similar to wA. Hence the 
number and sizes of Jordan blocks corresponding to any eigenvalue A of A coincide 
with the number and sizes of the Jordan blocks corresponding to the eigenvalue wA. 
The proof for B follows by interchanging the roles of A and B. • 

Assuming that A is already in its Jordan form, one can obtain a full description 
of all matrices B satisfying (13) using results from [22, p. 21] . However, in this way 
we will not have obtained a canonical form for the pair (A, B) under simultaneous 
similarity, for in general there will be similarities that leave A invariant but change B. 
Already in 1951, Drazin to a large extent answered the question of classification of 
w-commutative pairs, although Wielandt was apparently unaware of his results. In [9], 
Drazin obtained the following prenormal form for pairs of w-commutative matrices: 

Theorem 6. If A and Bare n x n matrices satisfying an equation of the form AB = 
wBA, then either 

or 

(i) A and B can be simultaneously reduced to triangular form by a similarity 
transfonnation, 

(ii) there is an integer r (0 :'S r :'S n - 2) such that A and B can be reduced, by the 
same similarity transformation, to the forms 

(14) 

where Sand T are triangular r x r matrices, and A" and Br are nonsingular 
(n - r) x (n - r) matrices. 

Furthermore, Drazin also proved an additional theorem: 

Theorem 7. If(i) holds in Theorem 6 with w =1= 1, then each of AB and BA is nilpotent, 
and A and B have between them at least n zero eigenvalues. If, however, (i) is false, 
then w is necessarily a primitive root of unity, and the order k of w must divide n - r. 
Further, in this case ST and TS are both nilpotent, and the reduction of A and B can 
be effected in such a way that A,. takes the fonn 

l (15) 
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where a is a nonsingular square matrix of order (n - r) / k; then the most general form 
of Br is 

b
2 

0 '.:: 

o 
o 

[ 

0 0 '" 

o 0 . . . bk 

(16) 

where bl , . . . , bk are arbitrary nonsingular matrices of order (n - r) / k subject to the 
relations bja = abi (i = 1, 2, .. . , k), Sand T are triangular r x r matrices, and Ar 
and Br are nonsingular (n - r) x (n - r) matrices. 

Drazin's formulas still do not give a canonical form. Indeed, first of all an w­
commutative pair (A, B ) can be put into block diagonal form, with blocks (A j , B j ) 

of one of four types, according to their spectra: 

Type I: a(Aj) = {O}, a(Bi) = {OJ; 

Type II: a(Aj) = {O}, a(Bj ) = {f1,j(#= 0), Wf1,j, . .. , Wk-
I f1,;}; 

Type III: a(Ai ) = {Ai(#= 0), wAi," " wk-IAd, a(Bj) = {OJ; 

Type IV: a (Ai) = {Ai(#= 0) , WAj, ... , W k
-

I Ai}, 

a (Bi) = {f1,i (#= 0), wf1,i , .. . , wk
-

I f1,d. 

Moreover, for a pair of type IV one can assume that all submatrices bi in (16) save 
one (b l , say) are equal to the identity. At that stage the problem of classification of 
w-commutative matrices of type IV reduces to the problem of classification of com­
muting pairs (a, b l ). The same reduction can be achieved for types II and III. We can 
summarize this as follows (see [15] for a proof): 

Theorem 8. The problem of representation under simultaneous similarity for w­
commutative pairs is equivalent to the problem of representation under simultaneous 
similarity for all commuting pairs. Moreover, the latter is already equivalent to the 
problem of representation for w-commutative pairs of type II, Ill, or TV. 

The problem of classification of commuting matrices pairs is quite fascinating and 
notorious. M. Gelfand and V. A. Ponomarev [13] showed that the simultaneous sim­
ilarity problem of any n-tuple of matrices is equivalent to it. The problem was later 
taken up by S. Friedland, who showed in [10] how to find a finite number of invariants 
that will characterize an orbit of a pair (A, B) under simultaneous similarity up to a 
finite ambiguity, which means that these invariants may characterize a finite number of 
similarity orbits. For a fixed dimension d, Friedland decomposed the variety of pairs 
of square matrices into finitely many subvarieties locally closed under simultaneous 
similarity. For each such subvariety Z, he found a rational map f from Z into a finite­
dimensional vector space V for which the preimages under f (of points in V) consist 
of finitely many orbits of matrix pairs. The map f and the space V depend strongly 
on Z , although, for a fixed f, there is an upper bound on the number of conjugation 
classes in each prcimage. Friedland's method was later refined by K. Bongartz in [5]. 
He modified Friedland's construction (by changing Z, f, and V) so that the preimages 
under f are exactly the individual orbits of pairs of matrices. 
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In other words, given two pairs (A, B) and (C, D) of matrices, they are simulta­
neously similar to each other if and only if they lie in the same Z and have the same 
image under f. This provides, at least in principle, a complete answer to the problem 
of simultaneous similarity (i.e., it gives a decision algorithm, but no readily available 
normal forms). 

We should also mention that one of the abstract versions of this problem is to find 
all isomorphism classes of cyclic modules of finite length over the commutative poly­
nomial ring R = CC[x, y]. A pair of commuting n x n matrices A and B defines an 
R-module structure on en by letting x and y be multiplication by A and B, respec­
tively. 

6. THE CONVERSE TO POTTER'S THEOREM. Having studied the decompo­
sition of LV-commutative matrices into blocks, we now discuss Wielandt's second ques­
tion: Does the converse of Potter's theorem hold for every irreducible block (i.e., does 
the relation (12) with s = t = 1 imply that 

AB=wBA (17) 

for some qth root of unity w)? 
If q = 2, this strong version of the converse does hold: 

Proposition 9. A pair (A, B) is w-commutative with q = 2 if and only if (12) holds 
with s = t = 1. 

Proof The condition A2 + B2 = (A + B)2 is equivalent toAB = -BA. • 
However, the converse is in general not true, even if (12) is assumed to hold for all 

values of sand t, as the following example shows. 

Example 10. Consider the case n = 3 and q = 3. Let A. be a complex number different 
from 0, -1, and the primitive third roots of unity. For the pair of matrices 

we have 

where 

o 
o 

_A+l 
A 

B=[~O~] 
100 

BA = EAB, 

o 
A+l 

--A-

o ~l ]. 

-A+l 

Moreover, since E is invertible, it follows that 

A(E-1 + I) = -EA, (E- 1 + I)B = -BE. 

But (19) and (20) imply that 

October 2004] ON THE MATRIX EQUATION AB = wBA 

(18) 

(19) 

(20) 

663 



for all t. However, since E has three distinct ejge,Llvalues it follows that (121 doe~E,Qt 
hold. Also, if the pair (A, B) is r~laced by (A, B):= T(A, B)T-I , then BA = EAB, 
where E := TErl. Since E and E have the same spectrum, (17) does not hold for the 
pair (A, B) either. In other words, the pair (A, B) cannot be reduced to a direct sum of 
w-commutative pairs. Note that in this example both matrices A and B are nonsingular. 

If we assume that s = t = 1 in (12), then we can even produce 2 x 2 counter­
examples, for example, with q = 3 (see [15]). Drazin's prenormal form for 
w-commutative matrices also raises the question of whether the converse to Pot­
ter's theorem at least holds for pairs of matrices of the form (14)(i). However, there 
are again examples demonstrating that this is not the case [15]. 

On the other hand, if a pair (A, B) of nonsingular block k x k matrices of the 
form (15)-(16) with some w satisfies (12), then necessarily w is a primitive qth root of 
unity, equality (17) holds, and q divides k. Indeed, suppose that a pair (A, B) is in the 
form (15)-( 16), where a and b j are nonsingular commuting matrices and w i= O. If the 
pair (A, B) satisfies (12), then the matrix coefficient of sq-I t must be zero, that is 

Aq-l B + Aq-2BA + ... + BAq-l = O. (21) 

On the other hand, by direct calculation, 

where 

. (k-I 1 1 1 ) E(a) :=dlag a I, -I, -I, ... , -/ . 
a a a 

Since E(a) is block-diagonal for any a i= 0, the matrices A and E(w J,) commute. 
These rules now allow us to interchange Aj and Bin (21) to obtain 

Since A and B are nonsingular, this implies that the matrix factor in front of Aq-I B 
must be zero, hence that 1 + l/w + l/w2 + ... + l/wq-

1 = 0 (i.e., wq = 1). Next, 
the coefficient of stq- I must also be zero, which can be similarly shown to imply 
that wk = 1 (although the interchange rules for Bj and A are a bit more involved). 
This implies, in tum, that (17) holds. Now, w is a primitive root of order q', with q' 
dividinp q. Then relation (17), which we just established, implies that the matrices A q' 

and Bq commute and that 

( 
, ,)q/q' 

(s A + t B)q = (s A)q + (t B)q = (s A)q + (t B)q, 

which is possible only when ql = q. Since the relations wq = wk = 1 imply that 
wgcd(q,k) = 1, we also conclude that q must divide k. 

But even the commutativity of the blocks a and bi in (15)-(16) does not follow 
automatically from the relation (12), as we also show in [15]. In view of these coun­
terexamples, it seems natural to pose the more general problem of characterizing all 
classes of matrices for which the equivalence of (12) and (17) holds. 

Finally, recall that Potter derived from (17) infinitely many identities (3)-(5). 
Wielandt, in effect, asked whether just one of these identities, with q such that wq = 1, 
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already implies w-commutativity. From this point of view, it is not very surprising that 
the answer to his question turns out to be no. Notice, however, that (3) with q = 2 is 
exactly equivalent to (17). We believe the value q = 2 is the only one for which the 
expansion given by (3)-(5) implies w-commutativity (17). 

7. IDENTITIES SATISFIED BY w-COMMUTATIVE MATRICES. The first 
question Wielandt asked was which identities are satisfied by w-commutative ma­
trices. We now show that the polynomial identities 1 (x, y) = 0 that hold for all 
w-commutative matrices have 1 (x, y) in the ideal in <C[x, y] generated by the polyno­
mial g(x, y):= xy - wyx. 

Theorem 11. Let <C[x, y] denote the ring 01 polynomials in noncommuting indeter­
minates x and y over the field <C, and let I denote the ideal 01 <C[x, y] generated by 
the polynomial g(x, y) := xy - wyx, where wq = 1. Then l(x, y) belongs to I ifand 
only if the condition (17) implies that I(A, B) = 0 in <cqxq • 

Proof One direction is obvious: any polynomial l(x, y) from I satisfies I(A, B) = 0 
for all w-commutative matrices A and B. 

To establish the converse, first recall that the condition wq = 1 implies that there 
exists a pair of nonsingular matrices A and B in <cqxq satisfying (17). Since the pair 
(s A, t B) aiso satisfies (17) for any scalars sand t, we see that 1 (s A, t B) = O. Now 
interchange A and B in 1 (s A, t B) using relation (17) as many times as necessary to 
obtain a polynomial in the form 

11 (s A, t B) := L CijSi t j Ai Bj. 
i.j 

The polynomials l(x, y) and 11 (x, y) differ by some element of I. Now, since 
11 (s A, t B) = 0 and since sand t are independent scalars, each term CijSi t j k Bj in 
the sum must be zero. But as both A and B are nonsingular, this shows that cij = O. 
Thus 11 (x, y) is the zero polynomial, placing 1 (x, y) in I. • 

8. FURTHER HISTORICAL COMMENTS. We now address the last question 
posed by Wielandt, the question about work predating that of H. S. A. Potter. In fact, 
M. P. Drazin briefly addressed this issue in [9]. Specifically, Drazin cites Cayley's 
paper [6], where the case w = -1 was considered, and the works of F. Cecioni [7], 
S. Cherubino [8], and T. Kurosaki [17] devoted to the general case. (Biographies of the 
two Italian mathematicians can be found at [25].) Cecioni 's paper is a memoir summa­
rizing and extending results on w-commutative matrices known at that time. He gives 
a condition on a matrix A that is necessary and sufficient for the equation AX = wXA 
to have a nonzero solution X, describes the structure of an arbitrary solution along the 
lines of Turnbull and Aitken [22, p. 148], and stops one step short of arriving at the 
formulas (15)-(16) for an w-commutative pair (A, B) with AB nonsingular. A slightly 
different prenormal form is derived by Cherubino [8], who also describes the structure 
of the algebra of matrices commuting with a given matrix. The pair (15)-( 16) also ap­
pears in Kurosaki [17], even in reduced form (with all b j except for one equal to the 
identity), although not in a formal statement. Kurosaki's main result [17, Theorem 4] 
is a description of the group of all nonsingular matrices P satisfying the equation 
AP = cPA for some C (depending on P) and a fixed nonsingular matrix A. Drazin, on 
the other hand, is apparently mostly interested in simultaneous triangularization of an 
w-commutative pair, which leads him to derive, in his remarkably short paper [9], the 
prenormal form described in section 5. 
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