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ABSTRACT

We prove necessary and sufficient conditions for the existence of sequences and
matrices with elements in given intervals and with prescribed lower and upper bounds
on the element sums corresponding to the sets of an orthogonal pair of partitions. We
use these conditions to generalize known results on the existence of nonnegative
matrices with a given zero pattern and prescribed row and column sums. We also
generalize recently proven results on the existence of (a real or nonnegative) square
matrix A with a given zero pattern and with prescribed row sums such that A + AT is
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prescribed. We also introduce Hadamard adjustments, by means of which we general-
ize known results on the scaling of matrices with a given pattern to achieve prescribed
row and column sums. © 1997 Elsevier Science Inc.

1. INTRODUCTION

In the lust twenty years there have been about a hundred papers dealing
with matrices with given sign pattemn or zero pattern, e.g. [5], [6], [7], and
[12]. Our paper generalizes some known results of this kind to the case of
matrices with elements in given intervals.

A well-known result, due to Brualdi [1], gives necessary and sufficient
conditions for the existence of a nonnegative rectangular matrix with a given
zero pattern and with prescribed row and column sums. More recently, in Da
Silva, Hershkowitz, and Schneider [2], we found necessary and sufficient
conditions for the existence of a real or nonnegative square matrix A with a
given zero pattern and with prescribed row sums and such that A + AT is
prescribed. In both of these results one prescribes the element sums corre-
sponding to two partitions of positions in the matrix (rows and columns in one
case, rows and pairs of symmetrically located elements in the other), where a
set of one partition intersects a set of the other partition in at most one
element.

In this paper we generalize the results mentioned above in different
directions. We look at sequences instead of matrices, and we consider pairs of
general partitions with the above properties, which we call orthogonal parti-
tions. We then obtain results where lower and upper bounds on the element
sums corresponding to the sets of the partitions are prescribed, and we
extend results from nonnegative patterns to the case that the elements of the
sequence are in given intervals. Our applications are to the case of matrices.
We also generalize classical results on the existence of diagonal scalings of a
nonnegative matrix to achieve prescribed row and column sums (see Menon
[8], Menon and Schneider [9], and many other references) to the case of
general sign patterns in sequences.

We now describe our paper in more detail.

In Section 2 we prove our main results concerning the existence of
sequences with elements in given intervals and with prescribed lower and
upper bounds on the element sums corresponding to the sets of orthogonal
pair of partitions. Our principal tool here comes from network flow theory, as
we heavily use the Hoffman circulation theorem [3, p. 51]. This technique is
sirnilar to that used in [1).
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In Section 3 we discuss sign pattern m X n matrices and matrices of
given sign patterns. Application of the results of Section 2 to a sequence of
mn numbers, arranged in an m X n matrix, with one partition being the rows
of the matrix and the other partition being the columns of the matrix, yields
new theorems, with known special cases where the sign pattern is nonnega-
tive and all row and column sums are prescribed; see [1], [9], [10], and [11].

In Section 4 we generalize results of [2] on the existence of a square
matrix B with given row sums and such that B + BT is prescribed to the
case where only some of the row sums are given, and where B has a partially
prescribed sign pattern. Our results are obtained by applying the results of
Section 2 to a sequence of n? numbers, arranged in an n X n matrix, with
one partition being the rows of the matrix and the other partition being the
puirs of symmetrically located elements of the matrix. We discuss further
applications to both the zero pattern case and the nonnegative sign pattern
case, which contain known results in [2].

The discussion in Section 5 is independent of the previous section, and is
motivated by the fact that the results of [10] and [11], some of which are
generalized in Section 3, also contain a statement on the existence of row and
column scalings that scale a nonnegative matrix A to have the same row and
column sums as a matrix B having the same pattern as A. We introduce
Hadamard adjustments, by means of which we generalize that scaling result
to apply to our main results. In contrast to the previous sections, where
known results on nonnegative sign patterns are derived as corollaries of our
independently proven theorems, in this section we derive the generalizations
using known scaling results on nonnegative sign patterns.

We remark that it would be possible first to prove results on the existence
of matrices with bounds on the row and column sums and with elements in
given intervals, and then to derive the results on sequences. However, the
direct approach seems more natural, and applications such as in Section 4 are
easier to derive.

2. MAIN RESULTS

NoTATION 2.1. Let n be a positive integer. We denote by (n) the set
{1,...,n}

DEFINITION 2.2. Let p be a positive integer, and let &= {S,,..., S}
and 9= (T),...,T,} be partitions of { p). Then & and 9 are said to be
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orthogonal partitions if

ISSNTI<1, ie€ls), jelt).

NOTATION 2.3.  Let A be a p-vector and let k € {p). We denote by A,
the kth element of A.

DEFINITION 2.4. A vector P is said to be a (close) interval vector if
every entry of P is a close interval in the real axis (for this purpose, intervals
of type (=, a], [b, ®), and (—, ©) are also considered close).

In the sequel we identify p-vectors and sequences of p elements.

DerFINITION 2.5. Let P = {[I,,u,],...,[ u,,]} be an interval p-vector.

o
(i) A sequence A of p real elements is said to be in the interval P if
L <A <y, kelp)
(ii) A sequence A of p real elements is said to be in the open interval P
il l; <A, <ug whenever [} <ny, k € {p).

NoraTion 2.6. For subsets a of {s) and B of {t), we denote by af
and B¢ the set complements of & and B in {s) and {t) respectively.

We now state our main theorem conceming the existence of sequences
with prescribed partial sums of elements.

THEOREM 2.7. Let P = {[I,,u,],... ,[lp, up]} be an interval p-vector, let
& =1S,,...,8,} and §={T,,..., T} be orthogonal partitions of {p), and
let ;, <R, i C<(s), and <C,jc {t), be real numbers (where R, and
C; can be ©, and r; and ¢, can ée — ). The following are equivalent.

(i) There exists a sequence A in the interval P and such that

rn< ¥ A <R, i€(s),
kes,

< ¥ A<C, jel.
keT,
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Gi) For any subscts a of {s) and B of {t> we have

(2.8) min{ YR-Ye XC- X ri}

i€a JEB jep® i€a’

P Z lk— Z Uy,

k€U eaS\U epT) keU;esT\U a5

Proof. (i) = (ii): Assume that a ¢ {s), B & {¢). We have

Lh-To> L A- T A

i€a jeB ke U eoS: k€U ept;

= Z Ay — E Ay

kEUtenS;\Ujeij kEU}eﬁTj\UieaSl

Since A is in the interval P, we have I, < A; < u; and the first inequality of
(2.8) follows. Similarly, we prove the second inequality of (2.8).

(i) = (i): By a technique similar to that used in [1], we associate a
digraph D with the interval vector P which has the vertices

{xi,.cooxyy, oy, € 9}

There is an arc (x, ;) from x; to y; if and only il S; N T; # &. There are
also arcs (£, x,) from & (the source) to each x, and ares (y;, ¢) from y, to ¢
(the sink) for each y,. Finally, there is an arc (¢, £) [rom ¢ to €. These are
the only arcs in D. We assign an upper bound (v, w) and a lower bound

I(v, w) for the weights of the arcs (v, w) of D as follows:
o(xp, y) =, Wx,y) =1, where S,ﬂTj={k},
(€, x) =R, l(g-xi)="p i€ (s,

(2.9)
() = G Uiy b) = D,

C(w,§)=°°, l(¢_§)=—m_
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In order to use Hoftman’s circulation theorem (e.g. [3, p. 511, the condition

(2.10) Y c(v,w) = Y (v,w)
(v, w)EE(D) (v,w)EE(D)
vESN, weN vedt wESN

should be satisfied for every set .# of vertices of D. Let a = {i € (s): x, €
AYand B={j€(t): Y, €.#}. Distinguish four cases:

(1) ¢, y €#. Here the left hand side of (2.10) contains the term
c(, £), and so it is equal to © and (2.10) holds.

(@) £ &, pen llere the right hand side of (2.10) contains the tern
(g, €), and so it is equal to — and (2.10) holds.

3) & ¢ €. Here we have

{(v,w) € E(D):v &4, w e}
={(x,,y) € E(D):ieaf je B} u{(y,¥):j<€ B}
{(v,w) € E(D):v €H, w &4}
={(&x):i€eaf}u [(x,.,yj) €EE(D):ie a,jEBc],
and so

Y. c(v,w) — Y. (v,w)
(v,w)€ E(D) (v,w)EE(D)

TV ATY-V 4 vef w

= Z uk+ZCJ

k€U e pT\U (e oS jEpe

- Z L - Z"a-

ke U,E,,S.\U]EBTJ ica’®
By (2.8), the right hand side of our equation is nonnegative, and (2.10)
follows.
4) & ¢ A Here we have
{(v,w) €EE(D):v &4, w e}
={(&x):i€a}u [(xi,yj) €E(D):icaf je [3],
{(v,w) € E(D):v €t, w &4}

={(z.y) €E(D):i€a,jeB}U{(y.¥):j< B}
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and hence
Y c(v,w) - Y l(v,w)
(v, w)€ E(D) (v, w)€ E(D)
vesS wes . vef w
= )M ‘uk+2R|— )y lk_zcj-
kEU}EBT}\UIEaSA i€a kEUmaS‘\U}eﬂT/ j€B

By (2.8), the right hand side of our equation is nonnegative, and (2.10)
follows.

Therefore, (2.10) is satisfied for every set 4 of vertices of D, and by

Hoffman’s circulation theorem there exist weights (flows) f(v, w) on the arcs
(v, w) of D such that

(u,v) <f(u,v) <c(u,v),
Y flry) =f(£.x), i€(s),

JEW
{xy, yJ)EE(D)

Y f(xl’yj) =f(!/f>‘l’), jE{t).

i€(s)
(x,, y})E E(D)

(2.11)

Let k € (p). Since {S,...,S,} and (T,,..., T)} are partitions of {p), it
follows that k belongs to exactly one intersection S, N T,. Therefore, we can
define a sequence A by A, = f(x,, y,), whenever k € S, N T,. Tt now follows
from (2.9) and (2.11) that (i) holds. n

The existence of a sequence A in the open interval P is covered in the
following theorem.

THEOREM 2.12. Let P ={[l,,u]... ,[lP, uP]] be an interval p-vector,
let #=(S,,...,S,) and = {T\,...,T,} be orthogonal partitions of {p),
and let r, < R,, i € (s), and <C,jc (t), be real numbers (where R,
and C, can be © and r; and c; can be —). The following are equivalent.

(i) There exists a sequence A in the open interval P and such that

rn< Y, A, <R, ie(s,
kes,

o< Y A<C, jeln).
keT,
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(ii) For any two subsets a of (s} and B of (t) we have

(2.13) m{Z&—Zg,ZQ—ZH}

ica j€B " jep® ica”

> ) L — )M Uy,

k€UicaSA\U eqT] ke VU eaTA\V eai
where strict inequality holds whenever

p (ue— 1) - z (up —1,) > 0.

ke UicaSA\U el k€U, esT\U,eaS

Proof. The proof is very similar to the proof of Theorem 2.7, with (2.9)
replaced by

o(xiy) =u,  Wxpy) =L, where $,0T = {k), u, =1,
e(x, ) =up —€l(x, y) =l + e, where S, NT, ={k}, u, >,
(. x) =R, U&x)=r, i€(s),

oy, ¥)=C, Wy, o) =c, jelt),

(¥, §) =, I(y,8) = —,

I

where € is an unspecified positive number. Later on € is chosen sufficiently
small so that (2.13) is satisfied. |

We now upply our results to sign patterns,

DEFINITION 2.14.

(i) An interval vector P is said to be a sign pattern vector if every entry
of P is an element of the set {[0, ®), (—o0, 0], {0, 0], (— o, ©)}. We say that an
element P, of P satisfies P, > 0 if P, = [0,%) or P, = [0,0]. We say that
P, < 0if P, = (=0} or P, = [0,0]. We say that P, > 0if P, = [0, ). We
say that P, < 0if P, = (—,0].

(i) A sequence in the interval P is said to be of weak sign pattern P. A
sequence in the open interval P is said to be of strong sign pattern P.

(i) An interval vector P is said to be a zero pattern vector if every entry
of P is either [0, 0] or (—o0, ).
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THEOREM 2.15. Let P be a sign pattern p-vector, let &= (S,,..., 5}
and = (T\,..., T} be orthogonal partitions of (p), and let r, <R,
ic(s), and <CLjc (t), be real numbers (where R, and C, can be
and r; and c; can be —). The following are equivalent.

(i) There exists a sequence A with weak sign pattern P and such that

n< LA <R, i€(s),
kes

< LA <C, jeE(t).
keT,

(ii) For every subsets o of (s) and B of {t) such that

(2.16) P, > 0 whenever k€ |JS\ U T, and

{€Ea jeB

P, < 0 whenever k€ |JT)\ U S,

JEB i€a

we have
X:R¢> X:ﬂw
i€Ea j€B
(2.17)
Yn< X Cj‘
iea” JjEB*

Proof. Note that if (2.16) does not hold, then the right hand side of (2.8)
is equal to — and hence (2.8) trivially holds. If (2.16) holds, then the right
hand side of (2.8) is equal to 0 and thus our theorem follows from Theoremn
2.7. =n

REMARK 2.18. A similar application of Theorem 2.12 yields a new result
asserting the equivalence of two statements similar to those in Theorem 2.15,
where in statement (i) “weak sign pattemn” is replaced by “strong sign
pattern” and in statement (ii) the following condition is added: Strict inequal-
ities hold in (2.17) whenever P, > 0 for some k € U, .S\ U7, or
P, <0 forsomek € U ;¢ pT)\ U .S
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By considering the case where R, = r,, i € (s), and Ci=c,jE (t),
one can obtain a corollary of Theorem 2.15 in which one prescribes all the
element sums corresponding to the sets S, and all the element sums
corresponding to the sets T,. In those corollaries, there is another equivalent
condition, in which the equality

P 4
Zrl= ch

i=1 J=1

replaces either inequality of (2.17).

REMARK 2.19. Note that the proof in [3] for the Hoffman circulation
theorem holds for flows with values in ordered abelian groups. Therefore,
one can apply a generalized version of the circulation theorem to prove
Theorems 2.7 and 2.15, as well as some results of the following section for
matrices over ordered abelian groups; sec a similar remark in Gale [4]. In
particular, when the rs and the ¢’s are integers, then the matrices whose
existence is asserted in our results can be chosen to have integer elements.

3. APPLICATIONS TO MATRICES WITH PRESCRIBED ROW
AND COLUMN SUMS

In this section we discuss sign pattem m X n matrices and matrices of
given sign patterns, where the definitions of these correspond to Definitions
2.4 and 2.5 with vectors and sequences replaced by matrices.

NortaTion 3.1. Let A be an m X n matrix, and let « € {(m) and
B C {n). We denote by A(a, B) the submatrix of A whose rows are indexed
by @ and whose columns are indexed by B. By convention we say that
Ala, B) = 0 whenever a = Jor g = .

Application of Theorem 2.15 to a sequence of mn numbers, arranged in
an m X n matrix, with S\,..., S,, being the rows of the matrixand T, ..., T,
being the columns of the matrix, yields the following new theorem. Here we
prescribe some of the row sums and some of the column suns of the matrix.
Obviously, if the ith row sum is prescribed, then we have r, = R,. Otherwise,

we have r, = — and R,-= . A similar comment holds for columns.



EXISTENCE OF SEQUENCES AND MATRICES 81

THEOREM 3.2. Let P be a sign patten m X n matrix and let r,,
i€ Rc{m), and ¢, JECC {(n), be real numbers. The Sollowing are
equivalent.

(i) There exists an m X n matrix A with weak sign pattern P and such
that

n
Zal_[=rl' i €R,
j=1

m

lgau=cj, jecC.

(ii) For any two subsets a of {m) and B of {n) such that P(a, B°) > 0
and P(a®, B) < 0 we have

Yr> ch whenever a CR, BCC,
l€a jeB
(3.3)
Yr< ¥ < whenever a® c R, B¢ cC.
jeac jepe

It is easy to verify that in the special case that R = (m) and C = (n),
that is, when all row and column sums are prescribed, either of the conditions
in (3.3) may be replaced by

™s

(3.4) r = "\i cj.
J=1

1

REMARK 3.5. In view of Remark 2.18, we also have a new result
asserting the equivalence of two statements similar to those in Theorem 3.2,
where in statement (i) “weak sign pattern” is replaced by “strong sign
pattern” and in statement (ii) the following condition is added: Strict inequal-
ities hold in (3.3) whenever P(a, BC) # 0 or P(a®, B) = 0.

The special cases of Theorem 3.2 and Remark 3.5 where P is a nonnega-
tive sign pattern and all row -and column sums are prescribed are known. In
the case of Theorem 3.2 it is a part of Theorem 3 in [10] and of Theorem 3 in
[11], where, however, the condition (3.4) should be added. In the case of
Remark 3.5 the result is Theorem 2.1 in [1] under the hypothesis that the sign



82 DANIEL HERSHKOWITZ ET AL.

pattern matrix is chainable; see also Corollary 4.2 in [9]. The result can be
found in the current form as a part of Theorem 2 in [10] and of Theorem 2 in
[11].

4. APPLICATIONS TO REAL SUM DECOMPOSITIONS OF
SYMMETRIC MATRICES

Let A be a symmetric n X n matrix, and let r,, ..., r, be real numbers.
In [2] we prove necessary and sufficient conditions for the existence of a real
matrix B with row sums r,,...,r, and such that A = B + BT, In this
section we apply the results of Section 2 to generalize the results of [2] to the
case where only some of the row sums r, are given, and where B has a
partially prescribed sign pattern. The following new result is obtained by
applying Theorem 2.15 to a sequence of n? numbers, arranged in an n X n
matrix, with §,,..., S, being the rows of the matrix and {T“'” i, j € {n)}
being the partition of {n) X {n) defined by

TM={l(f,J‘).(J.i)}, R e o,

(.9}, =4

The numbers r;, i € R € {n), are given real numbers, and the numbers
Cu.pp 6 j € {n), are given by

a4y i#+j,
c ]
«n a,/2, i=j,

where A = (a,))} is a given symmetric n X n matrix.
THEOREM 4.1. Let A be a symmetric n X n matrix, let P be a sign

pattem n X n matrix, and let r,, i € R C (n), be real numbers. The follow-
ing are equivalent.

(i) There exists an n X n matrix B with weak sign pattern P, satisfying

Yb,=r, i€R,
j=1

and such that A = B + BT.
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(ii) For any two subsets a of {n) and B of {{i, j}:i, j € {(n)} for which
Pi;<0» iea‘, {i.j} €8,
py =0, iea, {ij} € B¢,

we have

1
Er‘zg Y a whenever a CR,
i.)eB

{€a

(42)

Y ay whenever a CR.
i, epe

2o~

Er,<

ica®

REMARK 4.3. In view of Remark 2.18, we also have a new result
asserting the equivalence of two statements similar to those in Theorem 4.1,
where in statement (i) “weak sign pattern” is replaced by “strong sign
pattern” and in statement (ii} the following condition is added: Strict inequal-
ities hold in (4.2) whenever p,; < 0 for some i € a©, {i,j} € B, orp,; >0
for some i € a, {i, j} € BC.

In order to state our next results we define

DEFINITION 4.4.  Let P be a sign pattern n X n matrix, and let a € (n).
The set a is said to be a P-loose subset of {n) if for every i € @ and
j € a® we have p,; =0 or p; = 0. By convention, & and {n) are P-loose
sets.

We remark that P-loose sets, associated with a pattern matrix P, are
originally defined in [2] as D-loose sets, associated with the digraph of the
matrix P.

An application of Theorem 4.1 to the case where R = {(n) and P is a
zero pattern yields the following new theorem. The equivalence of statements
(i) and (ii) of this theorem is the assertion of Theorem 2.5 in [2].

THEOREM 4.5. Let A be a symmetric n X n matrix, let P be a zero
pattern n X n matrix, and let r,, i € (n), be real numbers. The following are
equivalent.
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(i) There exists an n X n matrix B with weak pattern P, with row sums
Ty 1, and such that A = B + BY,

n»

(i) For every subsets a of {n) and B of {{i, j}: i, j € (n)} for which

(4.6)

py=0 whenever i € a®, {i,j} €8, orieca,lij}eB"

we have
1
(4.7) Y= P > Ay
i€Ea (l,j)EB
(iii) We have
(4.8) a; =0  whenever p,=p,=0,i,j€(n),
and
(4.9)

1
Yrn== Y a,+ Y a, for every P-loose subset a of (n).
i€a 2 i.j€a (i.f)eaxa®
py*0

Proof. (i) = (ii): Since all the nonzero entries of P are (—», ), it
follows by Theorem 4.1 that (i) implies that for any subsets a of {(n) and B
of ({i, j}: ¢, j € (n)} for which (4.6) holds we have

1

Py Zau

lt.5)ep

(4.10) Yr=

i€a

and
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Since (4.6) is invariant under replacement of a by &€ and of 8 by 8¢, the
latter inequality would turn, under such a replacement, into

1
E Z aij-

li.jlep

(4.11) Y«

' i€a

The equality (4.7) follows from (4.10) and (4.11).

(ii) = (i): Since (4.6) is invariant under replacement of a by a® and of 8
by B€, it follows from (ii) that for any subsets a of (n) and B of
{{i, j}: i, j € (n)} for which (4.6) holds we have both (4.7) and

1
Zr1=§ Z ay.

tea€ {i, lepc

Our claim now follows by Theorem 4.1.

(i) = (iii): Let 4, j € (n) be such that p,, =p, = 0. The sets a = &
and B = {{i, j}} satisfy (4.6), and it follows from (4.7) that a,, = 0, proving
(4.8). Now, let a be a P-loose set, let

B={{i.j}:i.j € a) U[[i,j]:(i,j)EanafC and pU*O},

andlet i,j € (n). If i € @ and {i, j} € BC then, by the definition of B8, we
have py = 0. If i € a© and {i, j} € B then, by the definition of B, we have
jE€a and p, # 0, and since « is a P-loose set, it follows that p,, = 0.
Therefore, we have p,, = 0 whenever i € a€, (i,jl € B, ori € a, (i,jl €
BC. By (ii) we now have (4.7), which, in our case, is exactly (4.9).

(iii) = (ii): Let a be a subset of {n), and let B8 be a subset of
{{i, j}: 4, j € (n)} for which (4.6) holds, and assume that py*0 for some
Gi,j)eax «€. Since i € a and py # 0, it follows by (4.6) that {i, j} € B.
Since {i, j} € B and j € aF, it follows by (4.6) that pu = 0. Therefore, « is
a P-loose subset of {(n), and so (4.9) holds. Let

y={li.j}:i.jea) u{{i,j}:(i,j) €axa® and p, =+ 0}
By (4.9) we have
1 1
2 = 3 2 a, + 2 a,; = 2 Z ayy- (4.12)

{€a i J€a (. leaxa® ti.j}ey
py*0
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Let i, j € {n) be such that a; # 0. Distinguish three cases:

(1) (i,j) € a X a. By definition of ¥ we have {1, j} € y. Also, since
i,j € a, and since by (4.8) we have p,, # 0 or p;, # 0, it follows by (4.6) that
(o)) € B,

@) (t,j) € a X a“. By (4.8) we have py * 0 or p, + 0. If py*0
then, by definition of v, we have {i, j} € 7y. Also, by (4.6) we have {i, j} € B.
1f p, =0 then (i, 7} & v, and also, since j € a and p, # 0, by (4.6) we
have (i, j} & B.

(3) (i, j) € &€ X €. By the definition of y, we have {i, j} & v. Also,
since by (4.8) we have p,, + 0 or p;, # 0, it follows from (4.6) that {i, j) & B.

It follows that whenever a,; # 0 we have {i,j} € B = {i,j} € v. Hence

1

1
5 E a,y = 9 E 8y,
{t.)eB . fley
and, in view of (4.12), (i) follows. [ |

An application of Theorem 4.1 to the case where R = {n) and the matrix
A and the sign pattem matrix P are nonnegative yields the following new
theorem. The equivalence of statements (i) and (ii) of this theorem is
asserted in Theorem 3.3 in [2].

THEOREM 4.13. Let A be a nonnegative symmetric n X n matrix, let P
be a nonnegative sign pattern n X n matrix, and let r,, i € {n), be nonnega-
tive numbers. The following are equivalent.

(1) There exists an n X n matrix B with weak sign pattern P, with row
sums r,...,r,, and such that A = B + B".

s Tas

(ii) For any two subsets a of {n) and B of li, j}: i, j € {n)} for which

py=0, i€a‘ [{i,j}lesB,

we have
1
Yz 5 z ay)»
{€Ea (i,j[eﬂ
(4.14)
1
E n< E E ay.

t€ac (1, j)e 8¢
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(iii) We have (4.8), (4.9) and

1
(415 Ernzg5 Lay+ L o fordl ac(n).
tea i.jca (. Heaxa®
Pu=0

Proof. (i) = (ii) by Theorem 4.1.
(i) = (iii): In view of Theorem 4.5, all we have to prove is that (ii)
implies (4.15). Let a C (n) and let

B={{i.j}:i,jeayu{{i.f}:(i.j)€a’xa and p,=0}.
By (ii) we have

1
9 E 8y,

(i, ep

E"&>

{€a

which, in our case, is exactly (4.15).
(iii) =» (ii): Let a be a subset of (n), and let B be a subset of
{{, :1, ] € (n)) for which p,; = 0 whenever i € o€, {i, j} € B. Let

y={t.)):1.jea)u{{t.j}):(1.j) €a®Xa and p, =0}

Let {i,j) € B\ y. Then i,j € a® and py =Pu = 0. By (48) we have
a;; = 0, and thus

a,#0, (i,jJeB = [i,jler.
Therefore, since A is nonnegative we have

1 1
92 E a; > 9 E 844>
i.s}ey {i.5lep



68 DANIEL HERSHKQWITZ ET AL.

and it now follows from (iii) that

(4.16)
1 1 1
Z'}>§Zaq+ z au=§ ) a‘}>§ ) ay.
i€ca i,jea (i, f}eaxa’ {i.f}ey li.fles

pu=0
Since {n) is clearly a P-loose set, it follows by (4.9) that

(4.17) Yy r‘=% ¥y ay.

ie(n) i.jeln)
By subtracting (4.16) from (4.17) we obtain

1
Zrl‘g_z‘

te€a”

Z 35

{t, fyepe
and (ii) follows. [ ]

REMARK 4.18. In view of Remark 4.3, we have another new result
asserting the equivalence of two statements similar to those in Theorem 4.13,
where in statement (i) “weak sign pattem” is replaced by “strong sign
pattern”; in statement (ii) the following condition is added: Strict inequalities
hold in (4.14) whenever Py >0 for some i € &, (4, j} € BC; and iu state-
ment (iii) the following condition is added: Strict inequality holds in (4.15)
whenever p,;, p; > 0 for some i € a, j € a.

5. HADAMARD ADJUSTMENTS

The discussion in this section is independent of the previous section, and
is motivated by the fact that the results of [10] and [11] that are generalized in
Section 3 also contain a statement on the existence of row and column
scalings that scale a nonnegative matrix A to have the same row and column
sums as a matrix B having the same pattern as A. We introduce Hadamard
adjustments, by means of which we generalize that scaling result to apply to
our main results. In contrast to the previous sections, where known results on
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nonnegative sign patterns are derived as corollaries of our independently
proven theorems, in this section we derive the generalization using known
scaling results on nonnegative sign patterns.

DEFINITION 5.1. Let P be a sign pattern p-vector, and let % =
{U,, ..., U} be a partition of { p). A p-vector X is said to be a (P, #)-adjust-
ment vector if:

(i) X, = 0 whenever P, = 0, and X, > 0 whenever P, # 0, i € {p).
(ii) For ever i € (r) all the entries (X, : :j €U, F > 0} are the same
and all the entries {XJ jEU, B < 0} are the same.

DEFINITION 52. Let A and B be p-vectors. The Hadamard product
Ac B is defined to be the p-vector C satisfying C, = A, B,, i € (p).

THEOREM 5.3. Let A and B be p-sequences with the same strong sign
pattern P and let = (S,,..., 5.} and 9= (T\,..., T} be orthogonal parti-
tions of {p). Then there exist a (P, 5)-adjustment vector Y and a (P, 5 )-ad-
justment vector X such that the Hadamard product C = Ao X oY satisfies

Yc,= Y B, ie(s),
u€s, u€Ss,
LC=YB, jen)
uET} uET}

Proof. We define two nonnegative p X g matrices B* _and B~ as
follows: for every { € (s) and j € (t), if S, N T = Q)thenb —b =0.
Otherwise, we have §; N T, = {u} and we deﬁne

po_ [Bo Bz [0, B, >0,

v~Yo, B,<0, T }-B, B, <O

Similarly, we define the nonnegative matrices A* and A~. Observe that the
row sums r{,...,r; and r[,...,r;, and the column sums ¢,..., ¢} and
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¢iv..nc;, of B* and B~ respectively are given by

v_,)

Z B,, r/=- Z B,, i€ (s,

u€S, u€S,
B,>0 B, <0

and

cj+= Y B, o=~ Y B, jE L.
uE’I} uET,
¥,>0 B,<0

Since_the nonnegative matrices A* and A~ have the same pattern as B*
and B~ respectively, it follows by Theorem 2 in [8] (see also Corollary 4.3 in
[9D that there exist diagonal matrices XL Y! X2 and Y2, with positive
d.lagona] elements, such that Y'A* X! has row sums ry,..., r; and column
sums ¢;,...,¢;, and such that Y?A~X? has row sums ry,...,r and
column sums ¢[, ..., ¢]. We define a (P, $)-adjustment vector Y as follows:
For every u € {p) let i € {s) be such that u € §,. Then let

. P, >0,
Y, = y:
Y B <0

Similarly, we define a (P,9)-adjustment vector X as follows: For every
u € (p) let j € (t) be such that u € T,. Then let

x},, P, >0,
x, =12
X}, P, <0

Let C be the Hadamard product Ae XY and let i € (s}, j € (t).
Observe that the sum T, ;C, is equal to the ith row sum of YAt X!
minus the ith row sum of YZA~X?2, that is, to r -1 =):“ES'B"
Similarly, the sum L,¢7C, is equal to the jth column sum of YIA* X!
minus the jth column sum of Y24~ X2, that is, to o —ef = E“ET}B ]

It is natural to ask whether the adjustment vectors X and Y in Theorem
5.3 can be chosen such that for every i € (s) all the entries (Y, : u € S} are
the same and for every j € (t) all the entries {X, :u € T}} are the same,
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without the distinction between the cases of P, > 0 and P, < 0. The answer
to this question is negative, as is demonstrated by the following example.

ExaMmpLE 5.4. The vectors A =(1, -2, —1,Dand B=(, -1, -1,1)
have the same strong sign pattern P. Let S, = {1,2} and S, = {3, 4}, and let
T, ={1,3}and T, = {2,4}). Let Y be a (P, %)-adjustment vector of the type
Y =(y,, ¥), Yo, y,), and let X be a (P,9)-adjustment vector of the type
X = (x,, xy, x|, x,). Note that y,, y,, x,, x, are all positive numbers. Now,
observe that if

Z (AeXeY), =y(x; —2x,) = Z B,=0

u€s, u€s,

then x; = 2x,. But then

Y (AeXeY), =yy(x;—x) #0= } B, =0

uES, uES,

We remark that the technique used in the proof of Theorem 5.3, that is,
translating the problem into the problem of existence of a matrix with
preassigned row sums and column sums, does not seem to be applicable in
the previous sections, mainly because there we prescribe the element sums
corresponding only to some of the sets of the partitions, while in the result we
use here all row sums and column sums are preseribed.

Finally, it is easy to check that the application of Theorem 5.3 to the
setting under discussion in Theorem 4.13 yields

THEOREM 5.5. Let A and B be nonnegative n X n matrices of the same
strong sign pattern. Then there exists a diagonal matrix Y with positive
diagonal elements and a positive symmetric matrix X such that the matrix
C = A o(YX) has the same row sums as B and also C + C* = B + BT.
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