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ABSTRACf 

We prove necessary and sufficient conditions for the existence of sequences and 
matrices with elements in given intervals and with prescribed lower and upper bounds 
on the element sums corresponding to the sets of an orthogonal pair of partitions. We 
use these conditions to generalize known results on the existence of nonnegative 
matrices with a given zero pattern and prescribed row and column sums. We also 
generalize recently proven results on the existence of (a real or nonnegative) square 
matrix A with a given zero pattern and with prescribed row sums such that A + AT is 
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prescribed. We also introduce Hadamard adjustments, by means of which we general
ize known results on the scaling of matrices with a given pattern to achieve prescribed 
row and column sums. © 1997 Elsevier Science Inc. 

1. INTRODUCTION 

In the last twenty years there have been about a hundred papers dealing 
with matrices with given sign pattern or zero pattern, e.g. [5], [6], [7], and 
[I2]. Our paper generalizes some known results of this kind to the case of 
matrices with elements in given intervals. 

A well-known result, due to Brualdi [It gives necessary and sufficient 
conditions for the existence of a nonnegative rectangular matrix with a given 
zero pattern and with prescribed row and column sums. More recently, in Da 
Silva, Hershkowitz, and Schneider [2], we found necessary and sufficient 
conditions for the existence of a real or nonnegative square matrix A with a 
given zero pattern and with preSCribed row sums and such that A + AT is 
prescribed. In both of these results one prescribes the element sums corre
sponding to two partitions of positions in the matrix (rows and columns in one 
case, rows and pairs of symmetrically located elements in the other), where a 
set of one partition intersects a set of the other partition in at most one 
element. 

In this paper we generalize the results mentioned above in different 
directions. We look at sequences instead of matrices, and we consider pairs of 
general partitions with the above properties, which we call orthogonal parti
tions. We then obtain results where lower and upper bounds on the element 
slims corresponding to the sets of the partitions are prescribed, and we 
extend results from nonnegative patterns to the case that the elements of the 
sequence are in given intervals. Our applications are to the case of matrices. 
We also generalize classical results on the existence of diagonal scalings of a 
nonnegative matrix to achieve prescribed row and column sums (see Menon 
[8], Menon and Schneider [9], and many other references) to the case of 
general sign patterns in sequences. 

We now describe our paper in more detail. 
In Section 2 we prove our main results concerning the existence of 

sequences with elements in given intervals and with preSCribed lower and 
upper bounds on the element sums corresponding to the sets of orthogonal 
pair of partitions. Our principal tool here comes from network flow theory, as 
we heavily use the Hoffman circulation theorem [3, p. 51.]. This technique is 
similar to that used in [1]. 
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In Section 3 we discuss sign pattern m X n matrices and matrices of 
given sign patterns. Application of the results of Section 2 to a sequence of 
mn numbers, arranged in an m X n matrix, with one partition being the rows 
of the matrix and the other partition being the columns of the matrix, yields 
new theorems, with known special cases where the sign pattern is nonnega
tive and all row and column sums are prescribed; see [11, [91, [101, and [11]. 

In Section 4 we generalize results of [2] on the existence of a square 
matrix B with given row sums and such that B + BT is prescribed to the 
case where only some of the row sums are given, and where B has a partially 
prescribed sign pattern. Our results are obtained by applying the results of 
Section 2 to a sequence of n2 numbers, arranged in an n X n matrix, with 
one partition being the rows of the matrix and the other partition being the 
pairs of symmetrically located elements of the matrix. We discllss further 
applications to both the zero pattern case and the nonnegative sign pattern 
case, which contain known results in [2]. 

The discussion in Section 5 is independent of the previous section, and is 
motivated by the fact that the results of [10] and [11], some of which are 
generalized in Section 3, also contain a statement on the existence of row and 
column scalings that scale a nonnegative matrix A to have the same row and 
column sums as a matrix B having the same pattern as A. We introduce 
Hadamard adjustments, by means of which we generalize that scaling result 
to apply to our main results. In contrast to the previous sections, where 
known results Oil nonnegative sign patterns are derived as (;Grollaries of our 
independently proven theorems, in this section we derive the generalizatiuns 
using known scaling results on nonnegative sign patterns. 

We remark that it would he possihle flrst to prove results on the existence 
of matrices with bounds on the row and column sums amI with elements in 
given intervals, and then to derive the results 011 sequences. However, the 
direct approach seems mure natural, and applications such as in Section 4 are 
easier to derive. 

2. MAIN RESULTS 

NOTATION 2.1. Let n be a positive integer. We denote by (n) the set 
{l, ... ,n}. 

DEFINITION 2.2. Let P be a positive integer, and let .9" = {SI"'" S.l 
and :T = (Tj , ••• , T,) be partitions of (p). Then .9" and :T are said to be 
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mtllllgll1lf1l,lflrtitiOIlS if 

Is;n1jl.;;l, iE(S), jE(t). 

NOTATION 2.3. Let A be a p-vector and let k E (p). We denote by Ak 
the k th element of A. 

DEFINITION 2.4. A vector P is said to be a (close) internal vector if 
every entry of P is a close interval in the real axis (for this purpose, intervals 
of type (-00, al. [b,oo), and (-00,00) are also considered close). 

In the sequel we identify p-vectors and sequences of p elements. 

DEFINITION 2.5. Let P = {[II' U I],"" [I", u ,']} be an interval p-vector. 

(0 A sequence A of p real elements is said to be in the internal P if 
lk .;; Ak .;; Uk, k E (p). 

(jj) A sequence A of 11 real elements is said to he in the 0llell internal P 
if I. < Ak < Ilk wt.elH'ver lk < Ilk' k E (,1). 

NOTATION 2.6. For subsets a of (s) and f3 of (t), we denote by a C 

and f3 C the set complements of a and f3 in (s) and (t) respectively. 

We now state our main theorem concerning the existence of sequences 
with prescribed partial sums of elements. 

THEOREM 2.7. Let P = {[II' u1J. .•• ,[lp, up]} be an illternal,p-vectvr, let 
.9'= {SI"'" S,J and 07= {T., ... , Tt } be orthogonal partitions Of (p), and 
let r; .;; R;, i !; (s), and cj .;; C)' j !; (t) , be real numbers (where R; and 
Cj can be 00, and r; and cj can be - 00). The following are equivalent. 

(0 There exists a sequence A in the internal P and stich that 

r;';; E Ak .;; RI , 

kES, 

CJ .;; E Ak .;; C)' 
kET.t 

i E (s) , 

j E (t). 
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(ii) For atl!l sllhvds a oj (s) allti f3 of (t) we have 

(2.8) lIlin{ E H j - E cj , E Cj - E "j} 
iE" jEf3 j E f3" iE,," 

kEU'e.S,\UjE~lj kEUje~1j\U'E.S, 

Proof. (j) ~ (ij): Assume that a ~ (s), f3 ~ (t). We have 

L, Hi - L, Cj ;;, L, Ak - L, Ak 
iE" jEf3 kEU,e.S, kEUje~Tj 

kEU,e.S,\Uje~1j kEUje~1j\U,e.S, 

Since A is in the inteIVal P, we have 1 k .;; Ak .;; tl k ancl the first inequality of 
(2.8) follows. Similarly. we prove the second inequality of (2.8) . . 

(ij) ~ (j): By a technique similar to that used in [lJ. we associate a 
digraph D with the inteIVal vector P which has the vertices 

{ X I' ... , x." !I I' ... , !I" ~, I/I} . 

There is an arc (x" !lj) fi-mn x, to !lj if ancl only if 5 j n ~ "* 0. There are 
also arcs (g, x,) from ~ (the source) to each x, anu arcs (!lj' 1/1) from Yj to 1/1 
(the sink) for each YJ" Finally, there is an arc (1/1,0 from 1/1 to g. These are 
the only arcs in D. We assign an upper bound c(v, w) anu a lower bound 
I(v, w) for the weigbts of the arcs (v, w) of D as follows: 

c(Xj.!lj) = "k, l(xj, !I) =Ik' where 5, n ~ = {k}, 

c(~, x,) = Hi' I( C Xi) = r i , i E (,v). 
(2.9) 

c( !J.;, 1/1) = c:,' 1 ( !I). 1/1) = c). jE(t), 

c(I/I.O=oo, 1(1/1,0= -00 
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III order to use [loffman's circulation theorem (e.g. [3, p. 51]), the condition 

(2.10) E c(v,w) ~ 
(".W)E£(O) 
"~.wE.IY 

E l(v,w) 
(".W)E£(D) 
IIE.IY.W~ 

should be satisfied for every set A'" of vertices of D. Let a = (i E (s): Xi E 

A') and f3 = (j E (t) : Yj EA'). Distinguish four cases: 

(1) ~ Ef, .p rt../Y. Here the left hand side of (2.10) contains the tenn 
c(.p, 0, and so it is equal to 00 and (2.10) holds. 

(2) ~ rt.f, t/I E.#'. ll(~w the right hand side of (2.10) contains the term 
[(.p, 0 , and so it is equal to -00 and (2.10) holds. 

(3) ~,.p E./Y. Here we have 

( v, w) E E( D) : v rt.A"', w E.#} 

= {( Xi' !Jj) E E( D) : i E aC, j E f3} u {( YJ' .p): j E f3C}, 

(v,w) E E(D) : V EA"', W rt..#} 

and so 

= {(~, xi) : i E a C) U {(Xi' Yj) E E(D):i E a,j E f3C}, 

E C(v,w) - E l(v,w) 
(". w)E £(0) 
II~.WE.IY 

(".W)E £(0) 
IIE.IY.W~ 

E Uk + E Cj 
kEUJ.~7j\U, •• s, jEfJ' 

E lk - E r i · 

kEU, •• S'\UJ.~7j iEa' 

By (2.8), the right hand side of our equation is nonnegative, and (2.10) 
follows. 

(4) ~,.p rt../Y. lIere we have 

(v,w) E E(D) : v rt.A"', WE.#} 

= {( ~ , Xi) : i E a} U {( Xi' Yj) E E( D) : i E a C , j E f3}, 

(v,w) E E(D): V EA"', W rt..#} 

= {(Xi' Yj) E E(D) :i E a,j E f3C} U {(Yj, .p) :j E f3}, 



EXISTENCE OF SEQUENCES AND MATRICES 

and hence 

(u , W)E E(D) 
u'lA'.wE.IY 

c(v,w) -
(u . w)E E(D) 

. uE.IY. w'lA' 

l(v,w) 

E . Uk + E R, - E lk - E Cr 
kEU'E~T,\ U'E.S, iEa kEUIE.S,\ U'E~1j jE{3 

77 

By (2.8), the right hand side of our equation is nonnegative, and (2.10) 
follows. 

Therefore, (2.10) is satisfied for every set A" of vertices of 0 , ami by 
Hoffman's circulation theorem there exist weights (flows) f(v , w) on the arcs 
(v,w) of D such that 

(2.11) 

l(u,v) ~f(u,v) ~ c(u,v), 

E f(x" Yj) = f( g, Xi)' i E (s), 
jE ( ,) 

( '1 ' Yj)EE(D) 

iE ( s) 
('1. y,)E E(D) 

f(x" Y) = f(Yj, ifJ), j E (t). 

Let k E (p). Since {SI'"'' S,} and (TI , ... , T,) are partitiolls of (11) , it 
follows that k belongs to exactly one intersectioll S, n ~. Theref()re, we can 
define a sequence A by Ak = f(x" Y), whenever k E S, n ~. It now follows 
from (2.9) and (2.11) that (i) holds. • 

The existence of a sequence A in the open intelVai P is covered in the 
following theorem. 

THEOREM 2.12. Let P = ([ I) , u)), ... , [I p ' up)} be an interval p-vector, 
let .9' = {51,''' ' 5.1 and 7= {TI , . .. , T,l be orthogonal partitions of (p), 
and let r, ~ R" i ~ (s) , and cj ~ Cj , j ~ (t). be real numbers (where R, 
and Cj can be 00 and rj and cj can be - 00), The follOWing are equivalent. 

(0 'There exists a sequence A in the open interval P and such that 

rj ~ E Ak ~ R" 
kES, 

Cj ~ E Ak ~ Cj , 
kET, 

i E (s), 

j E (t). 
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(ii) For any two subsets a of (s) and f3 of (t) we have 

(2.13) 

~ E Ik - E Uk, 

keU,e.S,\UjepTj keUjepTj\U,e.S, 

where strict inequality holds whenever 

Proof. The proof is very similar to the proof of Theorem 2.7, with (2.9) 
replaced by 

c(t,X i ) =R;, 

c( Yj' 1/1) = Cj , 

c(I/I, 0 = 00, 

I( t, x;) = r i , 

I ( Yj' 1/1) = Cj , 

1(1/1,0 = -00, 

where S, n 1j = {k}. Uk = Ik' 

i E (s), 

j E (t), 

where E is an unspecified positive number. Later on E is chosen sufficiently 
small so that (2.13) is satisfied. • 

We now apply our results to sign patterns. 

DEfiNITION 2.14. 

(j) An interval vector P is said to be a sign pattern vector if every entry 
of P is an element of the set {[O, 00), (-00,0], [0, 0], (- 00, oo)}. We say that an 
element Pk of P satisfies Pk ~ 0 if Pk = [0,00) or Pk = [0,0]. We say that 
Pk .;;; 0 if Pk = (-00,0] or Pk = [0,0]. We say that Pk > 0 if Pk = [0,00). We 
say that Pk < 0 if Pk = (-00,0]. 

(ii) A sequence in the interval P is said to he of weak sign pattern P. A 
sequence in the open interval P is said to be of strong sign pattern P. 

(jij) An interval vector P is said to be a zero pattern vector if every entry 
of P is either [0,0] or ( - 00,00). 
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THEOREM 2.15. Let P be a sign pattern p-vector, let .Y = {51,··.' 5sl 
and 9"= (TI , ... , Ttl be orthogonal partitions of (p), and let r, ~ R" 
i ~ (s), and c

J 
~ CJ, j ~ (t), be real numbers (where R, and C

J 
can be 00 

and r, and c
J 

can be - 00). The foUowing are equivalent. 

(j) There exists a sequence A with weak sign pattern P alld such that 

r; ~ E Ak ~ R;, 
kES, 

Cj ~ E A" ~ CJ , 
kET; 

i E (s), 

j E (t). 

(ij) For every subsets a of (s) and f3 of (t) such that 

(2.16) P" ~ 0 whenever k E U 5, \ U 1j and 
tEa JE{3 

P" ~ 0 whenever k E U 1j \ U 5, 
jE{3 lEa 

we have 

E R, ~ E Cj , 

lEa jE{3 

(2.17) 
L r, ~ E C)" 

iEaC jEfJl· 

Proof. Note that if (2.16) does not hold, then the right hand side of (2.8) 
is equal to -00 and hence (2.8) trivially holds. If (2.16) holds, then the right 
hand side of (2.8) is equal to 0 and thus our theorem follows from Theorem 
U • 

REMARK 2.18. A similar application of Theorem 2.12 yields a new result 
asserting the equivalence of two statements similar to those in Theorem 2.15, 
where in statement (i) "weak sign pattern" is replaced by "strong sign 
pattern" and in statement (ij) the follOwing condition is added: 5trict inequal
ities hold in (2.17) whenever P" > 0 for some k E U, E a 5; \ U j E fj 1j or 
P" < 0 for some k E U jEfj1j \ U;Ea5,. 
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By considering the case where R, = r j, i E (s), and Cj = cj , j E (t), 
one can obtain a corollary of Theorem 2.15 in which one prescribes all the 
element sums corresponding to the sets SI and all the element sums 
corresponding to the sets ~. In those corollaries, there is another equivalent 
condition, in which the equality 

P 'I 

E r i = ECi 
j~ I j-I 

replaces either inequality of (2.17). 

HEMARK 2.19. Note that the proof in [3] for the Hoffman circulation 
theorem holds for flows with values in ordered abelian groups. Therefore, 
one can apply a generalized version of the circulation theorem to prove 
Theorems 2.7 and 2.15, as well as some results of the following section for 
matrices over ordered abelian groups; see a similar remark in Gale [4]. In 
particular, when the r,'s and the c/s are integers, then the matrices whose 
existence is asserted in our results can be chosen to have integer elements. 

3. APPLICATIONS TO MATRICES WITH PRESCRIBED ROW 
AND COLUMN SUMS 

In this section we discllss sign pattern m X n matrices and matrices of 
given sign patterns, where the definitions of these correspond to Definitions 
2.4 and 2.5 with vectors and sequences replaced by matrices. 

NOTATION 3.1. Let A be an m X n matrix, and let a ~ (m) and 
f3 ~ (n). We denote by A( a, {3) the submatrix of A whose rows are indexed 
by a and whose columns are indexed by f3. By convention we say that 
A(a, f3) = () whellever a = 0 or f3 = 0. 

Application of Theorem 2.15 to a sequence of mn numbers, arranged in 
an m X n matrix, with SI' ... ' Sm being the rows of the matrix and T1,.··, Tn 
being the columns of the matrix, yields the following new theorem. Here we 
prescribe some of the row sums and some of the column sums of the matrix. 
Obviously, if the ith row sum is prescribed, then we have r l = R i • Otherwise, 
we have rj = -00 and Ri-= 00. A similar comment holds for columns. 
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THEOREM 3.2. Let P be a sign pattern m X n matrix and let r i , 

i E R !:; (m), and cj , j E C !:; (n), be real numbers. The following are 
equivalent. 

(j) There exists an m X n matrix A with weak sign pattern P and such 
that 

i E R, 

j EC. 

(ii) For any two subsets a of (m) and (J of (n) such that P(a, (JC) ~ 0 
and P(a C

, (J) ~ 0 we have 

whenever a!:; R, (J!:; C, 

(3.3) 
E r, ~ E cj 

.eo c jEfJC 

It is easy to verify that in the special case that R = (m) and C = (n), 
that is, when all row and column sums are prescribed, either of the conditions 
in (3.3) may be replaced by 

(3.4) 
m ,. 

E r, = E c)" 
i=1 j-I 

REMARK 3.5. In view of Remark 2.18, we also have a new result 
asserting the equivalence of two statements similar to those in Theorem 3.2, 
where in statement (0 "weak sign pattern" is replaced by "strong sign 
pattern" and in statement OJ) the follOwing condition is added: Strict inequal
ities hold In (3.3) whenever P(a, (JC) "* 0 or P(a C

, (J) * o. 

The special cases of Theorem 3.2 and Remark 3.5 where P is a nonnega
tive sign pattern and all row ·and column sums are prescribed are known. In 
the case of Theorem 3.2 it is a part of Theorem 3 in [10] and of Theorem 3 in 
[11], where, however, the condition (3.4) should be added. In the case of 
Remark 3.5 the result is Theorem 2.1 in [1] under the hypothesis that the sign 
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pattern matrix is chainable; see also Corollary 4.2 in [91. The result can be 
found in the current form as a part of Theorem 2 in [101 and of Theorem 2 in 
[Il]. 

4. APPLICATIONS TO REAL SUM DECOMPOSITIONS OF 
SYMMETRIC MATRICES 

Let A be a symmetric n X n matrix, and let r l , •• • , rn be real numbers. 
In [2] we prove necessary and sufficient conditions for the existence of a real 
matrix B with row sums r l , • .• , r. and such that A = B + BT. In this 
section we apply the results of Section 2 to generalize the results of [2] to the 
case where only some of the row sums r f are given, and where B has a 
partially prescribed sign pattern. The follOwing new result is obtained by 
applying Theorem 2.15 to a sequence of n2 numbers, arranged in an n X n 
matrix, with 51" '" 5m being the rows of the matrix and {lif.}}: i,j E (n)} 
being the partition of (n) X (n) defined by 

To = {{(i,j) , (j,i)}' 
II.}I {(i, i)}, 

i =P j, 

i =}, 
i,} E (n). 

The numbers rl , i E R !;;; (n), are given real numbers, and the numbers 
cII.}}' i,} E (n), are given by 

{ 

al}' i =P j, 
C{I . }} = a

ll
/2, i = j , 

where A = (al})~ is a given symmetric n X n matrix. 

THEOREM 4.1. Let A be a symmetric n X n matrix, let P be a sign 
pattern n X n matrix, and let rj> i E R !;;; (n), be real numbers. The follow
ing are equivalent. 

(0 There exists an n X n matrix B with weak sign pattern P, satisfying 

i E R, 

and such that A = B + BT. 
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(ij) For any two subsets a of(n) and 13 of{{i,j}:i,j E (n)} for which 

i E a C
, {i,j} E 13, 

i E a, {i,j} E fJ c , 

we have 

1 
E rj ~ - E ajj 
jEa 2 (j,j)E{3 

whenever a ~ R, 

(4.2) 

whenever a C ~ R. 

REMARK 4.3. In view of Remark 2.18, we also have a new result 
asserting the equivalence of two statements similar to those in Theorem 4.1, 
where in statement (i) "weak sign pattern" is replaced by "strong sign 
pattern" and in statement (ii) the follOwing condition is added: Strict inequal
ities hold in (4.2) whenever pjj < 0 for some i E a C

, {i,j} E 13, or pjj > 0 
for some i E a, {i,j} E fJG. 

In order to state our next results we define 

DEFINITION 4.4. Let P be a sign pattern n X n matrix, and let a ~ (n). 
The set a is said to be a P-loose subset of (n) if for every i E a and 
j E a C we have Plj = 0 or Pjj = O. By convention, 0 and (n) are P-Ioose 
sets. 

We remark that P-loose sets, associated with a pattern matrix P, are 
originally defined in [2] as D-loose sets, associated with the digraph of the 
matrix P. 

An application of Theorem 4.1 to the case where R = (n) and P is a 
zero pattern yields the following new theorem. The equivalence of statements 
(j) and (iii) of this theorem is the assertion of Theorem 2.5 in [2]. 

THEOREM 4.5. Let A be a symmetric n X n matrix, let P be a zero 
pattern n X n matrix, and let r j , i E (n), be real numbers. The following are 
equivalent. 
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(j) There exists (111 n X n /fUltriX 8 with weak pattem 1', with row SUI/IS 

r l , ..• , r", milL such that A = 8 + 8 1
'. 

(ii) For even) subsets a of (n) and 13 of Hi,j} : i , j E (n)} for which 

(4.6) 

Pi] = 0 whenever i E a C
, {i,j} E 13. or i E a, {i,j} E f3c. 

we have 

( 4.7) 

(iii) We have 

(4.8) whenever Pi] = P]I = 0 , i,j E (n), 

lImL 

(4 .9) 

for every P -loose subset a of ( n) . 

Proof. (j) = OJ): Since all the nonzero entries of Pare (-00,00). it 
follows by Theorem 4.1 that (j) implies that for any subsets a of (n) and f3 
of Hi,j}: i,j E (n)} for which (4.&) holds we have 

(4 .10) 
1 

E rj ~ - E af] 

iEa 2 (i .J)EP 

and 
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Since (4.6) is invariant under replacement of a by a C and of 13 by 13 c , the 
latter inequality would tum, under such a replacement, into 

( 4.11) 
1 

. E r, ~ - E a'l' 
• iEa 2 (i.)}E/3 

The equality (4.7) follows from (4.10) and (4.11). 
(ij) ~ (0: Since (4.6) is invariant under replacement of a by a C and of 13 

by 13 c, it follows from (jj) that for any subsets a of (n) and 13 of 
{{i,j}: i,j E (n)} for which (4.6) holds we have both (4.7) and 

Our claim now follows by Theorem 4.1. 
(jj) ~ (iii): Let t, j E (n) be such that Pi} = P}i = O. The sets a = 0 

and 13 = {{i,j}} satis/)' (4.6), and it follows from (4.7) that a i} = 0, proving 
(4.8). Now, let a be a P-Ioose set, let 

13 = {{i,j} :i,j E a} U ({i,j) :(i,j) E a X a C and Pu *- OJ, 

and let i,j E (n). If i E a and {i,j} E 13 c then, by the definition of 13, we 
have Pi) = O. If i E a C and {i, j} E 13 then, by the definition of 13, we have 
j E a and P}i *- 0, and sim:e a is a P-loose set, it follows that Pi} = O. 
Therefore, we have Pi) = 0 whenever i E a C

, {i,j} E 13, or i E a, {i,j} E 

pC. By Gj) we now have (4.7), which, in our case, is exactly (4.9). 
(iii) ~ (ij): Let a be a subset of (n), and let 13 be a subset of 

Hi, j} : i, j E (n)} for which (4.6) holds, and assume that Pi} *- 0 for some 
(i,j) E a X a C

• Since i E a and Pi) *- 0, it follows by (4.6) that {i, j} E 13. 
Since {i,j} E 13 and j E a C

, it follows by (4.6) that P}i = O. Therefore, a is 
a P-loose subset of (n), and so (4.9) holds. Let 

y= {{i,j} :i,j E a} U ({i,j) :(i,j) E a X a C and Pi} *- oJ. 
By (4.9) we have 

( 4.12) 
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Let i,j E <n) be stich that a,) *" O. Distinguish three cases: 

(1) (i,j) E a X a. By definition of 'Y we have (i,jl E y. Also, since 
i,j E a, and since by (4.8) we have Pi) *" 0 or P)I *" 0, it follows by (4.6) that 
{i,jl E {3. 

(2) (i,j) E a X a". By (4.8) we have P,) *" 0 or JI)I *" O. If P,) *" 0 
then, by definition of 'Y, we have {i,jl E y. Also, by (4.6) we have {i,jl E {3. 
If Pi) = 0 then {i,jl ~ 'Y, and also, since j E a C and PjI *" 0, by (4.6) we 
have {i,jl ~ {3. 

(3) (i,j) E a C X a C
• By the definition of 'Y, we have (i,jl ~ 'Y. Also, 

since by (4.8) we have P,) *" 0 or P)I *" 0, it follows from (4.6) that {i,jl ~ {3. 

It follows that whenever a,) *" 0 we have {i,jl E {3 - (i,jl E 'Y. Hence 

and, in view of(4.l2), (ij) follows. • 
An application of Theorem 4.1 to the case where R = < n) and the matrix 

A and the sign pattern matrix P are nonnegative yields the following new 
theorem. The equivalence of statements (0 and (iii) of this theorem is 
asserted in Theorem 3.3 in [2]. 

THEOREM 4.13. Let A be a nonnegative symmetric n X n matrix, let P 
be a nonnegative sign pattern n X n matrix, and let T

" 

i E < n), be nonnega
tive numbers. The following aTe equivalent. 

(j) TheTe exists an n X n matrix B with weak sign pattern P, with TOW 

sums T[, ... , Tn' and such that A = B + BT. 
(ii) FOT any two subsets a of < n) and {3 of {(j, jl : i, j E < n» JOT which 

P') = 0, {i,j} E {3, 

we have 

( 4.14) 
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(iii) We have (4.8), (4.9) and 

( 4.15) for all as;; (n) . 

Proof. (i) - (ij) by Theorem 4.1. 
(ii) - (iii): In view of Theorem 4.5, all we have to prove is that (ii) 

implies (4.15). Let as;; (n) and let 

/3 = ({I,j) : i,j E a) U ({i,j) : (i,j) E a C X a and P,} = OJ. 

By (ii) we have 

which. in our case. is exactly (4.15). 
(iii) - (ii): Let a be a subset of (n), and let /3 be a subset of 

{{i, j} : i, j E (n)} for which P,} = 0 whenever i E a C , {i, j} E /3. Let 

'Y= ({t,)) :t.j E a) U ({t.j) :(i.j) E a C X a and P,} = OJ. 

Let {',j} E /3\ 'Y. Then i,j E a C and PI} = P}I = O. By (4.8) we have 
af} = 0, and thus 

af}",O, (i,j) E /3 - (i,j) E 'Y. 

Therefore, since A is nonnegative we have 
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alld it now follows from (iii) that 

( 4.16) 

Since < n) is clearly a P-Ioose set, it follows by (4.9) that 

( 4.17) 

By subtracting (4.16) from (4.17) we obtain 

and (ij) follows. • 
REMARK 4.18. In view of Remark 4.3, we have another new result 

asserting the equivalence of two statements similar to those in Theorem 4.13, 
where in statement (j) "weak sign pattern" is replaced by "strong sign 
pattern"; in statement (ii) the following condition is added: Strict inequalities 
hold in (4.14) whenever P Ij > 0 for some i E a, {i, j} E /3 G; and ill state
ment (iii) the following condition is added: Strict inequality holds in (4 .15) 
whenever P'j' Pjl > 0 for some i E a , j E a G

• 

5. HADAMARD ADJUSTMENTS 

The discussion in this section is independent of the previous section, and 
is motivated by the fact that the results oHIO] and [11] that are generalized in 
Section 3 also contain a statement on the existence of row and column 
seatings that scale a nonnegative matrix A to have the same row and column 
slims as a matrix B having the same pattern as A. We introduce Hadamard 
adjustments, by means of which we generalize that scaling result to apply to 
our main results. In contrast to the previous sections, where known results on 
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nonnegative sign patterns are derived as corollaries of our independently 
proven theorems, in this section we derive the generalization using known 
scaling results on nonnegative sign patterns. 

DEFINITION 5.1. Let P be a sign pattern p-vector, and let lV = 

{Ul' ... , Ur } be a partition of ( p). A p-vector X is said to be a (P, lV)-adjust
TTUmt vector if: 

(i) Xi = 0 whenever Pi = 0, and Xj > 0 whenever Pj *' 0, i E (p). 
(jO For ever i E (r) all the entries {Xl: j E 0., lj > o} are the same 

and all the entries {Xj:j E 0., lj < o} are the same. 

DEFINITION 5.2. Let A and B be p-vectors. The Hadamard product 
A 0 B is defined to be the p-vector C satisfying C j = Ai Bj , i E (p). 

THEOREM 5.3. Let A and B be p-sequences with the same strong sign 
pattern P and let .9' = {Sl' ... , S,} and ~ = {Tl , ••• , Tt } be orthogonal parti
tions of ( P ). Then there exist a (P , .9')-adjustment vector Y and a (P, !l')-ad
justTTUmt vector X such that the Hadamard product C = A 0 X 0 Y satisfies 

E Cu = E Bu, i E (s), 
uES, ues. 

E Cu = E Bu , j E (n). 
uElj uElj 

Proof. We define two nonnegative p X q matrices B+ _and _B- as 
follows: for every i E (s) and j E (t), if Sj n 1j = 0 then bjj= b;'j= O. 
Otherwise, we have Sj n 1j = {u} and we define 

- {Bu, b+-
jj- 0, bj'j= {~B 

u' 

Similarly, we define the nonnegative matrices A + and A -. Observe that the 
row sums rt, ... , r; and ri, ... , r;, and the column sums ct, ... , c; and 
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ci . . .. . c,- . of Jj+ and Jj- respectively are given by 

r.+= E Bu. r
i
- = - E Bu. i E ($) . , 

uES. uES. 
8.>0 8.<0 

and 

c+= E Bu. c;= - E Bu. j E (t). 
) 

Iter) IlET) 

8,,>0 8,,<0 

Since_the nonnegative matrices A' + and A' - have the same pattern as Jj + 

and B- respectively. it follows by Theorem 2 in [8] (see also Corollary 4.3 in 
[9]) that there exist diagonal m~trices Xl, Y I. X 2. and Y 2. with positive 
diagonal elements. such that Y IA + X 1 has row sums r t ..... r,+ and column 
sums ct .... . c; . and such that y 2A'-X 2 has row sums ri . .. .. r,- and 
column sums ci .. ... c,-. We define a (p • .9"}-adjustment vector Y as follows: 
For every U E (p) let i E ($) be such that u E SI' Then let 

y={!h~' 
u 2 

YII' 

Pu > 0, 

Pu < O. 

Similarly. we define a (p • .9)-adjustment vector X as follows: For every 
u E (p) let j E (t) be such that u E 1j. Then let 

Pu > O. 

Pu < O. 

Let C be the Hadamard product Ao xoy and let i E ($). j E (t). 
Observe that the sum Lu e s.cu is _equal to the ith row sum of Y IA' + X I 
minus the ith row sum of y 2A-X 2

• that is, to rt- r l-= Lues Bu' 
Similarly, the sum LueTCu is equal to the jth column sum of ylA'~Xl 

J -minus the jth column sum of y2A - X2. that is, to c/ - cJ- = Lu ETJBu. • 

It is natural to ask whether the adjustment vectors X and Y in Theorem 
5.3 can be chosen such that for every i E ($) all the entries (Yu : U E SI) are 
the same and for every j E (t) all the entries (Xu: U E 1j) are the same, 
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without the distinction between the cases of Po > 0 and Po < O. The answer 
to this question is negative, as is demonstrated by the following example. 

EXAMPLE 5.4. The vectors A = 0, - 2, -1, 1) and B = 0, -I, -1,1) 
have the same strong sigri pattern P. Let Sl = {l,2} and S2 = {3,4}, and let 
T, = {l,3} and T2 = {2,4}. Let Y be a (P, Y)-adjustment vector of the type 
Y = (Yl' YI' Y2' Y2)' and let X be a (P,n-adjustment vector of the type 
X = (Xl' X2, XI' x 2)· Note that Yl' Y2' Xl' X2 are all positive numbers. Now, 
observe that if 

UES, UES, 

then Xl = 2X2' But then 

We remark that the technique used in the proof of Theorem 5.3, that is, 
translating the problem into the problem of existence of a matrix with 
preassigned row sums and column sums, does not seem to be applicable in 
the previous sections, mainly because there we prescribe the element sums 
corresponding only to some of the sets of the partitions, while in the result we 
use here all row sums and column sums are prescribed. 

Finally, it is easy to check that the application of Theorem 5.3 to the 
setting under discussion in Theorem 4.13 yields 

THEOREM 5.5. Let A and B be nonnegative n X n matrices of the same 
strong sign pattern. Then there exists a diagonal matrix Y with positive 
diagonal elements and a positive symmetric matrix X StIch that the matrix 
C = A o(YX) has the same row Stlrns as B and also C + Cl" = B + Bl". 
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