
Numer. Math. (1998) 80: 109-130 Numerische 
Mathematik 
© Springer-Verlag 1998 

Block LU factorizations of M-matrices 

J.J. McDona:ld1,*, H. Schneider2,** 

1 Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, 
Canada, S4S OA2 

2 Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA 

Received November 21,19941 Revised version received August 4, 1997 

Summary. It is well known that any nonsingular M-matrix admits an LU 
factorization into M-matrices (with Land U lower and upper triangular re­
spectively) and any singular M-matrix is permutation similar to an M-matrix 
which admits an LU factorization into M-matrices. Varga and Cai establish 
necessary and sufficient conditions for a singular M-matrix (without per­
mutation) to allow an LU factorization with L nonsingular. We generalize 
these results in two directions. First, we find necessary and sufficient condi­
tions for the existence of an LU factorization of a singular M-matrix where 
Land U are both permitted to be singular. Second, we establish the minimal 
block structure that a block LU factorization of a singular M-matrix can 
have when L and U are M-matrices. 

Mathematics Subject Classification (1991): 65F05 

1~ Introduction 

It was shown by Fiedler-Ptak, [3J, that any nonsingular M-matrix A admits 
an LU factorization, A = LU, where L is a nonsingular lower triangular M­
matrix, and U is a nonsingular upper triangular M-matrix. Kuo, [8J, proved 
that any (singular) irreducible M-matrix A admits an LU factorization, A = 
LU, where L is a nonsingular lower triangular M-matrix, and U is a upper 
triangular M-matrix, and she gave an example to show that not every singular 
M-matrix admits an LU factorization of this type. In [13J, Varga and Cai 
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establish necessary and sufficient conditions in terms of the directed graph 
Q(A) of A for a singular M-matrix to allow a LU factorization into M­
matrices with £ nonsingular. 

In this paper we consider the 'case where the conditions outlined in [13] 
may not be satisfied. We generalize these results in two directions. First, 
we find necessary and sufficient conditions for the existence of an LU fac­
torization of a singular M-matrix where both £ and U are permitted to be 
singular. Second, we wish to factor an M-matrix A into A = £U, where £ 
and U are M-matrices which are as close to lower and upper triangular as 
possible. Our goal is to minimize the number of nonzeros above the diag­
onal of £ and below the diagonal of U in a factorization A = £U and/or 
to optimize on their placement. Our approach to this problem is to mini­
mize the appropriate access relationships in the digraphs Q(£) and Q(U) 
of £ and U respectively. In order to establish the minimal block structure 
that a block LU factorization of a singular M-matrix can have we needto 
give careful definitions of what is meant by the block lower (upper) trian­
gular self-partition of a matrix. These partitions are minimal in the set of 
partitions that lead to a block lower (upper) triangular matrix and they are 
solely determined by the zero/non-zero pattern of the matrix and thus do not 
depend on some assumed prior partitioning of the matrix. We use the term 
block factorization to indicate that we are interested in the block structure 
(without permutation) of the factors involved. 

We now describe our paper in more detail. Our definitions are contained 
in Sect. 2. 

In Sect. 3 we examine both LU and block LU factorizations of M­
matrices where £ and U are permitted to be singular. Thus, in Example 
3.1 we provide an M-matrix A which has an LU factorization into M­
matrices only when £ and U are both singular. In Theorem 3.5 we identify 
the minimum access relationships which must be present in Q(£) and Q(U) 
and thus also identify the minimum sizes of the diagonal blocks of £ and U in 
a block LU factorization. In Theorem 3.7 we show that these minimum block 
structures can be achieved. Returning to (elementwise) LU factorizations in 
Theorem 3.9, we there characterize the M-matrices A which admit an LU 
factorization into (possibly singular) M-matrices. We give two strategies, 
one for finding a desirable block LU factorization, and the other for choosing 
a permutation matrix P so that P ApT has an LU factorization. 

In Sect. 4 we consider the case where £ is a nonsingular M-matrix and 
U is an M-matrix. Using definitions and a result from McDonald [9], we 
actually examine a slightly larger class - factorizations of an M-matrix A for 
which £ is nonsingular and inverse nonnegative, £-1 is class nonsingular 
for A, and U is an M-matrix. In Theorem 4.1 we show that for such a 
factorization, certain access relationships must be present in Q (U) and thus 
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put a lower limit on the number of nonzeros below the diagonal of U. In 
Theorem 4.2 we show that we can attain these minimum access relationships 
using a factorization for which L is a lower triangular nonsingular M-matrix. 

In Sect. 5 we examine factorizations of A into LBU where L is a non­
singular lower triangular M-matrix, U is a nonsingular upper triangular 
M-matrix, and B is a block diagonal M-matrix. Since L and U are non­
singular lower and upper triangular M-matrices, standard methods could be 
used to solve the parts of the system in which they are involved. Since B is 
generally a sparse matrix, it may be possible to use specialized techniques 
in this area to"solve the part of the system involving B. 

We remark that analogous results hold for UL-factorizations and that 
the techniques used in this paper can also be used to identify the minimum 
structures of U and L in this instance. 

Our results are of a graph theoretical nature, but we express the hope 
that our identification of possible block LU and LBU factoriz'!tions of sin­
gular M-matrices will extend applications and numerical implementations 
of block LU and LBU factorizations such as those discussed in [6, Chap. 12]. 

2. Definitions 

We begin with some standard definitions. Let n be a fixed positive integer. 
We write (n) = {I, ... ,n}. 

Throughout Sect. 2, X=;: [Xij] will denote a matrix in IRnn. 
We say X is: 

positive (X » 0) if Xij > 0, for all i,j E (n); 
semipositive (X > 0) if Xij 2: 0, for all i, j E (n) and X =1= 0; and 
nonnegative (X 2: 0) if Xij 2: 0, for all i, j E (n). 

We say X is a Z-matrix if X = oI - P for some 0 E IR with P 
nonnegative. If in addition, 0 is greater than or equal to the spectral radius 
of P, then we say X is anM-matrix. We denote the class of n x n M-matrices 
byM. 

For any J ~ (n), we let 

max(J) = max{j E J}, 

min(J) = min{j E J}, 

J+ = {l E (n) Il > max(J)}, 

J- = {l E (n) Il"< min(J)}, 

J' = {l E (n) Il (j. J}. 

I JI = number of elements in J. 
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For any J, K ~ (n) , we write X JK to represent the submatrix of 
X whose rows are indexed by the elements of J and whose columns are 
indexed by the elements of K, where the elements of J and K are arranged 
in ascending order. 

We call the pair r = (V, E) a directed graph, where V is a finite set, 
and E ~ V x V. A path from j to k in r is a sequence of vertices j = 
rI, r2, ... , rt = k, with (ri' ri+1) E E, for i = 1, ... , t - 1. A path for which 
the vertices are pairwise distinct is called a simple path. The empty path is 
considered to be a simple path linking every vertex to itself. If there is a 
path from j to k, we say that j has access to k. If j has access to k and k 
has access to j, we say j and k communicate. The communication relation 
is an equivalence relation, and hence we may partition V into equivalence 
classes, which we will refer to as the classes of r. We define the closure r 
by r = (V, F), where V = (n) and F = {(i,j) I i has access to j in r}. 

We define the (directed) graph of X by Q(X) = (V, E), where V = (n) 
and E = {(i,j) I Xij =1= O}. It is well known that the classes of Q(X) 
correspond to the irreducible components of X. For any class J of G(X) 
we say that J is a singular class of X if X J J is singular, and we say that J 
is a nonsingular class of X if XJJ is nonsingular. 

We commonly view a matrix X as a block matrix 

_ [x:n .... X:1P
] 

X- : '. : , 
X q1 ... Xqp 

whereXij is mi x nj with ml +m2 + .. . +mq = n = nl +n2+ ... +np. 
In this paper we will require that the diagonal blocks be square, viz. p = q 
and ml = nl, m2 = n2, ... ,mq = n q. Rather than using ml, m2, ... , mq 
to describe our block structure, we will look at the sets Vi = {mi-l + 
1, ... mi}. More formally, we will say the sequence Y = (VI, V2, ... , v r ) 

is an (ordered) partition of (n), if Ui=lvi = (n), and Vi n Vj = 0, for all 
i =1= j. We say Y is an order preserving partition of (n) if Y is a partition 
such that if i < j, then i E Vki and j E Vkj with k i :::; kj. We will say 
X is bl()ck lower triangular with respect to the order preserving partition 
Y = (VI, ... ,Vr ) if X . + = O,foreveryi E (r).ClearlyXmaybe 

v~ Vi 

block lower triangular with respect to several different partitions. We call 
IJi = ('l/Jl, 'l/J2, ... , 'l/Jp ) a refinement of an order preserving partition Y, if IJi 
is also an order preserving partition of (n) and if for every i E (p) there 
exists j E (r) such that 'l/Ji ~ Yj. A refinement is said to be proper if 
IJi =1= Y. The refinement relation on the set of order preserving partitions of 
(n) defines a lattice such that greatest lower bound of two partitions has as 
its elements intersections of the elements of the two partitions. The maximal 
element is ({I, 2, ... ,n}) ,and the minimal element is ({I}, {2}, ... , {n}). 
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(For the corresponding result for unordered partitions see [5, Lemma 1, 
p.192] and [2, Theorem 6, p.7]). It is easy to see that the greatest lower 
bound, e = (ih, ... , ()q), of the set of partitions for which X is block 
lower triangular is also a partition for which X is block lower triangular, 
and we will refer to e as the block lower triangular self-partition of X. 
Similarly, the greatest lower bound, cP = (CPl, ... , cpp), of the partitions 
y = (VI, V2, ... , vr), for which Xvi Vi = 0 is referred to as the block upper 
triangular self-partition of X. Thus we say X is lower triangular if the block 
lower triangular self-partition of X is ({l}, {2} ... {n}). Similarly, we say 
X is upper triangular if the block upper triangular self-partition of X is 
({1},{2} ... {n}). 

To illustrate the definitions above, let 

X= 

***00000 
0*000000 
00*00000 
000*00*0 
00000*00 ' 
00000000 
0000*0*0 
0000000* 

where * denotes a nonzero entry. Then viewed as a block lower triangular 
matrix 

X= 

***00000 
0*000000 
00*00000 
000*00*0 
00000*00 ' 
00000000 
0000*0*0 
00000000 

and has block lower triangular self-partition ({l, 2, 3}, {4, 5, 6, 7}, {8}). 
However, viewed as a block upper triangular matrix 

000*00*0 
X= 00000*00 ' 

00000000 
0000*0*0 
00000000 

. I 
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and has block upper triangular self-partition 

({I}, {2}, {3}, {4}, {5,6, 7}, {8}). 

Let J1, . . . , Jr be subsets of (n). We say that an order preserving partition 
!fr = ('!f;1, . .. , '!f;t), encompasses J 1, ... , Jr , if for each i E (r), there exists 
k E (t) such that Ji ~ '!f;k. It is easy to see that the greatest lower bound of the 
order preserving partitions which encompass J1 , . .. , Jr , also encompasses 
J1 , .•. , Jr and we will refer to this as the finest order preserving partition 
encompassing J1 , ••. ,Jr' 

Next we define subsets Ti and Pi associated with the matrix A. These 
subsets are defined in terms ofthe access relationships in 9(A) to and from 
the singular classes of A, and are convex in the sense that if j, k E Ti (or 
Pi), then l E 7i (Pi) for every j ::; l :S k. 

Definition 2.1 Let A E ]Rnn. Let 81,82 , .. . 8m be the singular classes of 
A ordered so that max(8d < max(8H d. For each i E (m), let J.Li 
max(8i ), and 

Pi = {l ~ J.Li I there exists j ~ l such that j is accessed FROM 8 i 

in 9(A)}. 

7i = {l ~ J.Li I there exists j ~ l such that j has access TO 8 i in 9 (A) }, 

These subsets tum out to be the key to understanding the block structure 
of a block LV factorization of A. 

Notice that the Pi for A correspond to the 7i for AT and vice versa. 

Remark 2.2 In [13], Varga and Cai show that an M-matrix admits an LV 
factorization into M-matrices with L nonsingular if and only if Ti = {J.Li} 
for every i E (m). 

Notice that if j > i and vertices in 8 j are accessed from vertices in 8 i , 

then Pj C Pi, so if i is placed in J, then j should be also. Similarly if 
vertices in 8 j have access to vertices in 8 i , then Tj C Ti and hence if i is 
placed in K, then j should be also. 

In Theorem 3.5 we show that for each i E (m), either Pi is encompassed 
in the block lower triangular self-partition of Lor 7i is encompassed in the 
block upper triangular self-partition of U. This suggests that when factoring 
an M-matrix A, these Ti and Pi should be examined in order to determine 
an optimal factorization of a given type. There are several possibilities for 
the types of factorizations one might want. In this paper we highlight four 
possibilities. In Strategy 3.10 we outline a strategy for choosing a partition 
(J, K) so as to minimize the sizes of the blocks in a block LV factorization 
of A. In Strategy 3.11 we outline a strategy for choosing a permutation 
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matrix P so that P ApT has an LV factorization. In Sect. 4 we look at the 
structure of U if L is required to be nonsingular (or vice versa). In Sect. 5, 
we look at factoring A as LBU where L is a nonsingluar lower triangular 
M-matrix, U is a nonsingular upper trianglular M-matrix, and B is block 
diagonal. 

Example 2.3 Here we provide an example which illustrates the definitions 
introduced above. 

Let 

[

0 -1 0 0 1 o 0 0 -1 . 
A = 0 -10 0 . 

000 1 

Then the block lower triangular self-partition of A is ({I, 2, 3, 4}), and 
the block upper triangular self-partition is ({I}, {2, 3}, {4}). The singular 
classes of A are 

81 = {I}, 82 = {2}, 83 = {3}, 

and 
Tl = {I}, T2 = {2,3}, T3 = {3}, 

Fl = {I, 2, 3, 4}, F2 = {2, 3, 4}, F3 = {3}. 

Notice that T3 ~ T2 and F3 ~ F2 ~ Fl. 

In Sect. 4, we expand the results of [13] to include a larger set of LV 
factorizations, and we examine the block structure when no LV factorization 
exists. The class associated with an M-matrix A defined next includes all 
of the matrices U for which A = LU, with L, U E M and L nonsingular. 
Notice that this is actually a larger class since it allows for some M-matrices 
U E M for which A = LU with L inverse nonnegative but not necessarily 
an M-matrix. 

For any A E Jl~nn, we· say a matrix X is class nonsingular for A if for 
every class K of A, XKK is nonsingular (see [9]). Note that K need not be 
a class of X. We write 

NA = {X I X ~ 0 and X is class nonsingular for A}. 

Definition 2.4 Let A be an M-matrix and define 

U(A) = { BA I B E NA , BA EM}. 

C(A) = {AB I B ENA, AB EM}. 

. I 
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3. Block LU factorizations with (possibly) singular Land U. 

In [13], Varga and Cai consider LV factorizations ofM-matrices where L is 
nonsingular (see Remark 2.2). In Example 3.1, the matrix A does not satisfy 
the conditions stated in [13] and hence does not have a LV factorization into 
M-matrices with L is nonsingular.1t does however, have an LV factorization 
when both L and U are allowed to be singular. 

Example 3.1 Let 

[
0 -1 0] 

A= 0 00 . 
0-10 

By [13, Theorem 1,(see Remark 2.2)], A does not admit a factorization 
A = LU with L a nonsingular lower triangular M-matrix and U an upper 
triangUlar M-matrix. By applying the result to AT we see that A does not 
admit a factorization A = LU with L a lower triangular M-matrix and U a 
nonsingular upper triangular M-matrix. However, consider 

[
1 00] [0-10] L= 0 00 , U= 0 10 . 
0-10 0 00 

Then A = LU, where L is a singular lower triangular M-matrix and U is a 
singular upper triangular M-matrix. 

In this section we establish necessary and sufficient conditions for A 
to have an LV factorization into M-matrices, allowing both L and U to 
be singular. This result is stated as Corollary 3.9. Enroute to establishing 
this result we also characterize the minimum block structure of block LV 
factorizations when no triangular factorization exists. These results appear 
as Theorem 3.5 and Theorem 3.7. 

In Strategy 3.10, we outline a strategy one might take to minimize the 
block sizes in a block LV factorization of A. In Strategy 3.11, we suggest a 
permutation P such that P ApT admits an LV factorization. 

We begin with two lemmas and a corollary which we use to prove the 
main results in this section (Theorem 3.5, Theorem 3.7 and Corollary 3.9). 

First we show that if A = LU is a factorization of an M-matrix A 
into M-matrices and S is a singular class of L, then the vertices which are 
accessed by any vertex of S in Q(A), are also accessed by the vertices of S 
in Q(L). 
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Lemma 3.2 Let A E M withfactorization A = LU where L, U E M. Let 
S be any singular class of L. Then for any pES and any q E (n), ifp has 
access to q in Q (A) then p has access to q in Q (L ). 

Proof. Let q E (n). Suppose some pES has access to q in Q(A) but not 
in Q(L). Then by choosing an appropriate section of a path from p to q in 
Q(A), we can choose a path h -+ h -+ ... -+ 19, in Q(A) so that 

II E S, 

h has access to li in Q (L) and li rt S for all i = 2, ... ,9 - 1 

h does not have access to 19 in 'Q(L), 

li =f: lj, for all i =f: j. 
We will establish a contradiction by proving two claims. The proofs of 

Claim 1 and Claim 2 rely heavily on the sign patterns of A, L, and U. 

Claim 1. Ifr E S, t rt S, are such that LrsUst < 0, then there exists s E S 
such that L st =f: O. 

Proof of Claim 1. Since Lss is an irreducible singular M-matrix and 
LssUst =f: 0, by [1, Theorem 4.16, p. 156] it must be a vector which 
contains both positive and negative elements. Hence there exists s E S such 
that LssUst > O. But then 0 2 Ast = LstUtt + P, where P > O. Hence 
LstUtt < 0, and in particular Lst =f: O. This establishes Claim 1. D 

Claim 2. For each j E (9 - 1), 

(a) There exists rES U {l2, . .. ,lj} 
with Lrlj+l =f: 0, 

(b) 1ft rt S U {h, ... ,lj+1} and Ulj+lt =f: 0, then there exists 
rES U {h, ... , lj} with Lrt =f: 0, 

Proof of Claim 2. We proceed by induction on j. 

Letj=l: 

(a) Since 0> Al112 = Lhl2Ul212 + LhSUSl2 + P, where P 20, either 
Lhl2Ul212 < 0 and thus Lhl2 =f: 0, or LhSUSb < 0 and thus by 
Claim 1 there exists s E S such that Lsb =f: O. 

(b) Suppose Ul2t =f: 0, for some t rt S U {h}. By (a) there exists 
rES with Lrl2 =f: 0, hence Lrl2 Ubt > O. Thus 0 2 Art = 
LrtUtt + LrsUst + P, where P > O. Hence either LrtUtt < 0 and 
thus L rt =f: 0, or LrsUst < 0 and by Claim 1, there exists s E S 
such that Lst =f: O. 
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Let k < g. Assume true for all j with 1 ::; j < k and show true for k . 

(a) Since 0 > A1k1k+l = Llklk+l U1k+11k+l + Llklk Ulk1k+l + P, where 
P ~ 0, either Llklk+l U1k+l1k+l < 0 and thus L1klk+1 =1= 0, or 
Llklk Ulk1k+1 < 0 and so by the induction hypothesis (b) applied 
with j = k - 1 and t = lk+l, there exists rES U {h, ... ,lk-d 
such that Lrlk+l =1= O. 

(b) Suppose U1k+lt =1= 0, for some t 1. S U {l2,' .. ,lk+l}' By (a) 
there exists rES U {l2,"" lk} such that Lrlk+l =1= 0, hence 
Lrlk+l U1k+lt > O. Thus 0 ~ Art = LrtUtt + LrrUrt + P, where 
P > O. Hence either LrtUtt < 0 and thus Lrt =1= 0, or LrrUrt < 0 
and thus Urt < 0 and so by the induction hypothesis applied with 
j = k - 1, there exists q E S U {h, . . . ,lk-l} with Lqt =1= O. 

This establishes Claim 2. 0 

By Claim 2, there exists rES U {h, ... ,lg-d such that Lrlg =1= 0, but 
then there exists t E S such that t has access to 19 in Q (L), and since S is 
a class of Q(L), it must be that h has access to 19 in Q(L). Contradiction. 
Hence p must have access to q in Q (L ). 0 

By applying Lemma 3.2 to AT we get the following result. 

Corollary 3.3 Let A E M withfactorization A = LU where L , U E M. 
Let S be any singular class ofU. Then for any pES and any q E (n), ifp 
is accessed by q in Q(A) then p is accessed by q in Q(U). 

Proof Apply Lemma 3.2 to AT = UT LT. 0 

Next we show that every singular class of A has a corresponding singular 
class Q <;;; S in either L or U. 

Lemma 3.4 Let A E M withfactorization A = LU where L, U E M. Let 
S be any singular class of A. Then either Lss is singular or U ss is singular, 
and there exists Q <;;; S such that Q is a singular class of either L or U. 

Proof 

Ass = LssUss + Lss'Us's = LssUss + P, where P ~ O. 

Thus LssUss = Ass - P and hence is a Z-matrix. Suppose that Lss 
and Uss are both nonsingular. Then by [1, N 44 , p. 137], LssUss is a 
nonsingular M-matrix, and by [1, h7, p.137] there exists x ~ 0 such that 
LssUssx ~ O. But then Assx = LssUssx + Px ~ 0, which implies 
that Ass is a nonsingular M-matrix. A contradiction. Hence either Lss 
is singular or Uss is singular. Since any proper principal submatrix of an 
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irreducible M-matrixis nonsingular, it must be the case that if Lss (or U ss) 
is singular, then the singular class Q of Lss (or Uss) is a singular class of 
L(orU). 0 

The next theorem shows that certain access relationships must be present 
either in L or U. In particular, for each i E (m), either Fi is encompassed 
in a block of L or Ti is encompassed in a block of U. 

Theorem 3.5 (Minimality) Let A E M withfactorization A = LU where 
L, U E M. Let 8i, T i , Fi, and m be as in Definition 2.1. Then there is 
a Qi <;;; 8i such that Qi is a singular class of either L or U. If Qi is a 
singular class of L, then Fi is encompassed in the block lower triangular 
self-partition of L. If Qi is a singular class of U, then Ii is encompassed in 
the block upper triangular self-partition of U. 

Proof That there exists such a Qi follows directly from Lemma 3.4. If Qi 
is a singular class of L then by Lemma 3.2, any j which is accessed from 
8i (and hence Qi) in Q(A) is also accessed from Qi in Q(L), thus Fi is 
encompassed in the block lower triangular self-partition of L. Similarly, if 
Qi is a singular class of U, then Corollary 3.3 implies that Ii is encompassed 
in the block upper triangular self-partition of U. 0 

It is natural for one to ask if, once an assignment of the singular classes 
between L and U has been chosen, such factorizations can be achieved. The 
following example shows that the singular classes of A cannot necessarily 
be divided up between L and U to suit ones choosing. 

Example 3.6 Let 

A=[~~l]. 
The singular classes of A are 8 1 = {I} and 8 2 = {2}. It is easy to verify 
that there is no factorization A = LU where 8 1 is a singular class of L 
and 8 2 is a singular class of U. Notice that F2 c Fl and hence there is no 
combinatorial benefit to having 82 not be a singular class of L once 81 has 
been chosen to be a singular class of L. 

In the next theorem we show that once a partition (J, K) of (m) has been 
chosen, a block factorization can be achieved with the block structure of L 
being a refinement of the partition encompassing Fi , i E J and the block 
structure of U being a refinement of the partition encompassing Ii, i E K. 

Theorem 3.7 (Existence) Let A EM. Let 8i, Ti, Fi, and m be as in Def­
inition 2.1. Let (J, K) be a partition of (m). Let Ijf be the finest order 
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preserving partition of (n) encompassing Fi , i E J and let Y be the finest 
order preserving partition of (n) encompassing Ii, i E K. Then there exists 
afactorization A = LU such that L, U E M, the block lower triangular 
self-partition of L is a refinement oflJ!, and the block upper triangular self­
partition of U is a refinement of Y. 

Proof We establish this result by outlining a recursive algorithm which 
gives us the desired factorization. 

If all =1= 0 then let 
N = {2, ... ,n} 

and set 
1 

B = ANN - -ANIAlN. 
au 

Notice that B is an M-matrix and Q(B) ~ r where r is the sub graph 
of Q(A) induced by the vertices 2, ... , n. Moreover, if Q is a singular 
class of B (where B is indexed with indices corresponding to A) then 
Q ~ S where S is a singular class of A. Now apply the algorithm to B 
to obtain B = LU where L and U satisfy the theorem. Set 

L= 

1 
a21 

all 
%l. 
all 

anI 

all 

0 ... 0 all a12 ... aln 
0 

L andU= 0 
U 

o 
Then A = LU satisfies the theorem. 

If au = 0, then 1 = J..Ll. 
(i) If 1 E J then set 

V = {l\ J..Ll has access to l in Q(A) , 

W = (n) \ V 

Notice that Avw = 0, V ~ Ft, and max(V) = max(Ft). Choose 
a permutation matrix P such that 

p-
1 
AP = [1:~ A~w ] = [1:~ ~] [~A~w] , 

where elements of V and W are listed in ascending order. Since 
Aww is a principal submatrix of A it is also an M-matrix and we 
can apply the algorithm to Aww to get Aww = LU where Land 
U have the desired structure based on the properties of Aww. Set 

L = P [Avv ~] p-l U = P [I ~] p-1 
Awv L' 0 U . 
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Then A = LU. We now argue that this factorization satisfies the 
theorem. Since applying the permutation similarity only reorders 
vertices, we see that Lvw = 0 and Lww = t where t has the 
desired block structure based on the properties of Aww. We also 
have that V C F I , thus the block lower triangular self-partition 
of L is a refinement of 1[/. By again observing that applying the 
permutation similarity with P merely reorders vertices, we see that 
Uvv is a diagonal matrix, Uvw = 0, Uwv = 0, and Uww = U 
has the desired structure based on the properties of Aww. Thus the 
block upper triangular self-partition of U is a refinement of Y. 

(ii) If 1 tf- J then 1 E K, and we can apply the algoritbm to AT with J 
and K interchanged to get AT = tU. Set L = UT and U = t T . 

Since transposing a matrix reverses the access relationships, the Fi 
for A correspond to the Ti for AT and vice versa. By the argument 
presented in (i), the factorization A = LU has the desired properties. 
D 

Example 3.8 Let 

A = [~-~ ~]. 
0-10 

Let J = {I} and K = {2, 3}. Then (J, K) is a partition of the singular 
classes of A, however since F2 C F I , 82 is automatically a singular class of 
L, thus T2, as the following factorization shows, need not be encompassed 
in the block structure of U. Notice that 

[
0-10] [100] L= 0 00 , U= 010 . 
0-11 000 

provides an LU factorization which is a proper refinement of the partition 
identified by Theorem 3.7. Here 82 is a singular class of L rather than of U. 

The partitioning of the singular classes between L and U of this fac­
torization is actually J = {1,2}, K = {3}. Using this paritition of the 
singular classes, Theorem 3.5 and Theorem 3.7 guarantee that the L and the 
U listed above have the smallest possible blocks for this assignment of the 
singular classes between L and U. 

Next we state necessary and sufficient conditions for an M-matrix A to 
admit an LU factorization into M-matrices, thus extending the results in 
[13] to the case where both L and U are allowed to be singular. 

Corollary 3.9 Let A E M. Then the following are equivalent: 
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(i) A admits a factorization A = LU, where L is a lower triangular M­
matrix and U is a upper triangular M-matrix. 

(ii) Let Si, Ii, Fi, and m be as in Definition 2.1. Then for every i E (m), 
either Ti = {j.£d or Fi = {J.Ld· 

Strategy 3.10 Using Theorem 3.5 and Theorem 3.7 one can strategically 
choose, for example, a partition which minimizes the sizes of the blocks in 
L and U. LetSi, J.Li, Ii,Fi, andmbeas in Definition 2.1. Foreachi E (m), 
either Fi has to be encompassed in block of L or Ii has to be encompassed 
in a block of U. In each case, we choose the smallest block between the 
two, unless one of the sets (Ti or Fi) is a subset of an earlier choosen set in 
which case it has already been taken care of. 

Begin by setting V = (m). 

(i) For i = min(V), if !Pi! < !Ti !, put i into J, otherwise put i E K. 
Remove i from V . At this time other elements from V may have auto­
matically been taken care of (see Example 3.8). Hence if i was placed 
in J, then for each j E V such that Fj <;;;; Fi , place j in J and remove 
j from V. If i was placed in K, then for each j E V such that Tj <;;;; Ti, 
place j in K and remove j from V. 

(ii) Repeat (i) until V = 0. 
(iii) Apply the algorithm provided in the proof of Theorem 3.7 with the 

partition (J, K). 

Strategy 3.11 Another strategy one might employ is to choose a permutation 
matrix P such that PApT satisfies Corollary 3.7, and hence has an LU 
factorization. There are several ways one might do this. For example, using 
J.Li and m as in Definition 2.1, one could choose a permutation matrix P 
which corresponds to the permutation which moves J.L1, ... J.Lm to positions 
n - m + 1, ... n and reorders them (if necessary) so that J.Li is placed after J.L j 
whenever J.Li has access to J.Lj in 9 (A). All other indices should be shifted up 
by the appropriate amount. Then Fi = {J.Li} so by Corollary 3.9, a triangular 
LU factorization exists with J = (m) and K = 0. 

We conclude this section with two examples on which we illustrate the 
strategies suggested by the theorems in this section. 

Example 3.12 Let 

1 -1 0 o -1 0 0 
-1 1 0 o -2 0 0 
0 0 2 - 2 0 0 0 

A= 0 0 -2 2 0 0 0 
0 0 0 0 1 0 0 
0 0 -1-1 0 0 0 
0 0 0 0 0 -11 
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Let 8i, J.Li, Ti , Fi be as in Definition 2.1. Then 

8 1 = {I, 2}, 82 = {3, 4}, 83 = {6}, 

J.L1 = 2, J.L2 = 4, J.L3 = 6, 

T1 = {2}, T2 = {4,5,6, 7}, T3 = {6, 7}, 

F1 = {2,3,4,5}, H = {4}, F3 = {6}. 

Thus by [13, Theorem 1] (see Remark 2.2) A does not admit an LU factor­
ization into M-matrices with L nonsingular. Similarly by [13, Theorem 1] 
applied to AT, A does not admit an LU factorization into M-matrices with 
U nonsingular. Usirig Strategy 3.10 we choose J = {2, 3} and K = {I}. 
The algorithm outlined in the proof of Theorem 3.7 now gives us an LU 
factorization with . 

100 0 0 0 0 1 -10 0 -100 
-11 0 0 0 0 0 o 0 0 0 -300 
002 0 0 o 0 o 0 1 -1 0 00 

L= o 0-2 0 0 o 0 ,U= 000 1 o 00 
000 o 1 o 0 000 0 1 00 
o 0-1-20 0 0 000 0 o 10 
000 o 0 -11 000 0 0 01 

Example 3.13 Let 

1 -1 0 0 0 0 0 0 
0 o -10 0 0 o 0 
0 0 1 0-1 0 o 0 

A= 
0 0 010 000 
0 o -10 1 -10 0 
0 0 000 000 
0 0 000 0 0-1 

-1 0 000 0 o 0 

Let 8i , J.Li, Ti , Fi be as in Definition 2.1. Then 

8 1 = {2}, 82 = {3, 5}, 83 = {6}, 84 = {7}, 85 = {8}, 

J.L1 = 2, J.L2 = 5, J.L3 = 6, J.L4 = 7, J.L5 = 8, 

F1 = {2, 3, 4, 5, 6}, F2 = {5,6}, F3 = {6}, F4 = {7,8}, F5 = {8}, 

T1 = {I, 2, 3, 4, 5, 6,7, 8}, T2 = {5, 6, 7, 8}, T3 = {6, 7, 8}, 

T4= {7}, T5 = {8}. 
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Using strategy 3.10 one should set J = {I, 2, 3}, and K = {4, 5}. Using 
the algorithm outlined in Theorem 3.7 we get 

1 0 000 o 00 1-100000 0 
0 0 -10 0 o 00 0100000 0 
0 0 1 0-1 o 00 0010000 0 

L= 0 0 010 o 00 ,U= 0001000 0 
0 0 -10 1 - 100 0000100 0 
0 0 000 o 00 00000100 
0 0 000 o 10 0000000 - 1 

- 1-1 000 o 01 00000000 

This factorization minimizes the sizes of the blocks in L and U. 
Using strategy 3.11, we can choose a permutation which moves 2,5,6, 

7,8 to the end of our list of indices and then reorders them as 6,5,2 , 8,7. 
Thus we take 

10000000 
00100000 
00010000 

p= 00000100 
00001000 
01000000 
00000001 
00000010 

Then 
1 0 o 0 o -1 o 0 
0 1 o 0 -1 0 o 0 
0 0 1 0 0 0 o 0 

PAP- 1 = 0 0 o 0 0 0 o 0 
0 -10-1 1 0 o 0 

, 
o - 10 0 0 0 o 0 

-1 0 0 0 0 0 o 0 
0 000 0 0 - 10 

which has an LU factorization with 

1 0 o 0 0 0 0 0 10000-100 
0 1 o 0 0 0 o 0 0100 -1 0 00 
0 0 1 0 0 0 o 0 0010 0 o 00 

L= 0 0 o 0 0 0 o 0 ,U= 0001 0 o 00 
0 -10 - 1 0 0 o 0 0000 1 o 00 
o -10 0 -1 0 o 0 0000 0 1 00 

-1 0 0 0 o - 1 0 0 0000 0 o 10 
0 000 0 o -10 0000 0 o 01 
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4. Block LV factorizations with nonsingular L 

In this section we consider the case where an M-matrix A is factored into 
block triangular matrices with L nonsingular, such that L -1 is nonnegative 
and class nonsingular for A, and U E M. Notice that if L is a nonsingular 
M-matrix, then L satisfies the given conditions, thus we are considering a 
larger set of LV factorizations than were considered in [13]. We would like 
Land U to be as close to lower and upper triangular respectively as possible. 
We begin by showing that certain access relationships must be present in 
g(U). 

Theorem 4.1 (Minimality) Let A E M and U E U(A). Let 8l, 82, ••• 8m 

be the singular classes oj A. ThenJor each i E (m) and j E (n), if j has 
access to 8 i in g(A), then j has access to some vertex q E 8 i in g(U). 

Proof Assume j has access to 8 i in g (A). Since ASiSi is irreducible, j has 
access in g(A) to every vertex of 8 i . Let Qi be any final class of U SiSi . For 
any q E Qi, we see that j has access to q in g(A). Choose B E NA such 
that BA = U. Applying [9, Theorem 3.7] we see that j has access to q in 
g(U). 0 

Next we show that there is a U E U(A), for which the only nonzeros 
below the diagonal of U correspond to the required access relationships 
described in Theorem 4.1. To optimize on the placement of these zeros, for 
each 8 i , we would like the vertex q in Theorem 4.1 to be J.li. The desired 
U can be found by performing Gaussian elimination until a zero diagonal 
element is encountered. When a zero diagonal element is encountered, that 
column should be skipped over, and the process continued. Thus we obtain 
a matrix U which is upper triangular except for spurs below the diagonal 
corresponding to the columns J.li. We thus obtain a U whose column envelope 
is small, where column envelope is defined similarly to the row envelope in 
[4, p. 708]. 

Notice that using this algorithm the L which is produced is a nonsingular 
lower triangular M-matrix. 

Theorem 4.2 (Existence) Let A E M. Let 81,82 , ... 8m be the singular 
classes oj A, and let J.li = max(8i). Set 

x = {(j, J.li) liE (m), j > J.liand j has access to J.li in G(A)}. 

Then A admits a Jactorization A = LU, where L E M is lower triangular 
and nonsingular, and U E M is such that Jor all j > k, Ujk = 0 whenever 
(j, k) t/. x, and Ujj = 0 if and only if j = J.ldor some i E (m). 
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Proof Let A e be the matrix obtained from A by adding c to the (J.Li , J.Li) - th 
element in A, for each i E (m). Then for any c > 0 and any i E (m), A~iSi 
is nonsingular by [1, Theorem 4.16(2) and Theorem 2.7]. Hence Ae is a 
nonsingular M-matrix and thus all the diagonal elements of Ae are positive. 
For each i ¢ {J.Ll,"" J.Lm}, and for each j > i, use multiplication by 
elementary matrices on the left to add appropriate multiples of row i to row 
j so as to reduce Ae to a matrix for which the (j, i) - th element is O. 
Since the matrix formed at each step of this process is also a nonsingular 
M-matrix, we will not encounter a nonzero diagonal element as we proceed 
in this fashion. 

Notice that since row J.Lk, k E (m), is not used as a pivot row, the ele­
mentary matrices will be independent of c. By proceeding in this manner 
we can produce a matrix ue such that uJi = 0 whenever i ¢ {J.Ll, . . . , J.Lm} 

and j > i. Moreover, g(ue) ~ g(A). 
The off diagonal elements of Ue remain nonpositive, hence Ue is a Z­

matrix. Since the leading principal minors of A e are positive, and adding 
a multiple of one row to another does not change the detenninant, all the 
leading principal minors of Ue are positive. Hence Ue is a nonsingular M­
matrix. Since c only appears on the diagonal of Ue, U = lime-to UE is an 
M-matrix such that Ujk = 0 whenever (j, k) ~ X. It is easy to see that if we 
take L to be the inverse of the product of the elementary matrices used above 
(in the appropriate order) then L is a nonsingular lower triangular M-matrix 
and A = LU. Since all of the diagonal elements of A where used as pivots, 
except for the (J.Li, J.Li) - th, they must be nonzero both in A and in U. Since 
ASiSi is singular, it must be that U SiSi is singular. By the construction of 
U, USiSi is an upper triangular matrix with nonzeros on the diagonal except 
possibly for UfJ-ifJ-i' hence it must be that UfJ-ifJ-i = O. Thus U has the desired 
pattern. 0 

Example 4.3 Let 

1 -1 0 000 0 0 
-1 1 0 o 0-1 0 0 
-1 0 2 -20 0 - 1 0 

A= 0 -1 -1 1 0 0 -2 -1 
0 0 o -11 0 0 0 
0 0 0 0 o 0 0 0 
0 0 0 0 0-1 1 0 
0 0 0 0 0-1-1 1 
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Then /11 = 2, /12 = 4, /13 = 6 and X = {(3, 2), (4,2), (5,2), (5,4), (7,6), 
(8,6)} Using our algorithm we get 

L= 

1 0 0 000 0 0 
-11 0 000 0 0 
-10 1 000 0 0 
o 0 -~ 100 0 0 
o 0 0 010 0 0 
00000100 
o 0 0 000 1 0 
o 0 0 000-11 

,andU= 

1 -10 0 0 0 0 0 
o 0 0 0 0 -1 0 0 

01-112 -20 0 -1 0 o -~ 0 0 0 0 -~-1 
o 0 01-111 0 0 0 
00000000 

o 0 0 0 01-111 0 
o 0 0 0 0 -2 0 1 

The boxes indicate the positions of potential nonzero elements below the 
diagonal of U. Notice that even though (5,2) E X, US,2 = O. Theorem 4.2 
only asserts that the elements in X are potentially nonzero. 

Remark 4.4 Theorem 4.1 gives a lower bound on the number of nonzeros 
which must occur below the diagonal of U. Let 8 1 , .. . 8m be the singular 
classes of A. Let /1i = max(8i ), i E (m). Let 

Ri = {j E (n) 1 j > /1i and j has access to /1i in Q(A)}. 

Let 

R=ui=l~' 

Then IRI ~ the number of nonzeros below the diagonal of U. Moreover, 
Theorem 4.2 shows that there is a factorization of A into a nonsingular lower 
triangular M-matrix L and a block upper triangular M-matrix U, for which 
the number of nonzeros below the diagonal of U ~ 2::1 1 ~ I. The next 
example shows that if the Ri have nonempty pairwise intersection, then the 
number of nonzeros corresponding to this duplication is not identified by 
our theorems. 

Example 4.5 Consider 

[ 
0 0 0] [0 0 0] A = -1 0 0 , B = -1 0 0 . 
o -11 -1 -11 

Both A and B have singular classes 8 1 = {I}, 8 2 = {2}, and in both 
Q(A) and Q(B), vertices 2 and 3 access 8 1 , and vertex 3 accesses 8 2 . Using 
the notation of Remark 4.4, R1 = {2,3}, R2 = {3}, and R = {2, 3}. By 
Theorem 4.1, there must be at least 2 nonzero subdiagonal elements in U for 
any block LU factorization of A or B (where L and U satisfy the conditions 
of Theorem 4.1), and by Theorem 4.2, there is an LU factorization of A and 
an LU factorization of B, each with at most 3 subdiagonal elements in the U 
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and with the L a nonsingular lower triangular M-matrix. Notice that if we 
factor A = I A, then U = A has 2 nonzeros below the diagonal. However it 
can be shown that for any factorization of B = LU (where L and U satisfy 
the conditions of Theorem 4.1), U will have at least 3 nonzeros below the 
diagonal. 

Our next theorem characterizes the M-matrices A such that A = LU 
where L, U E M with L nonsingular and lower triangular and U upper 
triangular. The equivalence of parts (ii) and (iii) of this theorem appear in 
[13]. 

Theorem 4.6 Let A E M. Then the following are equivalent: 

(i) There exists U E U(A) such that U is upper triangular. 
(ii) A admits a factorization A = LU, where L is a nonsingular lower 

triangular M-matrix and U is an upper triangular M-matrix. 
(iii) Let m, Ti , and J.Li be as in Definition 2.1. Then Ti = {J.Ld, Vi E (m). 

Proof. Follows from Theorem 4.1 and Theorem 4.2. 0 

s. Block LBU factorizations 

Using Theorem 4.2 we can factor A = LBU into the product of a nonsin­
gular lower triangular M-matrix L with a block diagonal M-matrix B and 
a nonsingular upper triangular M-matrix U. Since L and U are nonsingular 
lower and upper triangular M-matrices, standard methods can be used to 
solve the parts of the system in which they are involved. In general, B will be 
a sparse matrix since its only nonzero off-diagonal entries occur in rows and 
columns corresponding to the ends of singular classes. In this specialised 
case it may be possible to use sparse matrix techniques to solve the part of 
the system involving B. 

Theorem 5.1 Let A E M . Let 

x = { (j, j) Ii E (n) \ { J.Li liE (m)} } 

U{ (j, J.Li) liE (m), j > J.Li andj has access to J.Li in Q(A)} 

U{ (J.Li, j) liE (m), j > J.Li and j is accessed by J.Li in Q(A)}. 

Then A admits afactorization A = LBU where L is a nonsingular lower 
triangular M-matrix, U is a nonsingular upper triangular M-matrix, and 
B is an M-matrix such that bjk = 0 whenever (j, k) ~ X. Moreover, if L 
and U are nonsingular M-matrices, this is the finest block structure that B 
can have (i.e it is impossible to subdivide the blocks of B and obtain a block 
diagonal matrix). 
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Proof. Use Theorem 4.2 to factor A = LV where L is a nonsingular M­
matrix and V is an M-matrix such that for all j > k, Vjk = 0 whenever 
(j, k) ~ {(j, /Li) liE (m), j > /Li and j has access to /Li in Q(A)}. Notice 
that the singular classes of V are just /Ll, ... ,/Lm, and Q(V) ~ Q(A). Using 
the algorithm outlined in the proof of Theorem 4.2, we can factor VT = XY 
where X is an nonsingular lower triangular M-matrix, and Y is an M-matrix 
such that for all j > k, Yjk = 0 whenever (j, k) ~ {(j, /Ld liE (m), j > 
/Li and j has access to /Li in Q(A)}. Since rows /Ll, ... ,/Lm are not used as 
pivot rows, and all other rows of VT have zeros to the right of the diagonal, 
Y will also satisfy the property that for all j > k, Ykj = 0 whenever 
(j, k) ~ {(j, /Li) liE (m), j > /Li and j has access to /Li in Q ( A )}. Let 
B = yT and U = X T . Then A = LBU is as claimed. By Theorem 
4.1, the block structure exhibited by B is the finest possible with L and U 
nonsingular M-matrices. 0 

Example 5.2 Let 

1 -1 0 0 0 0 0 0 
0 0 -10 0 0 0 0 
0 0 1 0-1 0 0 0 

A= 
0 0 010 o 0 0 
0 0 -10 1 -10 0 
0 0 000 000 
0 0 000 o 0-1 

-1 0 000 000 

as in Example 3.13 Then 

/Ll = 2, /L2 = 5, /L3 = 6, /L4 = 7, /L5 = 8, 

and 

x = {(I, 1), (3,3), (4,4), (2,3), (2,4), (2, 5), (2,6), (7,2), (8, 2), (5,6), 

(7,5),(8,5)(7,6),(8,6);(7,8)}. 

Using the algorithm outlined above Theorem 4.2 we get A = LV. Then 
using the algorithm to factor V T = UT BT we get 

L= 

10000000 
o 1000000 
00100000 
00010000 
00-101000 
00000100 
00000010 
-10000001 

B-, -

10 000 000 
o 0 \-10 -1 0 \0 0 
00100000 
00010000 
o 0 0 0 0 \-1\0 0 
00000000 
0fol 0 OfOTOlO\-l\ 
OC!J 0 0L2JJU0 0 
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u= 

1-1000000 
01000000 
0010-1000 
00010000 
00001000 
o 0 00 0 100 
00000010 
00000001 

J.J. McDonald, H. Schneider 

The boxes in B indicate the only possible positions for nonzero off diagonal 
entries. 
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