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. ABSTRACT 

Necessary and sufficient conditions are proven for the existence of a real square 
matrix such that for every principal submatrix the maximal (or minimal) value of 
an element in the row complement of the submatrix is prescribed. The problem is 
solved in the cases where the positions of the nonzero elements of A are contained 

*The research of aU three authors was supported by the Fund~ao Calouste 
Gulbenkian, Lisboa . 

tThe research of this author was carried out within the activity of the Centro de 
Algebra da Universidade de Lisboa. 

+The research of these authors was supported by their joint grant 90-00434 from the 
United States-Israel Binational Science Foundation, Jerusalem, Israel. 

§The research of this author was supported in part by NSF grants DMS-9123318, 
DMS-8901445, and EMS-8718971 . 

LINEAR ALGEBRA AND ITS APPLICATIONS 212/213:367-385 (1994) 367 

© Elsevier Science Inc., 1994 
655 Avenue of the Americas, New York, NY 10010 0024-3795/94/$7.00 



368 J. A. DIAS DA SILVA ET AL. 

in a given set of positions, where the positions of the nonzero elements of A are all 
given, and where there is no restriction on the positions of the nonzero elements 
of A. The uniqueness of the solution is studied as well. 

1. INTRODUCTION 

In analogy with well-studied problems concerning the existence of non
negative matrices with a prescribed pattern and with prescribed row and 
columns sums (e.g. [7, 1, 3, 4J and many other papers), Rothblum, Schnei
der, and Schneider [5J have recently studied the existence of matrices with 
a prescribed pattern and prescribed row and column maxima. Further, it 
is clear that the conditions for existence determined in [5J force certain re
lations on the maxima of elements in the off-diagonal submatrices. In this 
paper, we find necessary and sufficient conditions for the existence of a real 
matrix with prescribed pattern and prescribed maxima of the elements in 
all off-diagonal blocks. 

In most of the papers referenced above the existence problems studied 
were motivated by scaling problems. Another such scaling problem, namely 
the max-balancing problem, was considered in [6J. There it is pointed out 
that, in contrast with the corresponding problem for sums, max-balancing 
the rows and columns of a matrix does not imply max-balancing sym
metrically placed off-diagonal blocks. Thus the authors were led to prove 
a condition for max-balancing off-diagonal blocks. This is an additional 
motivation for our study. 

We now describe the paper in some more detail. 
In Section 2 we solve three levels of the existence problem: 

(i) The case in which the positions of the nonzero elements of A are 
contained in a given set of positions. 

(ii) The case in which the positions of the nonzero elements of A are all 
given. 

(iii) The case in which we have no restriction on the positions of the 
nonzero elements of A (the "graph-free" case). 

Both the maxima and the minima versions of all three cases are flIlly 
characterized. 

The existence problems do not always have a unique solution. In Sec-
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tion 3 we study the uniqueness of the solutions for the problems discussed 
in Section 2. We define the ROWB algorithm for removal of certain arcs in 
a digraph, and then show that a given pattern yields a unique solution for 
every set of given maxima if and only if the ROWB algorithm terminates 
after one iteration at most. A given pattern yields a unique solution for 
some set of given maxima if and only if the ROWB algorithm terminates 
after a finite number of iterations. 

Motivated by the results of Section 4, Section 5 is devoted to a short 
discussion of digraphs for which the ROWB algorithm terminates after one 
iteration at most. 

This paper is a companion paper to [2], where we solve the analogous 
problem with sums in place of maxima. 

2. THE EXISTENCE PROBLEM 

In this section we discuss the existence of a matrix such that for every 
principal submatrix we prescribe the maximal value of an element in the 
row complement of the submatrix. 

We start with a few definitions. 

NOTATION 2.1. We denote by (n) the set {I , . . . , n}. 

DEFINITION 2.2. 

(i) Let D = (V, E) be a digraph, and let Sand T be disjoint subsets of 
V. We denote ~y ST the!et {i E S: (i,j) E E for some JET}. 

(ii) We denote by S the set Sse , where se denotes the complement of S 
in V. We say that S is a relevant subset of V if Sis nonempty. 

(iii) We denote by S.L the maximal subset T of se such that ST = 0. 

DEFINITION 2.3. Let A be an n x n matrix. The digraph D(A) of A 
is defined as the digraph with vertex set (n), and where (i, j) is an arc in 
D(A) if and only if aij f= o. 

DEFINITION 2.4. Let D = (V, E) be a digraph. A digraph D' = 
(V', E') is said to be a subdigraph of D if V' ~ V and E' ~ E. We 
write D' ~ D to indicate that D' is a sub digraph of D. 

CONVENTION 2.5. The maximum ofthe elements ofthe empty subset 
of the reals will be considered to be -00 .. 
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The main result in this section is 

THEOREM 2.6. Let {Xs : 8 ~ (n)} be a set of real numbers, and let 
D = ((n), E) be a digraph. The following are equivalent: 

(i) There exists an n x n matrix A, with D(A) ~ D, such that 

max {aij} = Xs, 
(i,j)ESxScnE ' 

8 ~ (n). (2.7) 

(ii) We have 

X0 X(n) = -00, (2.8) 

Xs < max{XsUT' Xs,}, 8,T ~ (n), 8nT = 0, 
ST ~ 8' ~ 8 (2.9) 

XSUT < max{Xs,XT }, 8,T ~ (n), (2.10) 

XSnT < max{Xs,XT}, 8,T ~ (n). (2.11) 

Proof (i) =? (ii): In view of Convention 2.5, (2.8) follows immediately 
from (i). Let 8 and T be disjoint subsets of (n). By Definition 2.2, it 
follows that 

(8 x 8e) n E [(8 x T) n E] U ([8 x (8 U T)C] n E) 

= [(8' x T) nE] U ([8 x (8UTn nE) 

c [(8' x 8'C) n E] U ([(8 U T) x (8 U T)C] n E). 

Therefore, clearly (i) implies (2.9). Now let 8 and T be subsets of (n). It 
follows from (i) that 

XSUT = max {a··} 
(i,j)E[SUTx (SuT)c]nE tJ 

= max { max {a··} max {a· .}} 
(i,j)E[Sx (SuT)c]nE tJ' (i,j}E[Tx (SuT)c]nE tJ , 

< max { max {a··} max {a.-}} 
(i,j)ESxScnE tJ' (i,j)ETxTcnE tJ 

= max{Xs,XT}. 

Similarly, we have 

XSnT = max {ai·} = max {ai} 
(i,j)E[SnTx (SnT)c]nE J (i,j)E[SnTx (ScuTc)]nE J 



OFF-DIAGONAL BLOCK ELEMENT MAXIMA 

max { max {a··} max {a .}} 
(i,j)E[SnT x Sc)nE tJ '(i, j)E[SnTxTC)nE tJ 

< max { max {a .. } max {a"}} 
(i,j)ESxScnE tJ' (i,j)ETxTcnE tJ 

max{Xs,Xr}. 

(U) =} (i): We construct an n x n matrix A by 

{

min {XT }, 
Ts(n) 

aij = (i,j)ETxTC 

0, 

(i,j) E E, 

(i,j) tf- E. 
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(2.12) 

We shall prove that A satisfies (2.7). For (i,j) E E we denote by Tij a 
subset of (n) such that (i,j) E Tij x TiJ and aij = XTij' Let S be a subset 
of (n). If S = 0 or S = (n), then (2.7) follows from (2.8). So assume that 
S i- 0, (n). We have 

Let 

max {a .. } 
(i,j)ESxScnE tJ 

max { min {XT}} 
(i,j)ESxScnE Ts(n) 

(i,j)ETxTC 

max {Xs} = Xs· 
(i,j)ESxScnE 

< 

Wi = n T ij , i E S. 
jESC 

(i ,j)EE 

(2.13) 

For every element i E (n) we denote by supp(i) the set {k E S: i E Wk }. 

Note that supp(i) may be empty. We define the equivalence relation in (n) 
by i '" j {:} supp(i) = supp(j). We denote by Ci the equivalence class of i, 
and we denote supp(Ci ) = supp(i). Observe that i E Wi whenever i E S, 
and hence 

(2.14) 
jESUpp(Ci) 

We define the sets 

Ti = ( n W j ) n s, 
jESUPP(Ci) 

i E S, 
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and we now claim that 

XT · < max {min {XT}} , 
, - (j,k)E(SxSc)nE T~(n) 

(j,k)ETxTC 

i E S. (2.15) 

We prove this claim by a decreasing induction on the cardinality 
Isupp (Ci)1 of C i . Assume first that supp(Ci ) is of maximal cardinality 
m. By (2.14) we have 

Ci n S ~ ( n Wj ) n S. 
jEsupp(Ci ) 

(2.16) 

Assume that there exists 

v E [(. n W j ) nS]\Ci. 
JEsupp(Ci ) 

(2.17) 

Since v E njESupp(Ci ) Wj , we have supp(Ci) ~ supp(v). Furthermore, 
it follows from (2.17) that supp(Ci ) #- supp(v), and hence Isupp(v)I > 
Isupp(Ci )I, in contradiction to the maximality of Isupp(Ci )I. Therefore, 
our assumption that there exists v satisfying (2.17) is false, and it follows 
from (2.16) that 

cins= ( n W j ) nS. 
jESUpp(Ci) 

(2.18) 

Now, let u E Ti and let v ESc. If (u,v) E E then u E S. By (2.18) we have 
u E Ci. By the construction of our sets Tij we have u E Tuv and v rt Tuv, 
and so u E Wu while v rt Wu· Since u E Ci we have supp(u) = supp(Ci ), 

and hence, since v rt Wu , it follows that v rt njEsupp(C;) Wj • Thus, we have 

([ L!1,) W;) ns] x [CDc;} w;) nso
]) nE~0 

(2.19) 
In view of (2.19), substitution of the sets (njESUPp(Ci) W j ) nS, 
(njEsUPp(Ci) W j ) n sc, and 0 for the sets S, T, and S' in (2.9) respectively 
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yields X Ti .5:. Xn w' and by (2.11) we have 
jEsUPP(Ci) J 

= 

max {Xw.} 5:. max {XT ·k } 
jEsUpp(Ci) 3 jESUpp(Ci) 3 

max 
jEsupp(C;) 

kESC 

(j,k)EE 

kESc 
(j,k)EE 

{
min {XT}} TC(n) 

(j,k)ETxT C 

373 

proving (2.15) in the case that supp(Gi) is of maximal cardinality m. As
sume now that (2.15) holds whenever Isupp(Gi)I > r, where r < m, and 
let i be such that Isupp(Gi)I = r. Let U E Gi n 8 and let v E 8 c . If 
( u, v) E E then u E S. By the construction of our sets Tij we have 
u E Tuv and v rf. Tuv, and so u E Wu while v rf. Wu· Since u E Gi, 
we have supp(u) = supp(Gi), and hence, since v rf. Wu, it follows that 
v rf. njESUPP(Ci) Wj. Thus, we have 

(2.20) 

In view of (2.20), substitution ofthe sets Ti , (njEsUPp(C;) Wj) n 8 c , and 
Ti\Gi for the sets 8,T, and 8' in (2.9) respectively yields 

X Ti 5:. max {Xn W..,XTi\Ci}' 
iEsupp(Ci> 1 

and by (2.11) and the definition of Wj we have 

X Ti 5:. max { max {min {XT}}'XTi\Ci}. (2.21) 
(j,k)E[supp(Ci)xScjnE T~(n) 

(j,k)ETxTC 

Let u E Ti\Gi , First, observe that by the definition of Ti we have 
supp(i) ~ supp(u). Furthermore, since u rf. Gi , we have supp(i) #- supp(u), 
and hence Isupp(Gu )I > Isupp(Gi)l. Now, let v E Tu. Since supp(Gi ) ~ 
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supp(Cu ), it follows by the definition of Ti that v E Ti. Also, supp(Ci) s;:; 
supp(Cu ) s;:; supp(v), and since supp(Ci) f. supp(Cu ), it follows that v if
Ci. Therefore, v E Ti \ Ci. It follows that there exist Sl, ... , sp E S such 
that Ti\Ci = U~=lTsk' and where Isupp(CsJI > Isupp(Ci)l,j E (p). By 
(2.10) and the inductive assumption we obtain 

XT\C < max{XT } < max { min {XT}} • • - kE(P) 'k - (j,k)E(SxSc)nE T~(n) , 
(j,k)ETxT C 

and by (2.21) we obtain (2.15) . 
Observe that S s;:; 8.= UiES Ti ~ S. Substitution of the sets S, se, and 

S for the sets S, T, and S' in (2.9) respectively yields Xs :::; Xs' By (2.10) 
we obtain Xs :::; maxiES{XT.}, and by (2.15) we have 

Xs :::; (j,k)E"f};~~C)nE { Trg~~) {XT}}. (2 .22) 
(j,k)ETxT C 

This proves our claim. It now follows from (2.13) and (2.22) that 
max(i,j)ESxSCnE {aij} = Xs,S s;:; (n). • 

Let S s;:; (n). If we choose T in (2.9) to be se, then we get 

Ss;:;S'S;:;S. (2.23) 

Another weaker form of (2.9) is 

S,TS;:;(n), SnT=0. (2.24) 

It is natural to ask whether the condition (2.9) in Theorem 2.6 can be 
replaced by (2.23) and/or (2.24). The answer to this question is negative, 
as demonstrated by the following example. 

EXAMPLE 2.25. Let n = 4, and let D be the digraph with four vertices 
and all possible arcs except for (2, 4) and (3, 4). For a subset S of (4) define 

{

-oo 
Xs= 1: 

2, 

S = 0, (4), 
S = {1,3}, 
otherwise. 
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The only S <;;; (4) for which S -=f. Sis S = {I, 2, 3}, where S = {I}. Since 
X{1,2,3} = X{1} = 2, (2.23) is satisfied. Now, let S, T <;;; (4), S n T = 0. 
Observe that we have S -=f. ST if and only if T = {4} and {2, 3} n S -=f. 0. 
In these cases we have 

S {2}, {3}, {I, 2}, {2, 3}, {I, 3} =} Xs = 2 = XSUT, 

S {I,2,3} ST = {I} Xs=2=XST' 

and hence (2.24) is satisfied. Finally, it is immediate to check that (2.10) 
and (2.11) are satisfied. Nevertheless, if we choose S = {I, 2, 3}, T = 

{4}, and Sf = {1,3}, then ST = {I} <;;; Sf <;;; Sand Xs = 2 > I = 
max{XsuT,XST }. Therefore, (2.9) is not satisfied, and by Theorem 2.6 
there exists no n x n matrix A, with D(A) <;;; D, satisfied (2.7) . 

With the convention that the minimum of the elements of the empty 
subset of the reals will be considered as 00, we obtain the following corollary 
of Theorem 2.6. 

THEOREM 2.26. Let {Xs : S <;;; (n)} be a set of numbers, and let 
D = (( n), E) be a digraph. The following are equivalent: 

(i) There exists an n x n matrix A, with D(A) <;;; D, such that 

min {aij} = Xs, 
(i,j)ESx SenE 

S <;;; (n). 

(ii) We have 

Xs > min{XsuT'Xs}, 

XSUT 2: min{Xs,XT}' 

X SnT > min{Xs,XT}' 

S, T <;;; (n), S n T = 0, ST <;;; Sf <;;; S, 

S,T <;;; (n), 

S, T <;;; (n). 

Proof A matrix A satisfies min(i,j)ESxsenE{aij} = X s , S <;;; (n), if 
and only if the matrix B = -A satisfies max(i,j)ESXSenE{bij} -Xs 
whenever S <;;; (n). Our claim now follows from Theorem 2.6. • 

Theorems 2.6 and 2.26 provide a necessary and sufficient condition for 
the existence of a matrix A, with D(A) <;;; D, with prescribed off-diagonal 
block element maxima or minima. The case D(A) = D is covered by the 
following corollaries. 
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COROLLARY 2.27. Let {Xs : S ~ (n)} be a set of real numbers, and 
let D = (( n), E) be a digraph. The following are equivalent: 

(i) There exists an n x n matrix A, with D(A) = D, such that 

max {ai'} = Xs 
(i,j)ESxScnE J , 

S ~ (n). 

(ii) We have (2.8), (2.9), (2.10), (2.11), and 

Xs i=- 0 for every relevant subset S of (n) . (2.28) 

Proof (i) => (ii): (2.8), (2.9), (2 .10), and (2.11) follow from (i) by 
Theorem 2.6. Since D(A) = D,max{i,j)ESxScndaij} i=- 0 whenever S is 
relevant. (2.28) now follows from (i). 

(ii) =} (i): In view of (2.28), the matrix defined by (2.12), constructed in 
the proof of the corresponding implication in Theorem 2.5, satisfies D(A) = 
D. • 

Similarly, we obtain 

COROLLARY 2.29. Let {Xs : S ~ (n)} be a set of real numbers, and 
let D = (( n), E) be a digraph. The following are equivalent: 

(i) There exists an n x n matrix A, with D(A) = D, such that 

min {ai'} = Xs, 
(i,j)ESxScnE J 

S ~ (n). 

(ii) We have (2.8), (2.9), (2.10), (2.11), and (2.28). 

The following two corollaries are the "graph-free" versions of our results . 

COROLLARY 2.30. Let {Xs : S ~ (n), S i=- 0,.(n)} be a set of numbers. 
The following are equivalent: 

(i) There exists an n x n matrix A such that 

max {aij} = Xs, 
(i,j)ESXSc 

S ~ (n), S i=- 0, (n). 

(ii) For every nonempty proper subsets Sand T of (n) we have XSUT 
:=:; max{Xs,XT } wheneverSUTi=- (n), andXsnT :=:;max{Xs,XT } 
whenever S n T i=- 0. 
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COROLLARY 2.31. Let {Xs : S ~ (n), S i= 0, (n)} be a set of numbers. 
The following are equivalent: 

(i) There exists an n x n matrix A such that 

min {ai} = Xs, 
(i,j)ESxsc J 

S ~ (n), S i= 0, (n). 

(ii) For every nonempty proper subsets Sand T of (n) we have XSUT 
;::: min{Xs,XT} wheneverSUT i= (n), andXsnT ;::: min{Xs,XT} 
whenever S n T i= 0. 

REMARK 2.32. The graph-free case could be proven directly rather 
easily. The implication (i) =? (ii) in Corollary 2.30 follows as before. As 
to the implication (ii) =? (i), we define aij as in (2.12) and derive (2.13). 
Now suppose that for some nonempty proper subset S of (n) we have 

max {aij} < Xs· 
(i,j)ESxSc 

It follows by (2.12) and (2.13) that 

Note that 

max {Tij} < Xs· 
(i,j)ESxSc 

u ( n Ti j ) = S. 
iES jESC 

(2.33) 

(2.34) 

Therefore, it follows from (2.33) and (2.34) by (2.10) and (2.11) that 

XS:::; max {Tij} < Xs, 
(i,j)ESxsc 

which is a contradiction. 

However, in general we cannot employ such a simple proof, as we do 
not have an analogue of (2.34). 

REMARK 2.35. Observe that in the case of nonnegative Xs's, the 
matrix A defined by (2.12) is nonnegative. Therefore, if the numbers 
{Xs : S ~ (n)} are given to be nonnegative, then our results provide nec
essary and sufficient conditions for the existence of a nonnegative matrix 
A satisfying the required conditions. 
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3. THE UNIQUENESS PROBLEM 

The existence problems discussed in the previous section do not neces
sarily yield a unique solution, as demonstrated by the following example. 

EXAMPLE 3.1. Let n = 4, let D be the complete (loopless) digraph 
with four vertices, and let 

X0 = X(4) = -00, 

X{l} = 3, X{2} = 7, X{3} = 9, X{4} = 12, 
X{l,2} = 5,X{l,3} = 9,X{2,3} = 8 , X{1 ,4} = 12, X{2 ,4} = 12,X{3,4} = 11, 

X{l,2,3} = 6, X{1,2,4} = 12, X{l,3,4} = 11, X{2,3,4} = 10. 

The numbers {Xs : S ~ (4)} satisfy (2.8), (2.9), (2.10), and (2.11) . The 
matrix 

A = ( ~ ~ ~ l), 
10 11 12 0 

defined by (2.12), satisfies (2.7). However, (2.7) is satisfied also by 

A = (~ ~ ~ l). 
10 11 12 0 

In this section we study the uniqueness of the solutions for the problems 
discussed in the previous section. For a digraph D we denote by E(D) and 
V(D) the arc set and the vertex set of D respectively. Our problem can be 
stated as follows: 

Given an n x n matrix A. Does there exist another n x n matrix B, 
with D(B) ~ D(A), such that 

(i,j)ESX~~E(D(A)) {bij } = (i,j)ESX~~E(D(A)) {aij} (3.2) 

for every relevant subset S of V(D(A»? 
We shall define the ROWE algorithm for removal of certain arcs in 

a digraph, and we shall use it to characterize those graphs D such that 
for every matrix A with D(A) = D, there exists no other matrix B with 
D(B) ~ D satisfying (3.2), as well as those graphs D such that for some 
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matrix A with D(A) = D, there exists no other matrix B with D(B) S;;; D 
satisfying (3.2). 

DEFINITION 3.3. An arc (i, j) in a digraph D = (V, E) is said to be a 
one-way bridge if there exists a set S of vertices in D such that (i, j) is the 
only arc from S to se. 

The following easy proposition can be regarded as an alternative defi
nition for one-way bridges. 

PROPOSITION 3.4. An arc (i,j) in a digraph D is a one-way bridge 
if and only if the digraph obtained by removing (i, j) from D has no path 
from i to j. 

Proof. If (i, j) is a one-way bridge, then by Definition 3.3 there exists 
a set S of vertices in D such that (i, j) is the only arc from S to se. It 
follows that the digraph obtained by removing (i, j) from D has 1).0 path 
from i to j. Conversely, let D' be the digraph obtained by removing (i, j), 
arid let S be the set of vertices k such that' there exists a path from i to k 
in D' (S includes i). If D' has no path from i to j, then j belongs to se. 
Clearly, there is no arc in D' from S to se. Therefore, (i, j) is the only arc 
from S to se. • 

DEFINITION 3.5. The ROWE algorithm (removal of one-way bridges): 

Initialization: We let Dl be the digraph D. 

Step i, i = 1, ... : We remove all the one-way bridges from D i , and 
we denote the resulting digraph by DH1 . 

The ROWE algorithm terminates after k -1 steps if Dk has no one-way 
bridges. We then denote Dk by D. The ROWE index of D is defined to 
be equal to k - 1 if b has no arcs, and is 00 otherwise. Clearly, b has no 
one-way bridges. 

EXAMPLE 3.6. 

(i) It is easy to verify that any digraph consisting of one cycle has ROWE 
index 1. Also, the ROWE index of any digraph D, such that the 
(undirected) graph obtained by removing the directions from the arcs 
of D is a tree, is equal to 1. Clearly, any digraph consisting of disjoint 
digraphs of ROWB index 1 has ROWB index 1. 
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(ii) The one-way bridges in the graph 

1 

2 
------- 3 

are (1, 3) and (2, 1). Therefore, the only arc in D2 is (2, 3), and, 
being a one-way bridge in D2 , it gets removed in the second step. 
Thus, the ROWE index of Dis 2. 

(iii) It is easy to verify that for any complete digraph D with more than 
two vertices we have b = D, and so D has ROWE index 00. Also, 
every digraph with mUltiple arcs has ROWE index 00 . 

We can now characterize those patterns that yield a unique solution for 
every set of given maxima. 

THEOREM 3.7. Let D = ((n),E) be a digraph. The following are 
equivalent: 

(i) For every n x n matrix A with D(A) ~ D, there exists no other n x n 
matrix B with D(B) ~ D satisfying (3.2). 

(ii) For every n x n matrix A with D(A) = D, there exists no other n x n 
matrix B with D(B) ~ D satisfying (3.2) 

(iii) The ROWE index of D is less than or equal to 1. 

Proof (i) =? (ii) is trivial. 
(ii) =? (iii): Assume that (iii) does not hold, that is, some arc (k, l) in 

D(A) is not a one-way bridge in D(A). Define a matrix A€, of the same 
size as A, by 

(i,j) E E(D), (i,j) =f. (k,l), 
(i,j) = (k,l), 
otherwise, 

(3.8) 
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where E :::; 1. Let S be a nonempty proper subset of vertices of D. If there 
are no arcs from S to se, then 

max {(Ae)iJ'} = O. 
(i,j)ESxScnE(D(A)) 

If there are arcs from S to se, then, since (i, j) cannot be the only arc from 
S to se and since E :::; 1, it follows from (3.8) that 

max {(Ae)iJ'} = 1. 
(i,j)ESxScnE(D(A)) 

Thus, all Ae share the same set 

{ max {(A ),,} . S C (n)} 
(i,j)ESxScnE(D(A)) e <J • - , 

in contradiction to (ii). 
(iii) ~ (i): Let A and B be n x n matrices, with D(A) ~ D and 

D(B) ~ D, satisfying (3.2). If the ROWB index of D is less than or equal 
to 1, then every arc (k, l) in D is a one-way bridge, that is, there exists a set 
S of vertices in D such that (k, l) is the only arc from S to se. Therefore, 
from (3.2) we obtain 

max {b i ,} = bkl = max {ad = akl 
(i,j)ESxScnE(D(B)) J (i,j)ESxScnE(D(A)) J , 

and so A = B. • 
The characterizations of the patterns that yield a unique solution of 

some set of given maxima is as follows. 

THEOREM 3.9. Let D = ((n),E) be a digraph. The following are 
equivalent: 

(i) For some n x n matrix A with D(A) = D, there exists no other n x n 
matrix B with D(B) ~ D satisfying (3.2) 

(ii) The ROWB index of D is finite. 

Proof (i) ~ (ii): Assume that the ROWB index of D is 00, and let 
A be any matrix with. D(A) = D. As iJ has arcs, let (k, l) be an arc in iJ 
such that akl is minimal. For E > 0 we define a matrix A e , of the same size 
as A, by 

(A )" = {aij, (i,j) i- (k, l), 
e <J akl- E, (i,j) = (k,l). (3.10) 
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Let S be a set of vertices such that (k, l) E S x se. Since iJ has no one-way 
bridges, it follows that there exists at least one more arc in iJ from S to 
se. It now follows from (3.10), by the minimality of akl, that 

max {(A)·} 
(i,j)ESxScnE(D(B» € <J 

- max {a-} 
- (i,j)ESXScnE(D(A» <J 

for every S ~ (n), 

in contradiction to (i). 
(ii) =} (i): We define a matrix A, with D(A) = D, as follows. For each 

(k, l) E E(D) we let akl = m, where m is the number of the step of the 
ROWB algorithm in which (k, l) gets removed from D. Now, let B an 
n x n matrix, with D(B) ~ D, satisfying (3.2), and let (k, l) be an arc in 
D. We prove that akl = bkl by induction on the number m of the step of 
the ROWB algorithm in which (k, l) gets removed from D. If m = 1, then 
there exists a set S of vertices in D such that (k, l) is the only arc from S 
to se, and from (3.2) we obtain 

max {bij} = bkl = max {aij} = akl · 
(i,j)ESxScnE(D(B» (i,j)ESxScnE(D(A» 

Assume that our claim holds for m < p where p > 1, and let m = p. Since 
(k , l) gets removed from D in the pth step of the ROWB algorithm, it 
follows that there exists a set S of vertices in D such that (k, l) is an arc 
from S to se, and every other arc from S to se gets removed in an earlier 
step. By the inductive assumption we have 

for every (i,j) E S x Se, (i,j) -=f. (k,l). (3.11) 

Since by (3.2) we have 

max {bi -} = max { ai .} = p 
(i,j)ESxScnE(D(B» J (i,j)ESxScnE(D(A» J , 

it now follows from (3.11) that we necessarily have akl = bkl . • 
We conclude this section with a description of all possible solutions to 

the existence problem of matrices with off-diagonal block element maxi
mUlll· 

DEFINITION 3.12. Let X = {Xs : S ~ (n), S -=f. 0, (n)} be a set of 
numbers, and let D = ((n), E) be a digraph. Let A be the matrix defined 
by (2.12). A set P of arcs in D is said to be X-complete if for every relevant 
subset S of (n) there exists (i,j) E S x se n P such that aij = Xs. 
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THEOREM 3.13. Let X = {Xs : S <:;; (n), S =I- 0, (n)} be a set of 
numbers, and let D = ((n),E) be a digraph. Let A be the matrix defined 
by (2.12). The following are equivalent: 

(i) An n x n matrix B satisfies 

max {bij } = Xs 
(i,j)ESxScnE 

for every relevant subset S of (n). 

(ii) There exists an X -complete set P of arcs in D such that bij = aij 
whenever (i,j) E P and bij ::::; aij whenever (i,j) E E\P. 

Proof (i) =} (ii): Let (i,j) E E, and let S be a subset of (n) such that 

(i,j) E S x se and Xs = min {XT}. 
T<;;:(n) 

(i,j)E(TxTC)nE 

We have aij = Xs = max(k,I)ESxscnE{bkz} 2 bij · Also, for every relevant 
subset S of (n) there exists (is,js) E S x se n E such that bisjs = Xs, 
and since Xs 2 aisjs 2 bids = Xs, we have aisjs = bisjs . Therefore, 
P = {(is,js) : S is a relevant subset of (n)} is an x-complete set. 

(ii) =} (i): Let S be a relevant subset of (n). It follows from (ii) that 

max {bi ·} < max {ad = Xs. 
(i,j)ESxScnE(D(A» J - (i,j)ESxScnE(D(A» J 

Furthermore, since P is an x-complete set, there exists (i, j) E S x se n P 
such that aij = Xs. By (ii) we have bij = aij = X s , and so max(i,j)ESxscnE{bij} = 
~. . 
4. DIGRAPHS WITH ROWE INDEX 1 

Motivated by Theorem 3.7, we include here a short discussion of di
graphs with ROWE index 1. Note that a digraph has ROWE index 1 if 
and only if every arc in the graph is a one-way bridge. 

DEFINITION 4.1. Let D be a digraph. 

(i) A digraph D is said to be strongly connected if for every two vertices 
i and j in D there is a path from i to j in D. 

(ii) A sub digraph S of D is said to be a strong component if S is a maximal 
strongly connected sub digraph of D. 
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(iii) A digraph D is said to be minimal strongly connected if D is strongly 
connected and no digraph obtained by removing an arc from D is 
strongly connected. 

DEFINITION 4.2. The condensation D* of a digraph D is a digraph 
whose vertices are the strong components Sl, . .. , Sm of D, and where 
(Si, Sj) is an arc in D* with multiplicity k if there are exactly k arcs 
from vertices in Si to vertices in Sj. 

THEOREM 4.3. Let D be a digraph. The following are equivalent: 

(i) D has ROWB indeed.1. 
(ii) The strong components of D, as well as the condensation D*, have 

ROWB index 1. 

Proof (i):::} (ii): Clearly, if D has ROWB index l,then every subdi
graph of D has ROWB index 1, and, in particular, the strong components 
of D have ROWB index 1. Now, let (Si, Sj) be an arc in D*. By Definition 
4.2, there exist a vertex u in Si and a vertex v in Sj such that (u, v) is an 
arc in D. Since D has ROWB index 1, (u,v) is a one-way bridge, and by 
Proposition 3.4, the digraph obtained by removing (u, v) from D has no 
path from u to v. It follows that (Si, Sj) is a simple arc in D* and that 
the digraph obtained by removing (Si, Sj) from D* has no path from Si to 
Sj. By Proposition 3.4, D* has ROWB index 1. 

(ii) :::} (i): Let (u, v) be an arc in D. If u and v belong to the same strong 
component of D, then, since the strong components of D have ROWB index 
1, it follows that the digraph obtained by removing (u, v) from D has no 
path from u to v, and by Proposition 3.4, (u,v) is a one-way bridge in D. 
Assume now that u and v belong to two different strong components Si and 
Sj of D respectively. Since D* has ROWB index 1, (Si, Sj) is a one-way 
bridge in D*, and it follows that (u, v) is the only arc in D from a vertex 
in Si to a vertex in Sj, and that the digraph obtained by removing (Si , Sj) 
from D* has no path from Si to Sj. It follows that the digraph obtained 
by removing (u, v) from D has no path from u to v, and by Proposition 
3.4, (u, v) is a one-way bridge in D. • 

Theorem 4.3 reduces the problem of characterizing digraphs of ROWB 
index 1 to the problem of characterizing strongly connected digraphs with 
ROWB index 1 (the strong components of D) as well as acyclic digraphs 
with ROWB index 1 (the condensation D*). We conclude the paper with 
a proposition that handles the strongly connected case. 
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PROPOSITION 4.4. A strongly connected digraph D has ROWE index 
1 if and only if D is minimal strongly connected. 

Proof Let D be a minimal strongly connected digraph, and let (i, j) 
be an arc in D. Observe that, since D is strongly connected, if the digraph 
D' obtained by removing (i, j) from D has a path from i to j, then D' too is 
strongly connected. Thus, since D is minimal strongly connected, it follows 
that D' has no path from i to j, and by Proposition 3.4, (i, j) is a one-way 
bridge in D. Hence, D has ROWE index 1. Conversely, assume that D 
has ROWE index 1, and let (i,j) be an arc in D. By Proposition 3.4, the 
digraph obtained by removing (i, j) from D has no path from i to j, and so 
it is not strongly connected. Therefore, D is minimal strongly connected . 

• 
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