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® 
Abstract. For a nonnegative, irreducible matrix A, the grading of the row sums vector and the 

grading of the Perron vector are used to predict the grading of the row sums vector of (I - A)-I. 
This has applications to Markov chains. 
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O. Motivation. Let T be a row stochastic matrix. It is well known that the 
matrix T is the transition matrix associated with an absorbing Markov chain if and 
only if T is permutation similar to a matrix of the form 

where A is a square matrix with p(A) < 1 [BP, Thm. 8.3.21.]. Furthermore, if F is 
the set of indices corresponding to the nonabsorbing, i.e., transient, states then the 
expected number of steps until absorption when starting in the nonabsorbing state i 
is given by 

L [(I - A)-l]ij 
jEF 

[BP, Thm. 8.4.27]. This leads to the natural question of what can be said about 
the row sums of the matrix (I - A)-l given some knowledge about the matrix A. 
In particular, what can we predict about the maximum and minimum row sums of 
(I - A)-l given the row sums of A and the Perron vector for A? 

1. Notation. For an n x n matrix A, let p = p(A) denote the spectral radius of 
A. The real matrix A will be called nonnegative, denoted A 2': 0, if each entry of A is 
nonnegative. If A is nonnegative and irreducible, let X = XA denote the Perron vector 
of euclidean norm one for A; that is, X is the unique strictly positive eigenvector of 
norm one corresponding to the eigenvalue p(A). Unless otherwise specified, the matrix 
A will always be an n x n nonnegative matrix. 
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Let v = (Vl,V2, ... ,Vn )t E lren. There exists a permutation (T such that Vu(l) 2: 
Vu(2) 2: ... 2: vu(n)· The integer vector (a-I (1), (T-I(2), ... , (T-I(n))t is called a grading 
of v. If the entries of v are pairwise distinct, then v has a unique grading and v is 
called a strictly graded vector. A set of vectors is said to share a common grading if 
the intersection of their sets of gradings is nonempty. 

For 1 ::; i ::; n, let ei denote the ith standard basis vector for lren . Let u = Un 
denote the vector of ones. That is, 

Let D = Dn denote the cone in lren generated by the vectors el, el + e2, el + e2 + 
e3,··· ,Un; that is, D = {v E lren : VI 2: V2 2: ... 2: Vn 2: O}. Let I1(D) denote the class 
of D-preserving matrices: I1(D) = {A E Mn(lre): A(D) ~ D}. 

Note that a nonnegative vector v E lren has its entries in decreasing order if and 
only if v E D, and that v has its entries in strictly decreasing order if and only if 
v E int(D), where int(D) denotes the interior of D. Also note that if A E I1(D), then 
Ak E I1(D) for all positive integers k. Finally note that the row sums of the matrix A 
are precisely the entries of the vector Au. 

LEMMA 1.1. If A is a nonnegative, primitive matrix with p(A) < 1, such that 
Au, (I - A)-1U, and XA share a common (strict) grading, then there exists a permu­
tation matrix P such that PAptu,(I - PApt)-lU, and PXA are all in (int(D))D. 
Furthermore, P XA = XPAPe. 

Proof Let v = Au. Let the permutation matrix P correspond to the common 
permutation (T in the definition of grading. Then P Aptu = PAu E D. Since p < 
1, (I _A)-l exists. Since P(I _A)-Ipt = (I -PApt)-I, and since Au and (I _A)-IU 
share the common grading (T, (I -PApt)-1U = (I -PApt)-lptu = P(I _A)-lU E D. 
Finally, X is an eigenvector for p for A if and only if P X is an eigenvector for p for 
P APt. Since multiplication by P is norm preserving and since P Apt is nonnegative 
and primitive, XPApt = PXA. Note that (T is a common grading for Au and XA, so 
PXA E D. 0 

One immediate consequence of this lemma is that we can always assume that a 
graded vector has its entries in decreasing order. Thus questions about graded vectors 
are transformed to questions about vector membership in the cone D. 

Finally, recall the Neumann expansion for the inverse of the matrix I - A. 
THEOREM 1.2 [OJ. Let A be an n x n real matrix with p(A) < 1. Then (I - A)-l 

exists, and 
00 

(I_A)-l =In+ LAk. 
10=1 

2. Empirical evidence. If A is nonnegative and primitive, then by the power 
method, Aku ~ CkXA for large k. Furthermore, if p(A) < 1, then Ck - 0 as k - 00. 

Also, p( A) < 1 implies 
00 

(I-A)-1 U =U+ LAku. 
10=1 

This suggests that the grading for (I - A)-lU should be linked to the grading for 
XA, and that the early terms in the summation should be the most important. Since 



INVERSE ROW SUMS 1159 

(J - A)-IU and (J - A)-IU - u have the same grading, and since 

<Xl 

(J-A)-IU-u=Au+ I:: Aku, 
k=2 

the importance of the grading of Au is immediately apparent. When Au and X share 
a common grading, it remains to be seen how much of an effect the remaining low 
order summands have on the grading of (J - A)-lU. 

Motivated by numerical experiments conducted using MATLAB on an APOLLO 
workstation, we were led to several conjectures. The first was that if Au, X, and 
(J - A)-lU all share a common grading, then that grading is shared by Ak for all 
positive k. The second and more interesting conjecture was that if Au and X share 
a common grading, then (J - A)-lU also shares that grading. Unfortunately, neither 
conjecture holds. 

If 

then 

[

0.0783 0.2999 0.2421 0.0089] 
A = 0.03.05 0.0003 0.1814 0.2272 

0.0013 0.1196 0.1426 0.1305 ' 
0.0008 0.0005 0.0009 0.0003 

0.4394 

[

0.6292] 

Au = 0.3940 ' [

0.8954] 
X = 0.3166 

0.3131 ' 
0.0043 

and (1 _ A)-l = 1.5695 
[

2.0101] 

u 1.5411' 
0.0025 1.0041 

Hence, Au,X, and (J - A)-IU are all in D. However, 

[

0.2765] 
A2 = 0.0914 

u 0.1099' 
0.0011 

which is not in D since its second and third entries are not in decreasing order. 
Discovering a counterexample to the second conjecture proved to be very difficult. 

The following matrix was one of only four counterexamples generated during a run of 
25,000 randomly generated, rank four, strictly positive 4 x 4 matrices with spectral 
radius less than one. In fact, for 67% of the matrices generated in that run, all three 
vectors-Au, X, and (1 - A)-lu--shared a common grading. 

then 

[

0.2042 0.2837 
A = 0.1522 0.2149 

0.1060 0.2072 
0.2750 0.1958 

[

0.7431] 
0.6839 

Au = 0.6836 ' 
0.5700 

[

0.5513] 
X = 0.4991 

0.4987 ' 
0.4452 

0.0196 0.2356] 
0.0320 0.2848 
0.1289 0.2415 ' 
0.0805 0.0187 

and (1 _ A)-l = 3.0330 
[

3.2356] 

u 3.0338' 
2.7799 
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Hence Au and X are in D, however, (I - A)-IU is not in D. 
A run of 100,000 randomly generated, rank three, strictly positive 4 x 4 matrices 

with spectral radius less than one yielded only one counterexample. Furthermore, 
for this run, 91 % of the matrices had all vectors sharing a common grading, and an 
additional 3% had the Perron vector and the inverse row sums vector (but not the 
row sums vector) sharing a common grading. 

Extensive numerical experiments with matrices of sizes up to 50 x 50 lead to 
the following observations. First, for low rank matrices, the grading of X is a good 
predictor for the grading of (I - A)-IU. Second, even when the vectors do not share 
a common grading, they share a roughly blocked common grading in the sense that 
the grading vectors differ within blocks corresponding to closely sized entries of the 
vectors. In particular) the set of indices for the smallest (largest) row sums of A 
correspond roughly to the set of indices of the smallest (largest) entries of the Perron 
vector and to the set of indices of the smallest (largest) row sums of (I - A) -1. 

3. An analytic approach. In this section, we present several different types of 
results including an examination of certain classes of matrices for which the grading 
of the Perron vector and the row sums vector do determine the grading for the inverse 
row sums vector. 

PROPOSITION 3.1. Let A be an n x n nonnegative, irreducible matrix with p = 
p(A) < 1. Suppose that X = XA E D. For 1 ::; i ::; n, 

(1 )-1 Xi [(I A)-I] ( )-1 Xi -p -::; - Ui::; 1-p -. 
Xl Xn 

Proof Since A 2': 0, and p < 1, I -A is an invertible M-matrix. Thus (I _A)-l 2': 
o [BP, Thm. 6.2.3]. Since XED and X is strictly positive, Xl 2': ... 2': Xn > O. Note 
that (I - A)-IX = (1 - p)-lX. Thus for 1 ::; i ::; n, 

(1 - p)-l Xi = L [(I - A)-l]ijXj 
j 

::; L [(I - A)-l]ijXl = [(I - A)-l U]iXI. 
j 

Similarly, the other bound holds. 0 
THEOREM 3.2. Let A be a nonnegative, irreducible matrix with p(A) < 1. If 

A E ll(D), then AU,XA and (I - A)-IU are all in D. 
Proof Since u E D, and since Ak E II(D) for all positive k, Aku E D for all 

positive k. Since p(A) < 1, it follows from Theorem 1.2 that (I - A)-lU = U + 
L~=l Aku E D. Finally since A is nonnegative and irreducible, X A exists, and by the 
Krein-Rutman Theorem [BP, Thm. 1.3.2]' A E II(D) implies XA E D. 0 

COROLLARY 3.3. Let A be a nonnegative, irreducible n x n matrix with p(A) < l. 
If aij 2': ai+l,j for 1 ::; i ::; n - 1 and 1 ::; j ::; n, then Au, X A, and (/ - A)-lU are all 
in D. 

Proof Pick zED. Note that Z 2': 0 and A 2': O. Thus for 1 ::; i ::; n - 1, 

(Az)i = L aijZj 2': L ai+1,jZj = (Az)i+1 2': O. 
j j 

Hence Az E D. 0 
THEOREM 3.4. Let A be a nonnegative, irreducible n x n matrix with p = p(A) < 

1. Suppose that the minimum polynomial of A is mA().) = ).k(). - p). Then 
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(I - A)-1 = I + A + ... + Ak-l + (1 - p)-IAk. Suppose that Au, ... , Ak-1u are 
in D. If either of XA and Aku is in D, then all three of XA, Aku , and (I - A)-lu are 
in D. Finally, if at least one of XA,Au, ... ,Aku is in int(D), then (I - A)-lu is in 
int(D). 

Proof Let X = XA. Then A = pXyt + N where yt is the strictly positive row 
eigenvector for p such that ytX = 1, and where N is the nilpotent matrix of index k 
satisfying NX = 0 and ytN = Qt. For all nonnegative r, Ak+r = pk+r Xyt = pT Ak. 
Hence 

00 00 

L Ar = Lpr Ak = (1- p)-1 Ak. 
r=k r=O 

Thus (I - A)-1 = I +A + ... + (1- p)-IAk. Since Aku = pk(ytu)X, X is in D if and 
only if Aku is in D. Since u E D, it follows that (I - A)-IU E D when Au, ... ,Aku are 
in D. Furthermore, if one of the summands is in int(D), then i1;.is clear that (I _A)-lu 
is in int(D). 0 

COROLLARY 3.5. Let A be a nonnegative, irreducible n x n matrix with p = 
p(A) < 1. If rank(A) = 1 and if Au E D, then XA and (I - A)-IU are in D. 

THEOREM 3.6. Let A be a nonnegative, irreducible n x n matrix with p = p(A) < 
1. Suppose that the minimum polynomial of A is either mA(A) = A(A - p)(A - Ad or 
else mA (A) = (A - p)(A - AI), where Al :f=. Q. If X A and Au are in D, then (I - A)-IU 
is in D. Furthermore, if Au is in int(D), then (I - A)-lU is in int(D). 

Proof Let X = XA. Then A = pXyt +A1E, where yt is the strictly positive row 
eigenvector for p satisfying ytX = 1, and where E2 = E,EX = 0, and ytE = ot. For 
each positive k,Ak = pkXyt + A~E. Since p < 1, (I - A)-1 = 1+ p(l- p)-IXyt + 
AI(l - Ad-IE. Then (I - A)-lu = U + p(l - p)-l(ytU)X + Al(l - AI)-lEu. Since 
Al < p < 1,0 < (1- Al)-I < (1 - p)-I. Clearly, Au ~ O. Now Au E D if and only if 
for 1 :S i :S n - 1, 

(AU)i ~ (Au)i+1 

{=> P (ytu) Xi + Al (EU)i ~ P (ytu) X i+1 + Al (EU)i+l 

{=> p(ytu) [Xi - Xi+l] ~ Al [(EU)i+l - (Eu)i] 

{=> p(l - p)-l (ytu) [Xi - Xi+l] ~ Al (1 - p)-1 [(Eu)i+l - (EU)i] . 

Since XED, the left-hand side of the last inequality is nonnegative; hence the 
inequality remains valid when (1- p)-1 is replaced with (1- Al)-1 on the right-hand 
side. Thus it holds that 

(AU)i ~ (AU)i+l 

=*p (1 - p)-1 (ytu) [Xi - Xi+l] ~ Al (1 - A1)-1 [(EU)i+1 - (EU)i] 

{=>p (1 - p)-1 (ytu) Xi + Al (1 - Al)-I (EU)i 

~ P (1 - p)-1 (ytu) Xi+1 + Al (1- AI)-l (EU)i+l' 

That is, Au ED and XED together imply p(1_p)-l(ytu)X + Al(1-Ad- 1Eu E D. 
That is, (I -A)-l u - u ED. Since u ED, (I _A)-IU ED. Furthermore, if Au E int(D), 
then for all i, each inequality in the argument above can be replaced with a strict 
inequality, hence (I - A)-IU E int(D). 0 

Remark. Let A be an n x n, nonnegative, irreducible matrix with p(A) < 1. For 
n :S 3, there are only two cases for A that are not covered in the results above: when 
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A is 3 x 3, nonsingular, and either A is not diagonalizable or A has three distinct 
eigenvalues. All cases for n = 3 are contained in Theorem 4.6. 

Let A be a nonnegative, irreducible matrix with p(A) < 1. In view of the preceding 
results, several natural open questions arise. Suppose that the minimum polynomial 
for A has degree k. If each of XA, Au, A 2u, ... , Ak-1u are in D, does that imply that 
(I - A)-lU is in D? Does it imply that A'"u is in D for all positive r? If not, what 
additional restrictions might be sufficient on A or on the minimum polynomial? 

4. A second analytic approach. 
THEOREM 4.1. Let B be an n x n complex matrix with p(B) = 1. Then there 

exists a unique positive integer k with k < n, and there exist n x n complex matrices 
B l , ... ,Bk with Bk =f 0 such that adj(I - xB) = 1+ xBl + x2B2 + ... + xkBk. 
Furthermore, 

(i) k = n - 1 if and only ifrank(B) ~ n - 1; 
(ii) if k < n - 1, then k = m + t - 1, where m is the number of nonzero 

eigenvalues of B (counting multiplicities), and where t is the size of the largest Jordan 
block corresponding to the eigenvalue 0 for B. 

Proof Since each entry of adj(I - xB) is either zero or (±1) times an (n -
1) x (n - 1) minor of (I - xB), it follows that k :-:; n - 1. Thus adj(I - xB) = 
Bo + xB1 + x2B2 + ... + xn-1Bn_1 . Setting x = O,Bo = adj(I - OB) = I. Note 
that the coefficient matrix for x n- 1 is generated only by terms from -xB. That is, 
B n- 1 = adj( -B). Note that adj( -B) = 0 if and only if every (n - 1) x (n - 1) minor 
of B is zero. That is, if and only if rank(B) < n - 1. Thus (i) is proven. 

If S is an invertible matrix, then S = [det(S)]adj(S-l). Thus S adj(I _XB)S-l = 
adj(S-l )adj(1 - xB)adj(S) = adj(S(I - XB)S-l) = adj(I - XSBS-l). Thus 

adj (I - XSBS-l) = 1+ xSB1S-1 + x 2 SB2S-1 + ... + xn-1SBn_lS-1. 

Choose S so that SBS-l is the Jordan canonical form of B. That is, SBS-l = 
J1 EEl ... EEl Jr EEl Jr+l E9 ... E9 Js , where the Ja for 1 :-:; a :-:; r are the Jordan blocks 
corresponding to nonzero eigenvalues, and the Ja for r < a :-:; s are the Jordan blocks 
corresponding to the eigenvalue zero. Then 

adj (I - XSBS-1) = 4 [adj(1 - xJa ) IT det (I - XJ,B)]. 
a=1 ,Bela 

Consider the adjoint for a single Jordan block: J = >'h + Nh, where Nh is the h x h 
matrix whose only nonzero entries are ones down the superdiagonal. Adj(1 - xJ) 
has diagonal entries (1 - X>.)h-l, and the nonzero off-diagonal terms are of the form 
(-x)j(l - X>.)h-j-l for 1 :-:; j :-:; h - 1. When>. =f 0, the maximum degree of x in 
adj(1 - xJ) is h - 1. When>. = 0, (_X)h-l is the only type of nonzero term. Thus 
adj(I - xJ) is always of degree h - 1 in x. Note that det(I - xJ) = (1 - X>.)h. When 
>. i- O,det(I - xJ) is of degree h in x. When>. = O,det(I - xJ) is of degree zero in 
x. Consequently, the maximum degree of x in n~=l det(I - xJa ) is precisely the sum 
of the sizes of J1 , J2 , ... , Jr. That is, n~=l det(I - xJo.) is of degree m in x. Hence 
for 1 :-:; a :-:; r,adj(I - xJo.) ll,B¥o. det(I - xJ,B) is of degree (ho. - 1) + (m - ho.), 
where ho. is the size of Jo.. For r < a :-:; s,adj(I - xJo.) II/3e1o. det(I -xJ/3) is of degree 
(ho. - 1) + (m - 0), where ho. is the size of Jo.. Thus the maximum degree of x in 
adj(I - XSBS-l) and, hence, in adj(I - xB) is m + t - 1, where t is the size of the 
largest Jordan block for the eigenvalue zero. 0 
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COROLLARY 4.2. Let A be a nonnegative, irreducible matrix. The following are 
equivalent: 

(i) adj(I - xA) = 1+ XAI + x2A2, 
(ii) at least one of the following holds; 

(a) n:S; 3, 
(b) n > 3 and rank(A) :s; 2, 
(c) n > 3 and rank(A2) = 1. 

Note that conditions (b) and (c) imply that the size of the largest possible Jordan block 
for the eigenvalue zero is two. 

Proof (i) -t (ii). If A2 =/: 0 then either 2 = n - 1, hence n = 3, or else 2 < n - 1 
and 2 = m + t - 1. That is, n > 3 and m + t = 3. Since A is irreducible, m 2: 1. Since 
t = ° implies m = n, t 2: 1. Thus either m = 2 and t = 1, implying rank(A) = 2 or 
m = 1 and t = 2, implying rank(A2) = 1. 

If A2 = 0, but Al =/: 0, then either 1 = n - 1, hence n = 2, or 1 < n - 1 and 
1 = m + t - 1. In the latter case, n > 2 and m + t = 2, implying m = t = 1. That is, 
rank(A) = 1. 

If A2 = Al = 0, then A = 0, which contradicts the irreducibility of A. 0 
Proof (ii) -t (i) If n :s; 3, (i) is immediate. If n > 3 and rank(A) :s; 2, then 

since m + (t - 1) :s; rank(A) always, k = m + t - 1 :s; 2. Now apply Theorem 4.1. 
Finally, if n > 3 and rank(A2) = 1, then p(A) is the unique nonzero eigenvalue and 
m = 1. Clearly, rank(A2) :s; 1 implies t :s; 2. Again, k = m + t - 1 :s; 2. Apply 
Theorem 4.1. 0 

LEMMA 4.3. Let B be a nonnegative, irreducible matrix with p(B) = 1. If Bu E 

int(D), then there exists a maximal w = w(B) such that 0 < w :s; 1, and such that 
(1 - xB)-lu E int(D) for ° < x < w. 

Proof. Since p(B) = 1,0 < IIBI12 :s; 1. Then IIBII~ :s; 1 for all k 2: O. Assume that 
o < x < 1. Then for 1 :s; i :s; n, 

[x, B' [t, xk Bk H <; [x, B' t, xk B'Ju , <; x' IIBII~ l~ x' IIBII~ ]"U11, 

<; x'IlBII; l~ xk ]"u11, = x'IIBII~ (1 - x)-lilull,. 

Since 0 :s; x < 1, Lemma 1.2 yields 

For 1 :s; j < n, 

and 

(I - xB)-1 u = U + xBu + x2B2 [f XkBk] u. 
k=O 

[(I - xB)-1 ulJ 2: 1 + x [Bulj 

[(1 - xB)-l U]j+1 = 1 + X [BU]j+l + [[X2B2 f XkBk] u] 
k=O j+l 

:s; 1 + X [BuL+I + x 2 11BII; (1- x)-I Ilu112. 

It follows that 

[(1 - XB)-l ulj - [(I - xB)-l Ulj+l 

2: x [[Bu]j - [Bulj+1 - x liB II; (1 - x)-l Ilu112] . 
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Since Bu E int(D), the difference [Bu]j - [BU]j+l is strictly positive for 1 ::; j < n. 
Thus for sufficiently small, positive x, the terms [(I - xB) -1 U]j are strictly decreasing. 
Since 1- xB is a nonsingular M-matrix for 0 < x < I, (I - XB)-I U 2: 0 [BP, 
Thm. 6.2.3]. Thus (I - XB)-IU E int(D) for sufficiently small positive x. Thus w 
exists. 0 

LEMMA 4.4. Let B be a nonnegative, irreducible matrix with p(B) = 1. If XB E 

int(D), then there exists a minimal T = T(B) such that 0 ::; T < 1, and such that 
(I - XB)-I U E int(D) for T < X < 1. 

Proof. Let f(x) be the matrix valued function f(x) = adj(I - xB). Note that 
f(x) is continuous for all real x. For 0 < x < 1,I - xB is an irreducible, nonsingular 
M-matrix, hence det(I -xB) > 0 and (I -XB)-l is strictly positive [BP, Thm. 6.2.3]. 
Since (I - XB)-l = det(I - xB)adj(I - xB), it follows that f(x) is strictly positive 
for 0 < x < 1. Note also, for each x in 0 < x < I, f(x)u E int(D) if and only if 
(I - XB)-lU E int(D). 

Since B is nonnegative and irreducible, p( B) = 1 is a simple eigenvalue for B. 
Thus ran.k(I - B) = n - 1. Thus adj(I - B) i- O. Since 1- B has nullity one, its 
column null space has basis {XB} and its row null space has basis {[XBt]t}. Since 
det(I - B) = 0, for x = 1, 

(I - xB)adj(I - xB) = [adj(I - B)] (I - B) = O. 

Thus f(l) = adj(I - B) = CXB[XBtjt for some nonzero scalar c. Since f(x) is 
continuous at x = 1, and since f(x) is strictly positive for 0 < x < 1, f(1) is non­
negative. That is, c> O. Then f(l)u = [C[XB,]tU]XB is a positive multiple of XB, 
hence f(1)u E int(D). Again using continuity at x = 1, it follows that T exists such 
that T < 1 and f(x)u E int(D) for T < X < 1. Observe that T 2: 0 since f(O)u = 
Iu Ii int(D). 0 

The following theorem is an immediate consequence of Lemmas 4.3 and 4.4. 
THEOREM 4.5. Let B be a nonnegative, irreducible matrix with p(B) = 1. Suppose 

that Bu and XB are in int(D). Let w(B) be defined as in Lemma 4.3, and let T(B) be 
defined as in Lemma 4.4. If T(B) < w(B), then: T(B) = O,w(B) = 1, (I - XB)-1 E 
int(D) for 0 < x < 1, and adj(I - xB)u E int(D) for 0::; x::; 1. 

We currently have no useful general characterization of which matrices B satisfy 
the condition T(B) < w(B). The numerical evidence presented in the second section, 
however, suggests that a substantial portion of the matrices B, such that Bu and XB 
share a common grading, do satisfy this condition. 

THEOREM 4.6. Let A be a nonnegative, irreducible matrix with p(A) < 1. Suppose 
that A satisfies either (i) or (ii) in Corollary 4.2. If both Au and XA are in int(D), 
then (I - A)-lU is in int(D). 

Proof. Let p = p(A). Let B = p-lA. Then B is a nonnegative, irreducible matrix 
with p(B) = 1. Clearly, XB = X A. Use (i): adj(I - xB) = 1+ xB1 + x2B2 = 
1+ x(B1 + XB2). For x > 0, adj(I - xB)u and (Bl + XB2)U have the same gradings. 
In particular, adj(I - xB)u E int(D) if and only if (Bl + XB2)U E int(D). Note that 
for each i, [(B1 + XB2)U]i is a linear function in x. Pick i with 1 ::; i < n. Let n 
and /3 be real numbers such that n < /3. If [(Bl + nB2)u]i 2: [(Bl + nB2)uh+l and 
if [(Bl + /3B2 )u]i 2: [(Bl + /3B2)uli+l hold, then by linearity in x, [(Bl + XBZ)U]i 2: 
[(Bl +XB2)U]i+l holds for n::; x::; /3. Furthermore, if the inequality is strict at either 
endpoint, then it is strict for n < x < /3. 

By hypothesis, Au E int(D), hence Bu E int(D). Applying Lemma 4.3, there 
exists w with 0 < w < 1 such that (I - XB)-lU E int(D) for 0 < x < w. For 
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o < x < 1, 1-xB is a nonsingular M -matrix, and as argued in the proof of Lemma 4.4, 
(I -XB)-lU is a positive scalar multiple of adj(I -xB)u. Thus, adj(I -xB)u E int(D) 
for 0 < x < w. Also by hypothesis, XB E int(D), hence from Lemma 4.4 and its proof, 
there exists a positive T with T < 1 such that adj(I - xB)u E int(D) for T < X ::; l. 

The argument in the prececling paragraph implies that when ex is chosen as an 
arbitrarily small, positive number and when /3 = 1, the inequalities for successive 
entries of (Bl +XB2)U are valid and strict for ex < x < /3. Thus adj(I - xB)u E int(D) 
for 0 < x ::; 1. Hence (I - xB)-lu E int(D) for 0 < x < 1. Since 0 < p(A) < 1, and 
since p(A)B = A, (I - A)-lU E int(D). 0 

The following example shows that the conclusion of Theorem 4.6 can be false if the 
condition that Au E int(D) is dropped. Let X = (3,2, l)t. Let B be the parameterized 
matrix 

[

1- r r 

B= r T 
1 1 
6" 6" 

For all T, BX = X and Bu = (1 + T, 2 - 3T, !)t. For 0 < x < 1 and 0 < r < ~,A = xB 
is a nonnegative, irreducible matrix with p(A) = x < 1. Since A is 3 x 3, A satisfies 
condition (ii) of Corollary 4.2. Clearly X A E int(D). Note, however, that Au 'I- D 
when 0 < T < ~. From Theorem 1.2, (I - xB)-lu ~ 1u + xBu for small, positive x. 
Thus (I - A)-lu 'I- D when 0 < T < ~. 

5. Exploiting permutation invariance. In the context of this paper, circu­
lant matrices have three important properties. If A is a circulant matrix, then u is 
an eigenvector for both A and (I - A)-l,p = p(A) is the unique row sum of A, and 
(1 - p)-l is the unique row sum of (I - A)-I. Noting that the circulant matrices 
are precisely those matrices invariant under permutation similarity by the matrix for 
the full cycle permutation, we now examine how any permutation invariance can be 
exploited. 

Let A be an n x n, nonnegative, irreducible matrix with spectral radius p(A). 
Suppose that P is a permutation matrix such that P Apt = A. Clearly, Pu = u. 
Furthermore, P(Au) = Au and P[(1 - A)-Iu] = (I - A)-lU. Also, PApt = A implies 
PXA is a positive eigenvector for p(A) with norm one, hence PXA = X A- Thus the 
cycle structure of P is reflected in a pattern of constant blocks in the vectors X A , Au, 
and (I - A)-lu. 

Assume that the permutation corresponding to P decomposes into k disjoint 
cycles. Let V denote the eigenspace for P for the eigenvalue>. = 1. Then V is a 
k-dimensional subspace of]Rn with a natural basis consisting of certain {O, 1} vectors. 
See [SW, §3]. Furthermore, Un E V. Since A and P commute, V is an A-invariant 
space. Let M be the k x k matrix representing the restriction of A to V with respect 
to the natural basis_ The following can be proven: 

(i) M is a nonnegative, irreducible matrix with p(M) = p(A). 
(ii) Each entry of MUk is the value of all of the entries in the corresponding 

block of Aun . 

(iii) Each entry of (h - M)-lUk is the value of all of the entries in the corre­
sponding block of (In - A)-lUn. 

(iv) There is a normalizing scalar c > 0 such that each entry of CXM is the value 
of all of the entries in the corresponding block of X A. 

It follows immediately that the gradings for XM,Mu, and (I - M)-lu lift naturally 
to gradings for XA, Au, and (I - A)-lu. Finally, when P has the form given by (3.1) 
of [SW], the matrix A naturally block partitions into blocks A(i,j) for 1 ::; i, j ::; k, 
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and M = [mij] is determined uniquely by mij = (hi)-l[UhJtA(i,j}Uhj for 1 :s; i,j :s; k. 
See [SW, §§3 and 4.] 

REFERENCES 

[BP] A. BERMAN AND R. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Aca-
demic Press, New York, 1979. 

[0] R. OLDENBURGER, Infinite powers of matrices and chamcteristic roots, Duke Math. J., 6 

(1940), pp. 357-361-
[SW] J. STUART AND J. WEAVER, Matrices that commute with a permutation matrix, Linear Algebra 

AppJ., 150 (1991), pp. 255-265. 


