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Necessary and sufficient conditions are proven for the existence of a square matrix, over an arbitrary 
field, such that for every principal submatrix the sum of the elements in the row complement of the 
submatrix is prescribed. The problem is solved in the cases where the positions of the nonzero elements 
of A are contained in a given set of positions, and where there is no restriction on the positions of the 
nonzero elements of A. The uniqueness of the solution is studied as well. The results are used to solve 
the cases where the matrix is required to be symmetric and/or nonnegative entrywise. 

1. INTRODUCTION 

Problems concerning the existence of nonnegative matrices with prescribed row and 
column sums, often related to scaling problems, have been long studied, e,g. [1], [4], [5] 
and many other paper. It is clear that the conditions for existence determined in these 
papers force certain relations between the sums of the elements in the off-diagonal 
submatrices. In this paper we solve a related problem, namely we find necessary and 
sufficient conditions for the existence of a real matrix and of a nonnegative matrix with 
the·sum of the elements in each off-diagonal submatrix prescribed. 

We now describe the paper in some more detail. 
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Our notation and definitions are given in Section 2. In Section 3 we study our 
problem over an arbitrary field, and where the positions of the nonzero elements of A 
are contained in a given set of positions. As a corollary we also solve the problem in 
the cases that we have no restriction on the positions of the nonzero elements of A 
(the "graph-free" case). The proof of our main theorem yields a graph theoretic 
characterization of those cases in which the existence problem has a unique solution. 
In the case that the solution is not unique, we describe all possible solutions. 

The results of Section 3 are applied in Section 4 to obtain a solution for the existence 
problem of a symmetric matrix or even a nonnegative (entrywise) symmetric matrix 
with the required properties. The paper is concluded with a solution for the harder case 
where our matrix is required to be (not necessarily symmetric) nonnegative. 

This paper is a companion paper to [3] where we solve the analogous problem for 
maxima in place of sums. 

2. NOTATION AND DEFINITIONS 

This Section contains all the notation and definitions used in this paper. 

NOTATION 2.1 For a positive integer n We denote by (n) the set {I, ... ,n}. 

NOTATION 2.2 For a subset S of (n) we denote by SC the complement of Sin (n) . 

NOTATION 2.3 For a digraph D we denote by E(D) and V(D) the arc set and the 
vertex set of D respectively. 

DEFINITION 2.4 Let D = (V, E) be a digraph. A digraph D' = (V', E') is said to be 
a subdigraph of D if V' ~ V and E' ~ E . We write D' ~ D to indicate that D' is a 
subdigraph of D. 

DEFINITION 2.5 Let D be a digraph. 

(i) A digraph D is said to be strongly connected if for every two vertices i and j of D 
there is a path from i andj in D. 

(ii) A subdigraph D' of D is said to be a strong component of D if D' is a maximal 
strongly connected subdigraph of D. 

DEFINITION 2.6 The symmetric part of a digraph D is the subdigraph of D whose 
vertex set is V(D), and whose arc set consists of all arcs (i, j) of D such that (j, i) too 
is an arc of D. A digraph D is said to be symmetric ifit is equal to its symmetric part. 
We denote the symmetric part of D by Sym (D) . 

DEFINITION 2.7 A set S of vertices in a digraph D is said to be D-loose if for every 
i E S and every j E V(D)\S at least one of the arcs (i, j) and (j, i) is not present in D. 
By convention, 0 and V(D) are D-Ioose sets. 

Remark 2.8 It is easy to verify that a set S of vertices in a digraph D is D
loose if and only if S is a union of strong components of Sym (D). 
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DEFINITION 2.9 The (undirected) graph G(D) of a digraph D is the simple graph 
with vertex set V (D), and where {i, j} is an edge of G( D) if and only if (i, j) or U, i) is 
an arc of D. 

DEFINITION 2.10 A graph G' is said to be a subgraph of a graph G if the vertex set 
and edge set of G' are contained in the vertex set and the edge set of G respectively. 

DEFINITION 2.11 

i) A graph G is connected if for every two vertices i and j of G there is a path 
between i and j in G. 

ii) A subgraph G' of G is said to be a component of G if G' is a maximal connected 
sub graph of G. 

iii) A spanning tree G for a connected graph G is connected subgraph of G, with 
the same vertex set as G, such that G has no cycles. 

Remark 2.12 

i) Observe that the graph of a strongly connected digraph is connected. 
ii) As is well known, every connected graph G has a spanning tree. If G is not a 

tree then it has more than one spanning tree. 

DEFINITION 2.13 A leaf in a graph is a vertex with just one vertex adjacent to it. 

We conclude this Section with a definition and notation that involve matrices. 

DEFINITION 2.14 Let A be an n x n matrix. The digraph D(A) of A is defined as 
the diagraph with vertex set (n), and where (i, j) is an arc in D(A) if and only if 
aij =1= o. . 
NOTATION Let A be an n x n matrix, and let S be a nonempty proper subset of (n). 
We denote 

By convention, ~ = R(n) = o. 

n 

Rs(A) = L aij. 
i,j=i 

iES,J~S 

3. THE GENERAL EXISTENCE AND UNIQUENESS PROBLEMS 

In this Section we study the existence of a general matrix, over an arbitrary field, with 
a given digraph, and such that for every principal submatrix the sum of the elements in 
the row complement of the submatrix is given. 

We start with three equivalent conditions on sets of numbers. 

PROPOSITION 3.1 Let {Xs: S ~ (n)} be a set of numbers such that X", = X(n) = O. 
The following are equivalent: 

(i) For every subsets SI, TI, S2 and T2 of (n) such that 

SI\T1 = S2\T2; TI\SI = T2\S2 
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we have 

Xs, + XT, - XS,UT, - Xs,nT, = XS2 + XT2 - XS2UT2 - XS2nT2' 

(ii) For every subsets Sand T of (n) such that 

S\T = {r}; T\S = {t} 

We have 

Xs + XT - XSUT - XSnT = Xi'} + X{I} - X{"I}' 

(iii) For every nonempty subset S of (n) we have 

Xs = LX{i} - L(X{i} + XV} - X{i,j}). 
iES i,jES 

i<j 

Proof 

(i) ::::} (ii) is immediate, by applying (i) to the sets S, T, {r} and {t}. 

(3.2) 

(ii) ::::} (iii).We prove this implication by induction on lSI. It is easy to verify that (3.2) 
holds for lSI = 1,2. Assume that (3.2) holds for lSI < k where k 2 2, and let lSI = k. 
Let r, t E S. Define SJ = S\{t} and TJ = S\{r}. By (ii) we have 

Xi'} + X{I} - X{"I} = Xs, + XT, - Xs - XS\{"I} , 

and hence 

Applying the inductive assumption to Xs" XT, and XS\{"I} yields 

Xs = LX{i} - L(X{i} + X{j} - X{i,}}) + LX{i} - L(X{i} + XU} - X{i,j}) 
ieS i,jES iES i,ieS 
i#;r i,j-:/:-t ii' i,j,/-r 

~ ~ 

- L Xii} + L(X{i} + XU} - X{i,j}) + X{"I} - Xi,} - X{I} 
iES J,jeS 
iIT,I i,flT,1 

i<j 

= LX{i} - L(X{i} + XU} - X{i,j}). 
iES i,jES 

i<J 

(iii) ::::} (ii). Let Sand T be subsets of (n). By (3.2) we have 

XSnT = L Xii} - L (X{i} + XU} - X{ij})' 
iESnT i,jESnT 

i<j 
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and 

It follows that 

Xs + XT - XSnT - X SUT = L(X{i} +X{j} - X{i,j}) + L(X{i} + X{j} - X{i,j}) 
.~ .~ 
jE1\S jES\T 

i< j i<j 

(3.3) 

Since the right hand side of (3.3) depends only on S\T and T\S, (i) follows. • 

We continue with a lemma that involves matrices. 

LEMMA 3.4 Let A ·be an n x n matrix, let {Xs : S ~ (n)} be a set of numbers such 
that X", = X(n) = 0, and let T be a subset of (n). If 

R{i}(A) - X{i}, lET, (3.5) 

{ 

aij + aji :: X{i} + X{j} - X{i,}}J i,! E T, i =I- j 

X T = L:iETX{i} - L:(X{i} +X{j} - X{i,j}), 

then 

i,jET 
k j 

RT(A) = XT· 

Proof Rr(A) is equal to the sum of all off-diagonal elements in the rows of A 
indexed by T, minus the sum of the off-diagonal elements in the principal sub
matrix of A whose rows and columns are indexed by T. Thus, in view of (3.5), we 
obtain 

proving our assertion. • 
We now prove our main result. 

THEOREM 3.6 Let {Xs : S ~< n >} be a set of numbers such that X0 = X(n) = 0, 
and let D = ((n), E) be a digraph. The following are equivalent: 

(i) There .. f!.xists an n x n matrix A, with D(A) ~ D, such that 

Rs(A) = X s , S ~ (n). 

(ii) Any of the equivalent conditions of Proposition (3.1) holds, as well as 

(3.7) 

X{i,j} = X{i} + X{j}, whenever (i, j) , (j, i) ¢ E, (3.8) 

and 

Xs = L (X{i} + X{j} - X{i,j}), for every D -loose set S. (3.9) 
(i,})ESxSCnE 
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(iii) Any of the equivalent conditions of Propostion (3.1) holds, as well as (3.8) and 

Xs = L (X{i} + X{j} - X{i,j})' 
(i,j)ESxSCnE 

whenever S is the vertex set of 

a component of G (Sym(D)) 
(3.10) 

Proof (i) =} (ii) . We prove that (i) implies Condition (i) of Proposition (3.1), as 
well as (3.8) and (3.9). Let Sand T be subsets of (n). It is easy to verify that 

Rs(A) + RT(A) - RSUT(A) - RsnT(A) = L aij + L aij' 
iES\T,jET\S iET\S,jES\T 

In view of (i) we have 

XS+XT-XsuT-XsnT= L aij+ L aij' (3.11) 
iES\T,jET\S iET\S,jES\T 

Since the right hand side of (3.11) depends only on S\T and T\S, Condition (i) of 
Proposition (3.1) follows. Next, observe that 

aij + aji = R{i} (A) + R{j}(A) - R{i,j} (A), i, j E (n), i i:- j. 

Therefore, if (i, j), (j, i) i:- E then it follows that 

0= R{i} (A) + R{j}(A) - R{i,j} (A). 

In view of (i), (3.8) follows . Finally, let S be a D-Ioose set, and let 
(i, j) E S x SC n E. By Definition (2.7), we have (j, i) ¢. E. Therefore, it follows that 

aij = aij + aji = R{i}(A) + R{j}(A) - R{i,j} (A). 

In view of (i), (3.9) follows. 
(ii) =} (iii) is immediate, in view of Remark (2.8). 
(iii) =} (i). Here we prove that Condition (iii) of Proposition (3.1), together with (3.8) 
and (3.10), implies (i) . We construct a matrix satisfying (i), using the following 
algorithm. 

ALGORITHM 3.12 

Step 0 We assign arbitrary values to the diagonal elements of A, and we let 

{ 
0, (i, j) ¢. E 

aij = X{i} + XV} - X{i,j} , (i, j) E E, (j , i) (j. E . 
(3.13) 

Observe that in view of (3.8), (3.13) does not yield a contradiction in the case that 
(i, j), (j, i)¢.E. 

Let CI , ... , Cm be the strong components of the symmetric part of D. 

Step k,k= 1, ... ,m 
We choose a spanning tree G1 for G( Ck). We assign arbitrary values to the elements 
in the positions {(i,j) EE(Ck) : {i,j} ¢.E(GI),i<j}, and we assign the 
symmetrically located elements values using the formula aji = X{i} + X{j}
X{i,j} - aij ' Let Pk = I V( Ck)1 - 1 be the number of edges in GI . 
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Step k .t, t = 1, ... ,Pk 
Take a leaf u in GI

, with the vertex v adjacent to u in GI
• Observe that auv is the only 

element in the u-th row of A that has not yet been determined. We define auv to be 
n 

auv = X{u} - Lauj 
} =I 

j=l=u,v 

(3.14) 

and we let avu = X{u} + Xiv} - X{u,v} - auv . Finally we define GI+l to be the graph 
obtained by removing the edge {u, v} from G1

• 

Step m + 1 : STOP 
First, note that Algorithm (3.12) constructs a matrix A satisfying 

aij + aji = Xii} + XV} - X{i,j} , i, j E n, i:f. j. (3.15) 

Let i E (n). Observe that the i-th row of A is completely determined in Step 0 of 
Algorithm (3.12) if and only if {i} is a D-Ioose set, that is if and only ifthe singleton {i} is 
a component of G(Sym(D)). By (3.10) and (3.13) we have 

n 

R{i}(A) = L (X{i} + XV} - X{i,j} = Xii} ' 
}=I 

}#i,(i,})EE 

We complete the assignment of each of the other rows of A in one of the Steps k.t, 
t = 1, .. . ,Pk, k = 1, ... ,m. In each such step we determine two elements: auv and avu. 
The element auv is the last to be determined in the u-th row, and is determined so that 
R{u}(A) = X{u} . The element avu is the last to be determined in the v-throw if and only if 
t = Pb and it is the last element to be determined in the rows indexed by the set 
S = V( Ck). So, let us assume that t = Pk. It follows that 

R{;}(A) = X{i} , i E S\{v}. (3.16) 

Since we have (3.2), (3.15) and (3.16), it follows from Lemma (3.4) that 

Rs\ {v} (A) = XS\{v}. (3.17) 

Since Ck is a strong component of Sym (D), it follows from (3.10) that 

Xs = L (X{i} + XV} - X{i,j})' 
(i,j)ESxSCnE 

As is observed in Ramark (2.8), S is a D-Ioose set. Therefore, all the elements in the 
rows indexed by S and the columns indexed by SC are determined by (3.13) and so 

Rs(A) = L (X{;} + XU} - X{i,j}) = Xs· (3.18) 
(i,j)ESxSCnE 

It follows from (3.15) that 

L (avj + ajv) = L (X{v} + XU} - X{v,j}) = L (X{v} + XU} - X{v,j}) . (3.19) 
jES\{v} jES\{v} i=:'~~~=' 

i<j 



22 

Observe that 
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Rs\{v}(A)+'&{v}(A)-Rs(A)= L (avj+ajv). 
jeS\{v} 

It now follows from (3.17), (3.18) and (3.19) that 

R{v}(A) = Xs - XS\{v} + L (X{v} + X{j} - X{vj}). 

Using (3.2) we obtain 

i,jES 
i=v or j= .. 

i<.j 

R{v}(A) = LX{i} -l)X{i} + XU} - X{i,j}) - L X{i} 

It now follows that 

ieS i/:'f ieS\{v} 

+ L (X{i} + XU} - X{i,j}) 
iJES\{v} 

i<J 

+ L (X{v} + X{j} - X{vj}) = X{v}' 
i,jES 

;='1' or j=v 
i<J 

(3.20) 

Since we have (3.2) for every subsetofS of (n), as well as (3.15) and (3.20), it follows 
from Lemma (3.4) that (3.7) holds. • 

Our proof of Theorem (3.6) also yields an answer to the uniqueness question. 

ThEOREM 3.21 Let {Xs : S ~ (n)} be a set of numbers such that X0 = X(n) = 0, and 
let D = (n), E) be a digraph. The following are equivalent: 

(i) There exists a unique n x n matrix A, with D(A) ~ D, such that Rs(A) = Xs, 
S~' (n). 

(ii) Any of the equivalent conditions of Theorem (3.6) holds, and the graphs of the 
strong component of the symmetric part of D are all trees. 

Proof 

(i) =*(ii). If the graph of some strong component of the symmetric part of D is not a 
tree then, using Algorithm (3.12), at least one of the elements of A can be assigned an 
arbitrary value, and hence there exist infinitely many matrices satisfying our 
requirements. 

(ii) =*(i). If the graphs of the strongcomponentofthe symmetric part of D are all trees 
then, for every such a component Ck, G( Ck) is the (only) spanning tree G1 for itself, and 
the set Hi, j) E E(Ck) : {i, j} ¢ E(G1), i <j} is empty. In view of (3.15), Algorithm 
(3.12) constructs the unique matrix A with D(A) ~ D, satisfying (3.7). • 

Theorem (3.6) provides a necessary and sufficient condition for the existence of a 
matrix A, with D(A) ~ D, satisfying (3.7). Theorem (3.21) provides a necessary and 
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sufficient condition for the uniqueness of such a matrix. The following theorem 
essentially describes all solutions of this problem. 

THEOREM 3.22 Let A and B be nxn matrices. Thefollowing are equivalent: 

(i) For every subset S of (n) we have Rs(A) = Rs(B). 
(ii) A - B = C + D, where D is any diagonal matrix and C is an anti-symmetric 

matrix satisfying Rs(C) = O,S ~ (n) . 
(iii) A - B = C + D, where D is any diagonal matrix and C is an anti-symmetric 

matrix with zero row sums. 

Proof 

(i) => (ii). We let D be the diagonal matrix with the same diagonal elements as 
A - B, and let C = A - B - D. The matrix C has zero diagonal elements. Also, 
(i) implies that Rs( C) = 0, S ~ (n). Therefore, it follows that 

cij + Cji = R{i}(C) + R{j}(C) - R{i,j}(C) = ° , i,j E (n), i #j, 

which means that C is an anti-symmetric matrix. 
(ii) => (i). We have Rs(A) = Rs(B) + Rs( C) + Rs(D), S ~ (n). Since D is a 

diagonal matrix, we 'have Rs(D) = 0, S ~ (n). Thus, it follows from (ii) that 
Rs(A) = Rs(B), S ~ (n). 

(ii) => (iii) is immediate. 
(iii) =>(ii) . Let S be any subset of (n). Note that Rs(C) is equal to the sum of all 

row sums of the rows of C indexed by S, all are given to be 0, minus the sum of the 
elements in the principle submatrix of C whose rows and columns are indexed by S. 
Since C is an anti-symmetric matrix, the latter sum is equal to 0, and it follows that 
Rs(C) = 0. • 

We conclude this Section with the following "graph-free" version of the Theorem 
(3.6), obtained from Theorem (3.6) by choosing D to be the complete digraph with n 
vertices. 

THEOREM 3.23 Let {Xs : S ~ (n)} be a set of numbers such that Xc/> = X(n) = 0. The 
following are equivalent: 

(i) There exist an nxn matrix A such that Rs(A) = Xs, S ~ (n). 
(ii) Any of the equivalent conditions of Proposition (3.1) holds. 

4. THE SYMMETRIC AND THE NONNEGATIVE CASES 

Clearly, when looking for symmetric matrices A to satisfy Theorem (3.6.i), we may 
assume, without loss of generality, that D is a symmetric digraph. The following 
theorem is a corollary of Theorem (3.6) in the symmetric case. 

THEOREM 4.1 Let {Xs : S ~ (n)} be a set of numbers such that X0 = X(n) = 0, and 
let D = (n), E) be a digraph. The following are equivalent: 

(i) There exists a symmetric nxn matrix A, with D(A) ~ D, such that 
Rs(A) = Xs, S ~ (n). 
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(ii) Any of the equivalent conditions of Theorem (3.6) holds, and Xs = Xsc, S ~ (n) . 

Proof 

(i) =* (ii). SinceAissymmetric, we have Rs(A) = Rs(AT) = Rsc(A), S ~ (n). Thus, 
(i) yields that Xs = Xsc, S ~ (n) . The rest of the implication follows from Theorem 
(3.6). 

(ii) =* (i). By Theorem (3.6), there exists a (not necessarily symmetric) n x n matrix 
B, with D(B) ~ D, such that Rs(B) = Xs, S ~ (n) . The symmetric matrix 
A = HB + BT) satisfies 

1 1 1 
Rs(A) = "2 (Rs(B) + Rs(BT)) = "2 (Rs(B) + Rsc (B) = "2 (Xs + Xsc) = Xs, S ~ (n). 

Also, since D is a symmetric digraph it follows that D(BT) ~ D, and hence 
D(A) ~ D. • 

We remark that, in general, unless D is given to be a symmetric digraph, Conditions 
(ii) and (iii) of the Theorem (3.6) together with Xs = Xsc, S ~ (n), are not sufficient for 
the existence of a symmetric matrix A, with (D(A) ~ D, satisfying (3.7). This is 
demonstrated by the following example. . 

EXAMPLE 4.2 Let D be the digraph 

1 

2 ..... ___ __ 3 

and let X{l} = X{2} = X{3} = X{1,2} = X{1,3} = X{2,3} = 1. The matrix 

(
0 0 1) 

A = 1 0 0 
010 

has digraph D and satisfies (3.7). Furthermore, since Sym(D) has no arcs, it follows 
by Theorem (3.21) that A is the unique matrix with digraph D satisfying (3.7). 
Therefore, although Xs = Xsc,S ~ (n), there exists no symmetric matrix satisfying 
our requirements. 

The graph-free corollary of Theorem (4.1) is the following. 
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THEOREM 4.3 Let {Xs : S ~ (n)} be a set of numbers such that X0 = X(n) = O. The 
Following are equivalent: 

(i) There exists a symmetric nxn matrix A such that Rs(A) = Xs, S ~ (n). 
(ii) Any of the equivalent conditions of Proposition (3.1) holds, and Xs = 

Xsc, S ~ (n). 

In the nonnegative symmetric case we obtain 

THEOREM 4.4 Let {Xs : S ~ (n)} be a set of numbers such that X0 = X(n) = 0, and 
let D = ((n)), E) be a digraph. The following are equivalent: 

(i) There exists a symmetric nonnegative n xn matrix A, with D(A) ~ D, such that 
Rs(A) = Xs, S ~ (n). 

(ii) Condition (ii) in Theorem (4.1) holds, as well as 

(4.5) 

Proof 

(i) ::::} (ii). Since A is nonnegative, we have aij + aji = R{i} (A) + R{j}(A)
R{i,j}(A) ~ O. 
Thus, (i) yields (4.5). The rest of the implication follows from Theorem (4.1). 
(ii) ::::} (i). By Theorem (4.1), there exists a symmetric n x n matrix A, with 
D(A) ~ D, such that Rs(A) = Xs , S ~ (n). Since 

it follows from (4.5) that A is nonnegative. • 
The graph-free version of Theorem (4.4) is 

THEOREM 4.6 Let {Xs : S ~ (n)} be a set of numbers such that X0 = X(n) = O. The 
following are equivalent: 

(i) There exists a symmetric nonnegative n x n matrix A such that Rs(A) = 
Xs, S ~ (n). 

(ii) Condition (ii) in Theorem (4.3) holds, as well as (4.5). 

The relation between Theorems (4.1) and (4.4), that is the fact that the only 
additional condition needed in the nonnegative symmetric case is (4.5), raises the 
question whether the following satements are true: 

(i) Let {Xs: S ~ (n)} be a set of numbers such that X0 = X(n) = 0, and let 
D = ((n), E), be a digraph. Then there exists a nonnegative n x n matrix A, 
with D(A) ~ D satisfying Rs(A) = Xs, S ~ (n), if and only if any of the 
equivalent conditions in Theorem (3.6), as well as (4.5), holds. 

(ii) Let {Xs : S ~ (n)} be asetofnumbers such thatX0 = X(n) = O. Then there exists 
a nonnegative n x n matrix A satisfying Rs(A) = Xs, S ~ (n), if and only ifany 
of the equivalent conditions in Propositoin (3.1), as well as (4.5), holds. 
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The answer to this question is negative as demonstrated by the following example. 

EXAMPLE 4.7 Let n = 3, let XiI} = X{2} = X{3} = 1, X{I,2} = X{I,3}= 2, X{2,3} 

= -1, and let D be the complete digraph with three vertices. It is easy to check 
that this set satisfies the equivalent conditions in Theorem (3.6). Indeed, the matrix 

A=(~l ~ ~) 
o 1 0 

satisfies Rs(A) = Xs, S ~ (n). Also, we have (4.5). Nevertheless, there exists no non
negative matrix A satisfying (3.7), since X{2,3} < o. 
Example (4.7) suggests that another necessary condition for the existence of a 
nonnegative matrix A satisfying (3.7) should be 

Xs ~ 0, S ~ (n) . (4.8) 

Indeed, we shall prove that in the graph-free case, Condition (4.8), together with 
(4.5) and any of the equivalent conditions in Proposition (3.1), forms a necessary and 
sufficient condition for the existence of a nonngeative matrix A satisfying (3.7), see 
Corollary (4.14). However, under pattern restrictions, Condition (4.8), together with 
(4.5) and any other of the equivalent conditions in Theorem (3.6), does not form a 
necessary and sufficient condition for the existence of a nonnegative matrix A 
satisfying (3.7), as demonstrated by the following example. 

EXAMPLE 4.9 Let n = 3, let X0 = 0, XiI} = 3, X{2} = X{3} = 3, X{1,2} = 3, X{I,3} 

= 2, X{2,3} = 0 and X{I,2,3} = 0 and let D be the digraph. 

1 

2 ~ .. _____ 3 

It is easy to verify that Condition (ii) of Theorem (3.6) holds (for this purpose check 
Condition (iii) of Proposition (3.l)). Also, we have (4.5) and (4.8). Indeed, the matrix 

(
0 1 2) 

A = 1 0 1 
210 

satisfies (3.7). Nevertheless, there exists no 3 x 3 matrix A, with D(A) ~ D, satisfying 
(3.7). For such a matrix we would have al3 + a31 = X{1} + X{3} - X{I,3} = 4. Since 
(3,1) rt E(D), it would follow that al3 = 4, implying that X{l} ~ 4, while X{i} = 3. 
Under pattern restrictions we therefore need a modified version of (4.8), that is 
Condition (4.11) below. 
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THEOREM 4.10 {XS: S ~ (n)} be a set of nonnegative numbers such that 
X ", = X(n) = ° and let D = ((n), E) be a digraph. The following are equivalent: 

(i) There exists a nonnegative n x n matrix A, with D(A) ~ D, such that 
Rs(A) = Xs, S ~ (n). 

(ii) Any of the equivalent conditions in Theorem (3.6) holds, as well as (4.5) and 

Xs2': L (X{i}+X{j}-X{i,j}, S~(n)). (4.11) 
(iJ)ESXsC 
U ,i)j!E(D) 

Proof (i) =? (ii). Since A is nonnegative, we have aij + aji = R{i}(A)+ R{j}(A)
R{i,j}(A) 2': O.Thus, (i) yields (4.5). Also, if (j, i) ~ E(D) then aij = aij + aji = 
R{i} (A) + R{j} - R{i,j} (A) = X{i} + X{j} - X{i,j} . It now follows that for every sub
set S of (n) we have 

Xs = L aij 2': L aij = L (X{i} + X{j} - X{i,j}) 
(i,j)ES XSC (i,}}ES XsC (i,j)ESXSC 

(;, i)~E(D) (;,.¥E(D) 

(ii) =? (i). Define a nonnegative symmetric matrix C, with zero diagonal elements, by 

cij = {X{i} + X{j} - X{i,j} , ~'~ E (n) , ~ ~ ~ 
0, l,j E (n) ,l-j 

It follows by (3.2) and (4.11) that for every subset S of (n) we have 

LX{i} 2': L(X{i} +X{j} -X{i,j}) + L (X{i} +X{j} -X{i,j}) 
iES i,j ES (iJ)ESxsC 

/<.J U,i)~E(D) 

By (3.2) and (3.9), for every D-Ioose set S we have 

LX{i} = L (X{i} + X{j} - X{i,j}) + L (X{i} +X{j} - X{i,j}) 
iES i'f;} (i,j)ES xSCnE 

(4.12) 

1 
= 2 L Ci,j + L cij. (4.13) 

i,jES (i,j)ES XSCnE 

In view of (4.12) and (4.13), it follows from Theorem (3.3) in [2] that there exists a 
nonnegative n x n matrix A, with D(A) ~ D, with row sums X{1} .. . , X{n} , and such 
that A + AT = C. We have 

aij + aji = cij = X{i} + XU} - X{i,j} , i, j E (n), i =1= j. 

Also, since A has zero diagonal elements it follows that R{i}(A) = X{i} , i E (n) . Since 
we have (3.2) for every subset S of (n), it now follows from Lemma (3.4) that the 
nonnegative matrix A satisfies (3.7). • 
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If we choose D to be the complete digraph with n vertices then we obtain the 
following graph-free corollary of Theorem (4.10) 

COROLLARY 4.14 Let {Xs: S ~ (n)} be a set of nonnegative numbers such that 
X¢ = X(n) = O. The following are equivalent: 

(i) There exists a nonnegative n x n matrix A such that Rs(A) = Xs, S ~ (n). 
(ii) Any of the equivalent conditions in Theorem (3.6) it holds, as well as (4.5) and 

(4.8). 

Finally, one may ask whether we can drop Condition (4.5) from Theorem (4.1O.ii) 
and Corollary (4. 14.ii). The answer to this question is negative, as demonstrated by the 
following example. 

EXAMPLE 4.15 Let n = 3, let X0 = 0, X{l) = 2, X{2) = 4, X{3) = 4, X{I,2) = 
1, X{1 ,3) = 5, X{2,3) = 2, and X{l ,2,3) = 0, and let D be the complete digraph with 
three vertices. It is easy to verify that Condition (ii) of Theorem (3.6) holds (for this 
purpose check Condition (iii) of Proposition (3.1». Also, we have (4.11), which is 
equivalent to (4.8) in this case. Indeed, the matrix 

A ~ G ~ ~2) 
satisfies (3.7). However, by Theorem (4.10) there exists no nonnegative matrix 
satisfying (3.7), since X{1,3) = 5> 4 = X{l) +X{3). 

References 

1. R. A. Brualdi, Convex sets of non-negative matrices, Canad. J. Math. 20 (1968), 144-157. 
2. J . A. Dias Da Silva, D. Hershkowitz and H. Schneider, Sum decompositions of symmetric matrices, 

Linear Algebra Appl. 208/209 (1994), 523-537. 
3. J. A. Dias Da Silva, D. Hershkowitz and H. Schneider, Existence of matrices with prescribed off

diagonal block element maxima, Linear Algebra Appl. 212/213 (1994), 367- 385. 
4. M. V. Menon and H. Schneider, The spectrum of a nonlinear operator associated with a matrix, 

Canad. J. Math. 20 (1967), 225-232. 
5. U. G. Rothblum and H. Schneider, Scalings of matrices which have prespecified row and column sums 

via optimization, Linear Algebra Appl. 114/115 (1989), 737-767. 


