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ABSTRACT 

This paper investigates the relationship of the combinatorial properties of a minus 
M-matrix to the growth rate and decay rate of the individual elements in its resolvent. 
These results are then used to develop properties of splittings of an M-matrix. 
Resolvent compatible splittings, distance dominated splittings, and weak graph com­
patible splittings are introduced here, and their relationships to graph compatible and 
G-compatible splittings are investigated. Some of the results of this paper are 
summarized in an implications diagram. 
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1. INTRODUCTION 

We begin by giving some motivation for our work and some historical 
references. 

As is well known (see Berman and plemmons [2] and Varga [13]), with any 
splitting A = M - N one may associate an iterative scheme for solving a 
system of linear equations Ax = b. Interest has centered on the case where 
A is an M-matrix, and in recent years on the case where A is singular. In 
particular the convergence of the iteration depends on the value of the 
spectral radius of M -1 N and on the index of 1 when the spectral radius is 1 
(or equivalently the index of 0 of M- IA). Several papers have dealt with 
these issues, for example Neumann and Plemmons [7], Schneider [Ill 
Kavanagh [4], Marek and Szyld [6], Barker and plemmons [11 and Rose [9], 
and we expand on the results of these papers here. 

Some of the papers mentioned above relate the combinatorial structure of 
a matrix to the spectral properties of the splitting. In this paper we obtain 
results of a similar type by investigating the growth rate and the decay rate of 
the elements of the resolvent (f31 - A)-I , where A is a minus M-matrix. A 
number of our results here are based on properties of principal components 
of minus M-matrices proved by Neumann and Schneider in [8]. Our results 
on resolvents are independent of the results on splittings and may be useful 
in other areas. For example, they may be applicable in the computation of the 
spectral radius, a corresponding eigenvector, or the entire Perron eigenspace 
by means of inverse iterations when the rate of convergence is accelerated by 
means of repeated applications of the resolvents; see for example Stoer and 
Bulirsch [12] or Golub and van Loan [3]. 

We now describe our paper in greater detail: 
Section 2 contains a list of definitions and some preliminaries. In particu­

lar, we introduce the concepts of a weak graph compatible splitting, of a 
distance dominated splitting, and of a resolvent compatible splitting. 

In Section 3, we investigate the resolvents of minus M-matrices. Let A 
be a minus M-matrix. Let f3 > O. If there is no path in G(A), the graph of 
A , from i to j, then the {i , j)th entry of( f31 - A) - I is O. If there is a path 
from i to j , let d = d i } A) be the (Singular) distance from i to j, and let 
S = sPijA) be the shortest path length from i to j. We show that as f3 

approaches 0, the rate of growth of the (i,j)th entry of (f31 - A)-I is as 
f3 - d, and that as f3 approaches +00, the rate of decay of the (i,j)th entry of 
(f31 - A)-1 is as f3-( s+ I). Let Z(O) be the projector onto the generalized 
null space of A along the sum of the generalized eigenspaces associated with 
all the eigenvalues of A different from O. Let Zed-I) = A(d-l)Z(O). Then 

lim f3d( f31 - A) -1) .. = (Z(d-I»)i j. 
(3-+ 0 t. ) • 
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Now let A = pI - P, where P is nonnegative and p > O. We show that 

lim {3 S + 1 (( (3I - A) -1). . = (P S) i '. 
(3-> 00 . , J ,J 

This may be of particular interest when P represents a Markov process. In 
Section 3 we work entirely with minus M-matrices, since for such matrices 
the resolvent is always nonnegative. 

In Section 4, we apply the results of Section 3 to splittings, and here we 
consider M-matrices as is classically done. In [6] Marek and Szyld introduced 
the notion of G-compatibility, and this has motivated some of our work. We 
generalize the definition of G-compatibility to get resolvent compatibility. We 
show that the relationship between resolvent compatibility and various com­
binatorial conditions on splittings is quite complex. One chief purpose of this 
paper is to introduce new combinatorial types of splittings, such as a distance 
dominated splitting and a weak graph compatible splitting, and to investigate 
the relationship of such splittings to graph compatibility, on the one hand, 
and to G-compatibility, resolvent compatibility, and other analytic conditions 
on splittings, involving resolvents, on the other. At the end of Section 4, we 
provide a diagram illustrating the relationships between four main types of 
splittings investigated in this paper. 

2. DEFINITIONS 

We begin with some standard definitions. Suppose X E IRnn . 
We let p( X) denote the spectral radius, mult,/ X) the degree of A as a 

root of the characteristic polynomial, and index,,(X) the degree of A as a root 
of the minimal polynomial. We Let A1, . . . , At represent the distinct eigenval­
ues of X, and i-Lk = index"k(X), We will write ( n) = {l, .. . , n} . 

X is called: 

positive (X » 0) if Xi} > 0 for all i,j E ( n); 

semipositive (X> 0) if Xi ,} ~ 0 for all i,j E ( n ) and X'* 0; and 
nonnegative (X ~ 0) if Xi,} ~ 0 for all i , j E ( n ) . 

X is called a Z-matrix if X = al - P for some a E IR with P nonnega­
tive. If in addition, a ~ pep), then we say X is an M-matrix. If - X is a 
M-matrix, we say X is a minus M-matrix. 

Let J, K ~ (n ). We will write X[], K] to represent the submatrix of X 
whose rows are indexed by the elements of J and whose columns are indexed 
by the elements of K. 
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Let r = (V, E), where V is a finite vertex set and E is an edge set. A 
path from j to k in r is a sequence of vertices j = r 1, r2 , • . . , rt = k, with 
(ri , r i + 1) E E, for i = 1, ... , t - 1. A path for which the vertices are pair­
wise distinct is called a simple path. The empty path will be considered a 
simple path linking every vertex to itself. If there is a path from j to k, we say 
that j has access to k. If j has access to k and k has access to j, we say j and 
k communicate. The communication relation is an equivalence relation; hence 
we may partition V into equivalence classes, which we will refer to as the 
classes of r. 

We define the graph of X by G(X) = (V, E), where V = (n) and 
E = ({i,j) I Xij =1= O}. We define the closure of the graph of X by G( X) = 

(V, E'), where V = (n) and E' = {{i,j) I i has access to j in G(X)}. 
It is well known that the indices of X can be ordered so that X is in block 

lower triangular Frobenius normal form, with each diagonal block irre­
ducible. The irreducible blocks of X correspond to the classes of G(X). If an 
irreducible block is singular, we call the corresponding class a singular class . 
Similarly, if an irreducible block is nonsingular, we call the corresponding 
class a nonsingular class. Capital letters will be used to represent classes of 
the various matrices involved, and small letters will be used when referring to 
their individual elements. 

We define the reduced graph of X by R(X) = (V, E), where V = (J IJ 
is a class of G(X)} and E = {(J, K) I there exist j E J and kE K with 
Xjk =1= a}. A vertex J in R(X) is called Singular or nonsingular depending on 
whether the corresponding class is singular or nonsingular. The (singular) 
length of a simple path in R(X) is the sum of the indices of zero of the 
Singular vertices lying on it, and in the case of an M-matrix this is just the 
number of singular vertices on the path. If there is a path from J to K, 
define the (Singular) distance, d(J, KXX), from IJ to K to be the maximal 
length of a simple path connecting J and K in IR(X). If there is no path 
from J to K, we set dC], K)(X) = -1. 

A = M - N is called a splitting if M is nonsingular. A splitting is called: 

an M-splitting if M is an M-matrix and N ~ 0; 
regular if M-1 ~ 0 and N ~ 0; 
weak regular if M-1 ~ 0 and M-1 N ~ 0; 
weak if M-1N ~ 0; and 
a Z-splitting if M- 1 ~ 0 and M-1A is a Z-matrix. 

A splitting A = M - N is called graph compatible if G(M) ~ G( A). 
The follOwing definition is from [6]. We include a version specific to the 

finite dimensional case: 

DEFINITION 2.1. Let A E [Rnn be an M-matrix. We can write A = 

aI - P, where a> 0 and P ~ O. A weak splitting A = M - N is called 
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G-compatible if there is a positive quantity 'T such that for all positive real {3, 

( 
1 )-1 

[(1 + {3)I - M- 1Nr
1 ~ 'T (1 + {3)I - a P (1) 

We would like to point out that this last equation is equivalent to saying 
there is a positive quantity 'T such that for all positive real {3, 

( 
1 )-1 

({31 + M-1Ar1 ~ 'T {31 + ~(A) (2) 

We extend this idea to an arbitrary splitting A = M - N of an arbitrary 
matrix A, and construct our definition so that it is independent of a. 

DEFINITION 2.2. Let A E [Rnn. A splitting A = M - N is said to be 
resolvent compatible if there exists 'T > 0 such that for all positive real {3, 

(3) 

Notice that 

( {31 + A) -1 = [ {31 - ( - A)] - 1 

is the resolvent of - A. 
Equation (3) is obtained from Equation (2) by replacing (l/a)A on the 

right hand side of the equation with A. It follows from Corollary 3.8 that 
there exists a 'T > 0 such that for all positive real {3, Equation (3) holds if and 
only if for any positive a there exists a 'T > 0 such that for all positive real {3, 
Equation (2) holds. This establishes that a weak splitting of an M-matrix is 
G-compatible if and only if it is resolvent compatible. 

REMARK 2.3. Implicit in the definition of G-compatibility is that 
p(M- 1N) ~ 1; otherwise {31 - (-M-1A) = (1 + {3)I - M-1N will not be 
invertible for all {3 > o. The follOwing example, due to Neumann (see [11]), 
shows that the maximal eigenvalue of M-1N can be greater than 1 even for a 
regular splitting: 

M= (~ ~), N = (~ 

(-1 0) o O· 
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We introduce the following other new definitions: 

DEFINITION 2.4. Let A E [Rnn . A splitting A = M - N is called -weak 
graph compatible if G(M-IN) ~ G( A). 

REMARK 2.5 [11]. Corollary 2.6 shows that for a graph compati­
ble splitting, there are no access relations in G(M-IA) which are not pre­
sent in G( A); thus graph compatibility implies weak graph compatibility. In 
Remark 2.3 we provide a weak graph compatible regular splitting which is 
not graph compatible. Thus weak graph compatibility is indeed weaker than 
graph compatibility. 

We extend the definition of (singular) distance to the vertices of G( X). 

DEFINITION 2.6. Let XE [Rnn. Forj,k E (n) define 

where j E j and k E K, 

with j, K classes of X. 

DEFINITION 2.7. Let A E [Rnn. A splitting A = M - N is called a 
distance dominated splitting if dijM-IA) ~ dijA) for every i,j E (n). 

REMARK 2.8. By the Rothblum index theorem [10], a distance domi­
nated splitting A = M - N of an M-matrix such that M-IA is also an 
M-matrix will satisfy 

DEFINITION 2.9. Let X E [Rnn. For each i,j E (n), we define here the 
shortest path length, SPijX). If there is no path in G(A) from i to j, set 
SPijX) = 00. If there is a path from i to j, set SPijX) = s, where s is the 
number of edges in the shortest path from i to j. 

Since the empty path from any vertex to itself has no edges, we take 
SPi)X) = 0 for all i E (n). 
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3. RESOLVENTS OF MINUS M-MATRICES 

Let A be a minus M-matrix. The function (f3I - A)-I is referred to as 
the resolvent of A. In this section we establish the orders of the growth rates 
(as f3 approaches zero from the right) and the decay rates (as f3 approaches 
infinity) of the elements of the resolvent in terms of combinatorial properties 
of the matrix. 

We begin our analysis of the resolvent of a minus M-matrix by establish­
ing the growth rate of an element in terms of the singular distance between 
the element's indices. This then allows us to compare the resolvents of two 
minus M-matrices for positive f3 near zero. 

From [5, p. 321] we know that for any f3 not contained in the spectrum of 
X, (f3I - X)-I admits the expansion 

t /Lk- 1 Zk,j 

(f3 I -X)-I= L.L (f3-
A

)j+I' 
k=l )=0 k 

( 4) 

where Zk,O is a projector onto the generalized eigenspace of Ak along the 
sum of the generalized eigenspaces associated with all eigenvalues of X 
different from Ak , and Zk,j = (X - AkI)jZk ,O for all 0 <j .;;; i-Lk' In the 
special case where Ak = 0, to simplifY notation, we will write Zk,j = Z(j) . 

Our Z(j) agree with those of [8], and our Zk,j differ from the Zk,j in [5] by a 
factor of j!. 

THEOREM 3.1. Let A be a minus M-matrix. Let i,j E <n). Let d = 
d;j A) and Z(j) be as described above. 

CO If d = -1, then (( f3I - A)-I );,j = 0 for all positive real f3. 
(li) If d ~ 0, then (( f3I - A)-I );,j > 0 for all positive real f3 . 

(iii) If d > 0, then for f3 > 0, 

lim f3d(( f3I - A)-I) . . = (Z(d-I))i} > O. 
{3-->0 ',] , 

(iv) Ifd ~ 0, thenforany real T/ > 0, f3d(( f3I - A)-I)i,} can be extended 
to a continuous function on the interval [0, T/], which is bounded away from 0 
and bounded from above on this interval. 

Proof. (i) and (ii); Since f3I - A is a nonsingular M-matrix, by [11, 
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Lemma 2.2], we have 

G(f3I-A)-I) = G(f3I-A) = G(A). 

From this it follows that if d = -1, then « f31 - A)-1 \j = 0, and if d ~ 0, 
then « f31 - A)-1 );,j *- 0. In the latter case, since « f31 - A)- 1 );,j is a 
nonzero element in the inverse of an M-matrix, it must be ~ositive. 

(iii): If d > 0, then by [8, Section 2, Lemma 2], (Z( »)i,j = ° for all 
k ~ d, and by [8, Section 3, Theorem 1], (Z(d-l»)i ,j > 0. We will label the 
eigenvalue zero as AI' Combining this with Equation (4), we see that 

d- 2 
f3d( f31 - A)-I)i,j = (Z(d-I»)i, j + f3 L f3 d- k- 2 (Z(k»)i,j 

k=l 

t i-'m - 1 ( zm, k) . . 
d" " I,) + f3 '-' '-' k+ 1 . 

m=2 k = O (f3 - An,) 

Since d ~ 1 and Am *- ° for all m E {2, . . . , t} , the last two terms must 
converge to zero as f3 appJoaches zero. 

(iv): If d > 0, let F( f3) = f3d« f31 - A)- I )i ,j for all f3 > 0. Then by 
(iii), F( f3) can be extended to a continuous function on [0,(0) by defining 
F(O) = (Z(d-I»)i ,i' Combining this with (ii), we see that F( f3) is a positive, 
continuous, real valued function on the interval [0, '1]]. Hence it achieves its 
maximum and minimum, and its minimum must be positive. 

If d = 0, let 'I' = {k I i has access to k and k has access to j in G(A)}. 
Let B = A['I', '1'], and assume that B is in Frobenius normal form. Since 
d = 0, the blocks on the diagonal of Bare nonsingular; thus B is a 
nonsingular minus M-matrix, and f31 - B is a nonsingular M-matrix for all 
f3 ~ 0. By [8, Section 2, Lemma 1], (f31 - B)-I = (f31 - A)-I['I', '1']. By 
[U, Lemma 2.2], G«f31 - B)-I) = G(B) for all f3 in [0,(0). Thus 
«f31 - A)-I)i.) = «f31 - B)- I)i, j is a continuous, positive, real valued 
function on the interval [0, '1]]. Hence it achieves its maximum and minimum, 
and its minimum will be positive. • 

COROLLARY 3.2. Let A , B be minus M-matrices. Let i,j E < n ) . For any 
'1] > ° the following are equivalent: 

(i) There exists 7 i , j > 0, such that for all positive real f3 < '1], 

( f31 - B)-I) .. ~ 7i . ( f31 - A)-I) . .. 
I,) , ) I,) 
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Proof. Follows from Theorem 3.1 by considering each possible case for 
dijA) and dijB). • 

REMARK 3.3. We provide here an example which shows that even if 
Corollary 3.2(ii) is satisfied, we cannot always choose a 7 i • j such that the 
inequality in (i) will hold for all {3 > O. 

Let 

A ~ (1 0 

~) B ~ (~ 
0 

~) 0 -1 
1 -1 0 -1 

Then 

1 
0 0 

{3 

({3I-A)-l= 
1 1 

{32 0 
{3 

1 1 1 
--

{32( {3 + 1) {3({3+1) {3+1 

and 

1 

{3 
0 0 

({3I-B)-l= 
1 

0 -- 0 
{3+1 

1 1 
0 --

{3({3+1) {3+1 

Notice that d3• l( A) = 2, d3 ) B) = 1, but if we allow {3 to approach infinity, 
there does not exist a 7 3• 1 independent of {3 such that (({31 - B)-1)3.1 ~ 
7 3. /({31 -A)-1)3.1· 

Next we consider the decay rate (as {3 approaches co) of an element in the 
resolvent. We show that this rate is determined by the length of the shortest 
path between the vertices. This then allows us to compare the resolvents of 
two minus M-matrices in the case where {3 is allowed to grow without 
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bound. Combining these results with those above, we can predict the 
behavior of the resolvent for all positive real f3. 

THEOREM 3.4. Let A be a minus M-matrix. Write A = P - aI, with 
a;:;' 0 and P nonnegative. Let i,j E (n ) . Set S = SPi'/A). 

(i) If s = 00, then « f3I - A)-l )i.1 = 0 for all f3 > o. 
(li) If s < 00 , then 

(iii) If s < 00, then for any real 1/ > 0, f3'+ 1« f3I - A)-l )i .1 is bounded 
away from 0 and boundedfrom above on the interval [1/ ,(0). 

Proof. (i): s = 00 if and only if d;./A) = -1. Now apply Theorem 3.1. 
(ii): For k ;:;. 0, let (p k);.1 = Pk' Since (p k)i ,1 is nonzero if and only if 

there is a path oflength k from i to j in G(A), we !mow that Pk = 0 for all 
k < s, and Ps > O. Then for any f3 > 0, let 

f3
s

+
1 

(( 1 )-1) F( (3) = f3'+1(( f3I - A) -1) . . = -- 1- --P . 
',J f3 + a f3 + a .. 

'.J 

Define 

Then for all I' I < 1/ pep), 

Let ,= 1/( f3 + a). Then f3 = (1 - 'a)/ ' and, since a;:;. pcP), we have 
I' I < 1/ pcp) for all f3 > O. Moreover 
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Thus 

lim F( (3) = lim (1 - ?a)'+lC(n = C(O) = Ps' 
f3-H

t:> ' .... 0 

(iii): By (ii), we can choose {} > ° such that for all (3 > {}, 

~S < F( (3) < 2ps' 

Moreover, {3s+ 1« {31 - A)-l )i.j is a continuous, positive, real valued func­
tion on the compact interval [1/, {}] and so achieves its maximum and 
minimum on this interval, and its minimum will be positive. • 

REMARK 3.5. It should be noted that the diagonal elements of P are not 
uniquely defined in Theorem 3.4. However, since we are dealing with the 
shortest path from ito j, if i oF j, the element (PS)i,j is independent of the 
diagonal elements. If i = j, then s = ° and (pO)i ,i = 1. 

REMARK 3.6. Let P E IRnn be nonnegative. Let s = SPi/P), If s is 
finite, then s is the smallest nonnegative integer such that (P S)ij > 0. 
Whenever (3 ~ p(p), P - {31 is a minus M-matrix; hence by part (ii) of 
Theorem 3.4, s is also the smallest nonnegative integer such that 

lim {3S+1( (31 - P) -I) . . > 0, 
f3 .... 00 ' , ] 

and this limit provides an asymptotic approximation to (PS)ij' 
Let P represent the transition matrix associated with a finite homoge­

neous Markov process with states 9 1, ... ,.7". For any positive integer k ~ 1 
and any indices i,j E (n), (pk)i ,j is the probability that if the system is 
initially in state .9';, then after k time units it will be in state .9j. Thus part (ii) 

of the above theorem provides us with asymptotic means of approximating 
the probability that given that the system is initial state .9';, it will be in state 
.9j for the first time after SPi) A) time steps. 

COROLLARY 3.7. Let A, B be minus M-matrices. Let i,j E (n ) . Forany 
1/ > 0, the folloWing are equivalent: 

(i) sp .. (B) ;;;,. sp . . (A) . . ,] '.] 

(ii) There exists 'Ti ,j > ° such that for all positive real {3 > 1/, 
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Proof. Follows from Theorem 3.4. • 
COROLLARY 3.8.· Let A, B be minus M-matrices . Then the following are 

equivalent: 

CO dijB).;;; dijA) and SPi'/B);;:. SPi'/A) for all i,j E (n). 
Gi) There exists T > ° such that for all positive real f3, 

Proof. Follows from Corollary 3.2 and Corollary 3.7. 

4. RELATIONSHIPS BETWEEN SPLITTINGS 

• 

In this section we discuss splittings of M-matrices and resolvents of their 
negatives. Let A = M - N be a splitting of an M-matrix. We begin our 
discussion by relating the relative growth rates (for positive f3 near zero) of 
the resolvents of the negative of A and the negative of M- 1A to the 
corresponding combinatorial property. 

THEOREM 4.1. Let A = M - N be a splitting of an M-matrix such that 
M- 1A is also an M-matrix. Then for any TJ > 0, the follOWing are equivalent: 

(i) There exists T > ° such that for all positive real f3 < TJ, 

(f31 + M- 1A) -1 .;;; T( f31 + A) -1 . 

(ii) ' The splitting is distance dominated. 

Proof. Follows from Corollary 3.2. • 
Next we show how distance dominated splittings relate to two other 

combinatorial types of splittings: graph compatible splittings and weak graph 
compatible splittings. 

THEOREM 4.2. Let A = M - N be a graph compatible splitting of an 
M-matrix such that M- 1A is also an M-matrix. Then the splitting is distance 
dominated. 

Proof. Since the splitting is graph compatible, if we view A in 
block lower triangular Frobenius normal form, then M and M- 1 will 
also be block lower triangular conformable with the blocks of A. For 
any class K of A, (M- 1A)[K, K] = (M[K, KJ)- l A[K, K], and by the 
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assumption that M-IA is an M-matrix, (M- IA)[K, K] must also be an 
M-matrix. If A[K, K] is nonsingular, then (M- IA)[K, K] is also nonsingu­
lar. If A[K, K] is singular, then it is an irreducible singular M-matrix 
and hence has "property c." Moreover, there exists x» 0 such that 
A[K, K]x = o. Then (M[K, K]) - IA[K, K]x = 0, and it follows from [2, 
p. 155] that (M-IA)[K, K] is also an M-matrix with "property c," 
and hence indexo«M-IA)[K, KD = l. 

Since by [11, Corollary 2.6] there are no access relationships in G(M-IA) 
which are not present in G( A), the singular distance cannot grow. • 

REMARK 4.3. We prOvide here an example of a graph compatible 
splitting of an M-matrix which is not distance dominated. This shows that the 
condition that M- IA is an M-matrix cannot be omitted in Theorem 4.2: 

U -1 -n M ~ ( : 
0 n A= 1 -1 

0 -2 1 

N ~ ( ~ 1 ~) , M-'A ~ (l - 1 n -2 -2 
-1 1 -1 -1 

Notice that indexo(A) = 1 while indexo(M- IA) = 2. Thus dI2(A) = 1, but 
d1,2(M- IA) = 2. ' 

REMARK 4,4. As a consequence of Theorem 4.2 and Schneider [11, 
Theorem 4,4 and Lemma 4J], it is clear that every graph compatible, weak 
regular splitting of an M-matrix is distance dominated. On the other hand, in 
Remark 2.3 we have given an example of a distance dominated regular 
splitting of an M-matrix which is not graph compatible. 

THEOREM 4.5. Let A = M - N be a distance dominated splitting of an 
M-matrix such that M-IA is an M-matrix. Then the splitting is weak graph 
compatible. 

Proof. By Theorem 4.1, for any 1/ > 0 there exists T > 0 such that for all 
positive real {3 < 1/, ({31 + M-IA)-I .;;; T({31 + A)-I. Then since we are 
dealing with M-matrices, by [11, Lemma 2.2] we have 

G(({31 + M-IArl) = G(M-IA) = G(M-IN) and 

G(({3I+A)- I ) = G(A). 
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Thus if i,j E (n), i *' j, such that i does not have access to j in G(A), 
then (({31 +A)-I)i,j = 0, which forces (({3I+M- IA)-I)i,j";;O. But 

{31 + M-IA is an M-matrix and so has a nonnegative inverse; thus (( (31 + 
M-IA)-I)i,j = 0, and thus i does not have access to j in G(M-IA). Hence 
G(M-IN) ~ G( A). • 

REMARK 4.6. We prove here an example of a weak graph compatible, 
weak regular splitting of an M-matrlx which is not distance dominated. This 
example was taken from [4]: 

A = (~ -1 ) 
1 ' 

M = ( 1 
-1 

N = ( 1 
-1 ~ ), -1 ) o . 

Distance dominated splittings relate the resolvents of the appropriate 
matrices only for {3 near zero. Resolvent compatibility compares the resol­
vents of the appropriate matrices for all positive {3, and hence compares their 
relative growth rates as {3 approaches zero and their relative decay rates as {3 
approaches 00. We give a combinatorial characterization of resolvent compati­
bility. We also show that G-compatibility (and hence resolvent compatibility) 
is not equivalent to graph compatibility. 

THEOREM 4.7. Let A = M - N be a splitting of an M-matrix such that 
M-IA is an M-matrix . Then the following are equivalent: 

CO A = M - N is a resolvent compatible splitting . 
(ii) A = M - N is a splitting such that for every i, j E (n), 

Proof. The result follows from applying Corollary 3.8 to - A 
and-M-~. • 

REMARK 4.8. The example in Remark 2.3 shows that the condition that 
M-IA is an M-matrix cannot be omitted in Theorem 4.7. This example 
satisfies the combinatorial conditions of Theorem 4.7(ii) (and hence is dis­
tance dominated), but M-IA is not an M-matrix, and the splitting is not 
resolvent compatible. 
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REMARK 4.9. We provide here an example of a G-compatible (and hence 
resolvent compatible) regular splitting of an M-matrix which is not graph 
compatible. Unfortunately this contradicts [6, Lemma 5.7]: 

A~ H -~ n 
N~ (~ ~ n 

M~ H -I n 
M-'A~ (~ -~ n 

REMARK 4.10. We prove here an example of a (graph compatible) 
M-splitting for which index1(M- 1N) > 1. This splitting cannot be G­
compatible (nor resolvent compatible). This answers [6, Open Question 5.9] 
and contradicts [6, Lemma 5.8]: 

A~H 
0 n M~H 

0 n 0 1 
-1 -1 

N ~ (~ 
0 n M-'A~(-~ 0 n 1 0 
0 -1 -1 

M-'N ~ (l 0 n 1 
1 

Notice that sp3,iA) = 2, while sp3,/M- 1A) = 1. Now apply Theorem 4.7. 

As pOinted out in Remark 2.5, there exists an example of a weak graph 
compatible regular splitting of an M-matrix which is not graph compatible. In 
our next theorem we show that weak graph compatibility, with an additional 
hypothesis, implies graph compatibility. 

THEOREM 4.11. Let A = M - N be a weak graph compatible, regular 
sp litting. If, for every class K of A, (M -1 )[ K, K] has a positive element in 
every column, then the splitting is also graph compatible. 

Proof. Suppose not. . Then there exists j, k E (n) such that Mj , k =1= 0 
and j does not have access to k in G( A). Let j EJ and k E K, with] and 
K classes of A. Since, by assumption, j does not have access to k in G( A), it 
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must be that A[j, K] = O. Since the splitting is regular, it follows that 
~, k > O. But then since (M-1 )[j, jl has a nonzero element in every column, 
(M-1[j , jlN[j, K] > O. Since M-1and N are nonnegative matrices, this 
implies that (M- 1N)[j, K] > O. This contradicts that G(M-W) ~ G( A) . 

• 
A special case of the above theorem is: 

COROLLARY 4.12. Let A = M - N be a weak graph compatible, regular 
splitting. Iffor everyi E ( n > one has (M- 1)ii > 0, then the splitting is also 
graph compatible. 

In Figure 1 we provide a diagram showing the relationships between four 
types of splittings which have been considered in this paper. Notice that we 
can now establish other relationships by following various arrows around the 
diagram. Note that a G-compatible splitting is just a resolvent compatible 
weak splitting of an M-matrix. 

GRAPH COMPATIBLE 
Rm 2.5 Tlun 4.11 Rm 2.5 

Thm 4.2 Rm 4.4 /)3f/r 
WEAK GRAPH 
COMPATIBLE 

~~~ 
Rm 4.6 Thm 4.5 Tlun 4.7 Rm 4.8 Tlun 4.7 

DISTANCE DOMINATED 
KEY 
~ counter example of a regular splitting. 

~ counter example of a weak regular splitting. 

(1) for a splitting such that M-1 A is an M-matrix and 
for every i,j E (n), spi,j(M-1 A) ~ sPi,j(A). 

(2) for a splitting such that M-1 A is an M-matrix. 
(3) for a regular splitting such that (M-1 )[K, K] has a 

nonzero element in every column, for all classes K of A. 

FIG. 1. Relationships established for splittings of an M-matrix. 
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OPEN QUESTION 4.13. In Remark 4.6 we give an example of a weak 
graph compatible, weak regular splitting which is not a distance dominated 
splitting. Does there exist a weak graph compatible regular splitting of an 
M-matrix which is not a distance dominated splitting? 

We would like to thank the referee for providing helpful comments and 
suggestions. 
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