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Abstract. Standard facts about separating linear functionals will be used to determine 
how two cones C and D and their duals C* and D* may overlap. When T: V -+ W is 
linear and K C V and DeW are cones, these results will be applied to C = T(K) and 
D, giving a unified treatment of several theorems of the alternate which explain when C 
contains an interior point of D. The case when V = W is the space H of n x n Hermitian 
matrices, D is the n x n positive semidefinite matrices, and T(X) = AX + X* A yields 
new and known results about the existence of block diagonal X's satisfying the Lyapunov 
condition: T(X) is an interior point of D. For the same V , Wand D, T(X) = X - B* XB 
will be studied for certain cones K of entry-wise nonnegative X's . 

1. INTRODUCTION 

This article has two main objectives. One is to show that a variety of equivalences 
and theorems stating alternatives may be viewed as corollaries of a general theorem 

describing how cones and their duals may overlap in abstract, and topological, real 
vector spaces. The other is to illustrate the scope of this point of view by deriving 

new results. From a wealth of possibile new results we have selected examples of, 
or very close to, traditional interests, e.g. characterizing the n x n complex matrices 
A (resp. C) such that the Lyapunov (resp. Stein) condition "LA (X) = AX + XA* 
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(resp. Sc(X) = x - C* XC) is positive definite" has a Hermitian solution X which 
lies in a cone of block diagonal matrices or of entry-wise nonnegative matrices or 
both. Our results include new theorems "of the alternative" and new equivalences. 
(P ¢:} Q) may always be stated as the alternative: P or notQ, but not both.) Here 
is some background on the results relating to LA. 

A complex square matrix A is said to be (positive) stable if its spectrum lies in the 
open right half-plane. Lyapunov, while studying the asymptotic stability of solutions 
of differential systems, proved a theorem in 1892 which, restated for matrices, asserts 
that A is stable if and only if there exists a positive definite Hermitian matrix G such 
that the matrix AG + G A * is positive definite. 

Lyapunov's theorem has motivated the study of positive definite Hermitian matri­
ces G such that AG + GA* is positive definite. Such matrices G are called stability 

factors for A. Stability factors have been studied by Carlson and Schneider [8], by 
Hershkowitz and Schneider [12], and by others. An interesting special case, which 
plays an important role in various applications, is the case of matrices A, so called 
Lyapunov diagonally stable matrices, for which there exist diagonal stability factors. 
Unlike stability, Lyapunov diagonal stability is not merely a spectral property, and 
in general it is hard to characterize. Recently, Carlson, Hershkowitz and Shasha [7] 
unified the study of stability and Lyapunov diagonal stability, by characterizing those 
matrices for which there exist stability factors with given block diagonal structure. 

Another related topic is the research on matrices A for which there exists a (not 
necessarily positive definite) Hermitian matrix G such that the matrix AG + GA* 

is positive definite. We call such matrices A Lyapunov regular, and we call the 
corresponding matrix G a regularity factor for A. Ostrowski and Schneider showed 
[16] that a matrix is Lyapunov regular if and only if it has no purely imaginary 
eigenvalue. 

Some studies of matrix stability use theorems of the alternative for cones, e.g. [1 J 

and [7J. Our paper develops and applies theorems of the alternative to obtain char­
acterizations of classes of matrices which have stability factors or regularity factors 
with given block structure. 

Section 2 is devoted to general results, valid for real vector spaces and linear maps 
or real topological vector spaces and continuous linear maps. It begins discussing 
how two convex sets C and D and their duals may be situated in space and then 
specializes to the case where C and D are cones and then further to the case where 
C is the range or kernel of a linear transformation. Our use of separation theorems 
connects our results to ones in [17J. We generalize here a result in [2] and a theorem 
of the alternative in [9]. 

The rest of the paper (Lemma 5.6 being a noteworthy exception) mainly specializes 
and applies the results of Section 2 to obtain the results about the LA and Se 
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mentioned above. Some information about the positive semidefinite members of 
Ker(LA) (and of Ker(Sc)) is also obtained, cf. Theorem (4.8) and Lemma (6.2). 

2. GENERAL RESULTS ABOUT CONES 

We shall use the same notations when we consider real vector spaces and linear 
maps as we do for real topological vector spaces and continuous linear maps. So the 
meaning of a symbol may depend on the underlying category. Words and remarks 
in brackets usually pertain to the topological case. 

Let V denote a [topological] vector space over IR, the real field. Then V' denotes 
its dual, that is all [continuous] linear maps f: V -+ IR. If S c V then 

• So denotes the radial kernel of S, Le. x E So means: There is a positive function 
6x : V -+ IR such that x + t(w - x) E S whenever w E V and 0 ~ t < 6x (w) . 
(cf. page 14 of [13]) [however we define So to be the topological interior of S, if 
V has a topology]; 

• S- = V \ (V \ S)O; 
• S* = {j E V': f(x) ~ 0 for all x in S}; 

• S1. = {j E V': f(x) = 0 for all x in S}; 

• S* = S1., if S = -S, e.g. if S is a subspace; 
• S is a (convex) cone if and only if Sf. 0 and x +y and tx E S whenever x, yES 

and t ~ 0; 

• cone(S) is the smallest COlle in V, which contains S. 

Let W too denote a [topological] vector space over IR. If T: V -+ W is [continuous 
and] linear, T*: W' -+ V'is defined by (T*g)(x) = g(Tx) for every 9 in W' and x 

in V. If S c V then it is simple to verify that 

T(S)* = T*-l (S*) (i.e. {g E W': T* 9 E S*}). 

Our first result Theorem 2.1 is pivotal. Our other results are mostly corollaries 
of it or lemmas aimed at proving or explaining its corollaries. We state it quite 
generally. 

(2.1) Theorem. Let C and D be convex subsets of V, a real [topological] vector 

space. If 0 E C n D the following are equivalent. 

(i) C n DO f. 0. 
(ii) -C* n D* = {OJ and DO f. 0. 

Proof. (i)::} (ii): If x E CnDo and f E -C* nD* then f(x) ~ 0 ~ f(x), 

so f(x) = o. Were f nonzero at w, the line through w and x would intersect D in 
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a line segment L having x in its interior because x E DO. Then 1 (z) would change 

sign as z E L passed through x, which contradicts liD ~ O. 

(ii) => (i): If not, by 3.8 page 22 [14.2 page 118] of [13] there is a 0 -I- 1 E V' 
such that sup l(C) ::::; inf l(D). Since 0 E C n D, both numbers are zero. So 

0-1- 1 E -C* n D* = {a}. 0 

Remark. In the case of certain spaces Theorem (2.1) can also be derived from 
a lemma due to Dubovickii and Miljutin [9], see also page 37 of [11] or page 411 of 
[20]. In finite dimensional Euclidean space our result is close to Theorem 11.3 on 
page 97 of [17]. 

Since 5* is convex when 5 is any subset of a real vector space, Theorem 1 yields: 

(2.2) Corollary. When C and D are subsets of V, a real {topological] vector 
space, the following are equivalent. 

(i) C* n D*o -I- 0. 
(ii) -C** n D** = {a} and D*O -I- 0. 

The natural imbedding i: V --+ V" permits us to compare 5** with 5 (or, more 
precisely, i (5)). 

(2.3) Lemma. Let 5 c V, a real po cally convex topological] vector space. Then 
i-I (5**) = cone(5)-. 

Proof. Since 5** is a closed cone containing i(5), L = i-I(5**) is a closed 
cone containing R = cone(5)-. If x is not in R, by 3.9 page 23 [14.3 page 118] of 

[13] there is an 1 E V' such that 

inf[J(cone(5)-)] > l(x) = i(x)(f). 

Since 0 E cone(5) , the infimum is O. Hence 1 E 5* and so i(x) is not in 5**, i.e. x 
is not in L. 0 

(2.4) Remark. Hence when V" = V (e.g. when dim V < (0) it is natural to 

consider the case where C and D are closed cones and C = C** and D = D**. If in 
addition C is a subspace, C* = C1. and -C = C, so Corollary (2.2) becomes 

(2.5) Corollary. Let C and D be subsets of a real {topological] vector space 

V = V". 'If C** = C = -C and D** = D (C must be a closed subspace and D a 

closed cone), then C1. n D*O -I- 0 iff C n D = {O} and D*O -I- 0. 

Proof. 

of D. 
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Corollary (2.5) is a special case of Corollary (2.2) and it contains Corollary 2.6 
of [2]. 

(2.6) Corollary. Let V and W be real [topological] vector spaces, and let T: 
V -+ W be [continuous and] linear. Let C c V and DeW. Suppose a E D, D is 
convex, W = W" andT(C)** = T(C)-. Then T*-l(c*)nDO i= 0 iff-T(C)-nD* = 

{a} and DO i= 0. 

Proof. This is Theorem (2.1) with T(C)* = T*-l(C*) in place of C. 0 

(2.7) Theorem. Let V and W be real [topological] vector spaces, and let T: 
V -+ W be [continuous and] linear. Let C c V and DeW be convex. Iia E C n D 
and DO i= 0, then (i)-(iv) are equivalent, (0) =? (i) , and if Co i= 0 then (i) =? (0) . 

(0) T(CO) n DO i= 0. 
(i) T(C) n DO i= 0. 

(ii) T( -C)* n D* = {a}. 
(iii) -C* nT*(D* \ {a}) = 0. 
(iv) -C* n T*(D*) = {a} and Ker(T*) n D* = {a}. 

Proof. (i) {:} (ii): By Theorem 2.1. (ii) {:} (iii): Since a E T(C)* = T*-l(C*), 
(ii) is equivalent to T*-l (-C*) n (D* \ {a}) = 0, which, by routine facts about sets 
and functions, is equivalent to (iii). (iii) =? (iv) is clear, and so is its converse. (0) 
=? (i) is trivial. (i) =? (0) : Let wECo and x E C n T-l(DO). Then for t > a and 
small enough (1 - t)x + tw E Co n T- 1 (DO). 0 

The equivalence of (i) and (iii) maybe stated as a theorem of the alternative "either 
(i) holds or (iii) fails but not both." In other words: 

(2.8) Theorem. Given the hypotheses of Theorem 2.7 one, but not both, of the 
following holds 

(a) There is an x E C such that T(x) E DO. 

(b) There is a nonzero f E D* such that - T* (f) E C* . 

(2.9) Remark. Theorem 2.8 yields many well known theorems of the alterna­
tive. For example Theorem 2.10 in [9] is obtained by putting V = ~n, and W = ~m , 

letting T be an m x n matrix, and using the nonnegative orthant as a cone. 

The well known equation (KerT).l = (RangeT*)- which is valid for bounded lin­
ear operators on a Hilbert space, takes the (perhaps less well known) form (KerT).l = 

T*(W') (or (KerT)* = (T*(W'))-) when T: V -+ W is linear and V and Ware 
vector spaces. Then (2 .1) with C = Ker(T) is: 

491 



(2.10) Corollary. Let V, W, T: V ~ W come from a category of real vector 

spaces and linear maps in which (Ker(T))* = (T*(W'))-. Let 0 E D c V be convex. 
The following are equivalent. 

(i) Ker(T) n DO =10. 
(ii) (T*(W'))- n D* = {O} and DO =10. 

3. NOTATIONS, SPECIAL CONES AND THEIR DUALS 

We shall need some additional notations: 
Let a = {al, ... , a p } denote a partition of (n) = {I, ... , n} and let A = (aij) be an 

n x n matrix. We say that A is a-diagonal if aij = 0 whenever i and j lie in different 
ak 's. Such an A is permutation similar to a block diagonal matrix. Aij will denote 

the submatrix of A consisting ofthe aT S with r E ai and s E aj . Let H(a) denote the 
a-diagonal members of H, the real vector space of n x n complex Hermitian matrices 
endowed with the inner product (X, Y) = trace(Y* X). Let E(i, j) denote the n x n 
matrix with a 1 in the ij-th place and zeroes everywhere else. Set F(r, s) = E(r, s) 

when r = s, E(r, s) + E(s, r) when r < s, and iE(s , r) - iE(r, s) when r > s. Then 
the F(r, s) form an orthogonal basis for H . 

(3.1) Lemma. Let {Fl , ... , Fp} be a partition of {F(i,j)}. Set Hi = SpanFi 
(formed with real coefficients) , and let Ci C Hi be a cone. Then C = C l + ... + Cp 

is a cone and C* = Ci + ... + C;. Both of these sums are orthogonal direct sums. 

Proof. If I E H', f = 2:,Ii where h = flHi. Then I E C* if and only if each 
Ii E Ci· We omit the rest. 0 

Let PSD C H denote the cone of complex positive semidefinite matrices, NNH 
C H, the cone of n x n Hermitian matrices with nonnegative entries, and PIH C H 
the cone Span{F(r,s): r > s} ofn x n Hermitian matrices with purely imaginary 

entries. Set p ea) = PSD(a) = PSD nH(a), NNH(a) = NNH nH(a), and PIH(a) = 
PIHnH(a). 

(3.2) Corollary. 
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NNH* = NNH + PIR . 

H(a)* = H(a).l = Span{F'(r, s) : r E a i and s E a j and i =I j} 
= {(Gij ) E H : G\i = Okx k where k is the number of elements in ad. 

P(a)* = (H(a) n PSD)* = (H(a).l + PSD)- = (H(a).l + P(a))­

= H(a) .l + pea). 



Proof. To prove the first and second sentences let each Hi be one of the 1-
dimensional subspaces Span{F(r,s)}. Then C i is either {O}F(r,s), (O , oo)F(r,s), 
or (-oo,oo)F(r,s). Apply the lemma. The third sentence relies on: (CnD)* = 
(C*+D*)- whenever C and D are closed cones (cf. page 376 of [3]) and PSD* =PSD. 

To justify the last equality select anything in the closure and decompose it into a sum 
of a term M in H(a) and a term in H(a)J.. Note that then ME PSD- = PSD. 0 

(3.3) Lemma. (P(a) n NNH)* = H(a)J. + P(a) + NNH(a) + PIH(a). 

Proof. Let L [R] denote the left [right] side of the equation we must jus­

tify. By [3] and the previous corollary, L = (P(a)* + NNH*)- = (H(a)J. + 
P(a) + NNH +PIH)- = (H(a)J. + P(a) + NNH(a) + PIH(a))- = R-. Sup­

pose the sequence E(k) = A(k) + B(k) + C(k) + D(k) E R converges to E and 

A(k) E H(a)J.,B(k) = (bij(k)) E P(a),C(k) = (cij(k)) E NNH(a), and D(k) E 

PIH(a). Since the sequences A(k) and F(k) = (fij(k)) = B(k) + C(k) + D(k) 
lie in orthogonally complementary subspaces they must both converge, say to A 
and F, respectively. Since B(k) is positive semidefinite and Cii ~ 0, we have 

Ibrs (k)12 ~ [brr(k) + Crr(k))[bss (k) +css(k)] = frr(k)fss(k), which is bounded because 
it converges. Hence B(k) is bounded and so has a convergent subsequence with limit, 

say B, in P(a). The corresponding subsequence of F(k) -B(k) = C(k) +D(k) must 
then also converge to F-B, and since C(k) and D(k) are in orthogonally complemen­
tary spaces, the corresponding subsequences of C(k) and D(k) will both converge, 

say to C E NNH(a) and D = F-B-C E PIH(a). Hence E = A+B+C+D E R, 
so R is a closed cone. 0 

4. LYAPUNOV REGULARITY OF MATRICES 

(4.1) Definition. Let a be a partition of (n) = {I, ... ,n} into p nonempty 
sets and let A be an n x n complex matrix. Then A is Lyapunov a-regular if LA(G) 
is positive definite for some G E H(a). A Lyapunov a-regular A is called Lyapunov 
regular when p = 1 (then G need not have any zero entries) and Lyapunov diagonally 
regular when p = n (then G must be diagonal). 

A characterization of the Lyapunov a-regular matrices A can be obtained from (i) 

{:} (ii) in Theorem 2.7 by setting V = W = H, C = H(a), D = PSD, and T = LA . 
Then C* is described in Corollary 3.2. 

(4.2) Theorem. Let A be a complex n x n matrix and a a partition of (n) into 
p nonempty sets. The following are equivalent. 

(i) A is Lyapunov a-regular. 
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(ii) For every nonzero K E PSD there exists i E (p) such that (A* K +K A)ii i= O. 

An equivalent statement of alternative nature is the following. 

(4.3) Corollary. Let A be a complex n x n matrix and a a partition of (n) into 
p nonempty sets. Then either A is Lyapunov a-regular, or there exists a nonzero 

K E PSD such that (A * K + K A)ii = 0 for all i E (p), but not both. 

In the special cases of a = {(n)} i.e. p = 1, we obtain the following characterization 

for Lyapunov regularity of matrices. 

(4.4) Theorem. Let A be a complex n x n matrix. The following are equivalent. 

(i) A is Lyapunov regular. 
(ii) For every nonzero K E PSD we have A* K + K A i= o. 

(4.5) Remark. Theorem 4.8, which may be of interest in its own right, will 
show that (ii) is equivalent to Spec(A) n ilR = 0. Thus Ostrowski and Schneider's 

characterization of Lyapunov regular matrices (stated in the introduction) follows 

from Theorems 4.4 and 4.8. 

(4.6) Remark. A complete description of Ker(LA) is obtainable by reducing 

to the case where A is in Jordan form and solving the resulting block matrix equation 

LA (X) = O. Theorem 4.8 can be proven this way, but not as succinctly. 

(4.7) Definition. Whenever Z C C and A is a square complex matrix, g(A; Z) 
will denote the sum of the geometric multiplicities of the eigenvalues of A which lie 

in Z . 

4.8 Theorem. Let A be an n x ncomplex matrix. Set 9 = g(A;ilR). Then 

rank(Ker(LA) n PSD) = {O, 1, ... ,g}. 

Proof. If K E PSD there is an invertible S such that L = SKS* = Diag(Ir;O) . 

Set B = SAS-I = (~ ~), where C is r x r. If K E Ker(LA) also, then 

(
2ReC E*) .. E 0 = 2Re(BL) = SLA(K)S* = O. Thus C is skew HermItian, so 

r = g(C;ilR), which is at most 9 because E = O. That is rank(K) = r ~ g. 
On the other hand, if 0 ~ s ~ 9 is an integer, there are independent eigen­

vectors XI, .. . ,Xs of A having eigenvalues in ilR. Then K = XIXr + ... + xsx; E 

PSD and LA(K) = O. Let S be the inverse of a matrix whose first s columns are 

Xl,"" Xs then SKS* = Diag(Is, 0). So K has rank s. 0 
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In the special case of a = { {I}, ... , { n }} we have the following corollary of Theo­
rem (4.2). 

4.9 Theorem. Let A be a complex n x n matrix. The following are equivalent. 

(i) A is Lyapunov diagonally regular. 

(ii) For every nonzero K E PSD the matrix A* K + K A has a nonzero diagonal 
element. 

Corollary (2.5) yields the following theorem of the alternative. 

(4.10) Theorem. Let A be a complex n x n matrix and a a partition of (n) 
into p nonempty sets. Then either there exists a positive definite Hermitian n x n 
matrix K such that (A* K + KA)ii = 0 for all i E (p), or there exists aGE H(a) 

such that AG + GA* is a nonzero positive semidefinite matrix, but not both. 

Proof. Let V = H, D = PSD and C = LA(H(a)). Then the hypotheses of 
Corollary (2.5) are satisfied, D* = D, and D*O i- O. Since C..L = LA> -l(H(a)..L), the 

first alternative, viz. H(a)..L n LA' (DO) i- 0, is equivalent to C..L n D*O i- 0, and by 

Corollary (2.5) enD = {O}. The latter is equivalent to en (D \ {O}) = 0, which is 

the negation of the second alternative. 0 

(4.11) Remark. Applying Corollary (2.6) with V = H, D = PSD, C = H(a), 

and T = LA also proves Theorem (4.10). 

(4.12) Remark. To see that A* K + KA cannot be replaced by A* K or KA 

in any of the theorems (4.2), (4.3), (4.4), (4.9), and (4.10), set A = if and note that 

then Ker(LA') = H and for every nonzero K E PSD we have (A* K)ii i- 0 i- (K A)ii, 
for some i E (p). 

(4.13) Theorem. Let A be a complex n x n matrix. The following are equivalent. 

(i) There exists a positive definite Hermitian K such that LA (K) = O. 

(ii) IfG = G* then LA' (G) is positive semidefinite iifit is o. 
(iii) A is similar to a skew Hermitian matrix. 

Proof. (i){:} (ii) is the special case of Corollary (2.10) with V = W = H, 

T = LA, and D = PSD. (i) ¢:} (iii) by Theorem (4.8). Note g(A; i~) = n. 0 
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(6.2) Lemma. Let Sc(X) = X - C* XC where C is an n x n complex matrix. 

Set g = g(C; {z E C: Izl = I}). Then rank(Ker(Se)) n PSD) = {O, 1, .. . , g}. 

Proof. The proof of Theorem (4.8) may be imitated here, or one may use the 
equivalence described in [19] of features of LA and Se. 0 

(6.3) Corollary. Let C be an n x n complex matrix and a be a partition of 

(n). Let Se: H(a) --+ H be defined by Se(X) = X - C* XC. Then the following 

are equivalent. 

(0) Se((P(a) nNNH)O) nPSDo i= 0. 
(i) Se(P(a) n NNH) n PSDo i= 0. 

(ii) -(H(a).L + P(a) + NNH(a) + PIH(a)) n Sc(PSD \{O}) = 0. 
(iii) -(H(a).L + P(a) + NNH(a) + PIH(a)) n Se*(PSD) = {O} and IJlI i= 1 for 

every Jl E Spec( C). 

Proof. Since (Se)* = Se* Theorem (6.1) and the Lemma (6.2) establish the 
equivalence. 0 

Remark. In this theorem Se can be replaced by LA if the restriction on the 
spectrum is also changed to: Re(Jl) i= 0 for every Jl E Spec(A) . 
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