
Spectral Radii of Certain Iteration Matrices 
and Cycle Means of DIgraphs 

Ludwig Elsner 
_ Fakultiit for Mathematik 

Universitiit Bielefeld 
Postfach 100131 
D-4800 Bielefeld 1, Germany 

Daniel Hershkowitz* 
Mathematics Department 
Technion-Israel Institute of Technology 
Haifa 32000, Israel 

and 

Hans Schneider*t 
Mathematics Department 
University of Wisconsin-Madison 
Madison, Wisconsin 53706 

Submitted by Robert M. Guralnick 

ABSTRACT 

Motivated by questions .arising in the study of asynchronous iterative methods for 
solving linear systems, we consider the spectral radius of products of certain one cycle 
matrices. The spectral radius of a matrix in our class is a monotonic increasing 
function of the length of the cycle of the matrix, but this is known to be false for 
products of such matrices. The thrust of our investigation is to determine sufficient 
conditions under which the spectral radius of the product increases (decreases) when 
the lengths of the cycles of the factors increase (decrease). We also find sufficient 
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conditions for the spectral radius of the product to be independent of the order of the 
factors. Our chief tool is an auxiliary directed weighted graph whose cycle means 
determine the eigenvalues of the matrix product, and our main results are stated in 
terms of the maximal cycle mean of this graph. 

1. INTRODUCTION 

The question studied in this paper came up in a more general form in 
connection with investigations of iterative methods for solving a k X k linear 
system 

( 1.1) x = Bx + e. 

Here one usually assumes that the elements of the matrix B are nonnegative 
and that the spectral radius pCB) of B satisfies pCB) < 1, so the basic 
iteration X(i+l) = Bx(i) + e converges to the solution x* = (I - B)-Ie of 
(1.1). Splitting the work to calculate Bx + e between several parallel proces­
sors, operating independently one of each other in an asynchronous manner, 
and where the assignment of subtasks and storage for the current iterate is 
done by a central processor, leads to iterative processes which can be 
described by an iterative procedure of the form 

(1.2) x(i) = (1 - E. )X(i-l) + E.(Bx(i-S,) + c) 
} ; 11 ) i = 1,2, ... , 

where x(O) = X(-I) = ... = x(-n). This depends on a sequence {jJ~= l' 

1 ..-;;; ji ..-;;; m, where ji describes the subtask completed at time i, and a 
sequence {s)~=l> 1 ..-;;; Si ..-;;; n , where Si is a measure of the "age" of informa­
tion used in calculating the jth approximation. The nonzero 0-1 k X k 
matrices E i , i = 1, . .. , m, describing the m different subtasks, satisfy L:"= 1 Ei 
= 1. For technical details we refer the reader to the papers [1], [2], and [3]. 

For the procedure (1.2) it has been established in [1] that, independently 
of x(O) , 

lim x(i) = x*, 
i~oo 

provided that each number in {l, . .. , m} appears infinitely many times in the 
sequence {ji}~ = l' 

When discussing the dependence of the rate of convergence of (1.2) on 
the parameters {s), it is tempting to conjecture that using older information 
will not decrease the convergence rate. Partial results of this kind were given 
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in [2], generalizing results in [3]. In particular, if we define the rate of 
convergence R({s) of (1.2) by 

where II "is some vector norm, then it was shown that 

( 1.3) i = 1,2, .. . , 

implies 

( 1.4) 

provided that either 

(1.5) i = 1,2, ... , 

or 

(1.6) i = 1,2, .... 

However, in general the implication (1.3) = (1.4) does not hold. In [2], a 
counterexample was given in the simplest case 

m=k=1 (i.e . ji=l, i=1,2, ... ), B=(p), 

Si=Sj+p' i=1,2, ... , 

for a fixed period p. In this case, (1.2) reduces to 

(1.7) i = 1,2, ... , 

where X(i) E!R. It turns out, on embedding the real valued multilevel 
iteration (1.7) in a one-level iteration in IRn where n ~ max{sj , i = 1, .. . , p}, 
that the convergence rate R({Si}) of (1.7) is given by 
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where the n X n matrix Ark is defined by 

i = j + 1, 

(i,j) = (1 , rd, 
otherwise, 

p( Ar Ar ... Ar ) denotes the spectral radius of Ar Ar ... Ar , and r i = 
1 2 1) 1 2 P 

Sp+l-t, i = 1, . .. , p. 
Our goal in this paper is to study conditions for the implication 

(1.9) r;.;;;ri , i=1,2, ... , = R({r;}).;;;R({ri }), 

where R({rJ) is given by (1.8). Observe that (1.9) is equivalent to (1.3) = 
(1.4). 

We now describe the results in our paper. In Section 2 we define the 
matrices Ad. whose graph has just one cycle of length d i , and we associate 
with each pr~duct of p matrices Ad'" . , Ad an auxiliary directed weighted 

, I' 

graph Il(d1, ... , d p ) on p vertices. In this auxiliary graph there is just one 
arc from each vertex, and the length and weight d i of this arc equals 
the length of the cycle in the corresponding matrix in the product. 
These observations are used to describe all the eigenvalues of products 
Ad Ad '" Ad . 

1.2 fI 

In Section 3 we show that the eigenvalues of the product Ad, '" Ad, are 
determined by the cycle means of the auxiliary graph. In particular, for fixed 
p, the spectral radius p( Ad, ... Ad ) is a monotonic increasing function of 
the maximum cycle mean /-L(1l(8)5, where 8 = (d1, ... , d p ). (Actually, in 
Sections 2 and 3 we consider a slightly more general situation.) Thus, it is 
possible to state the desired results on p(Ad ... Ad ) in terms of /-L(1l(8)), 

, p 

and hence in the remaining sections of the paper we consider the maximal 
cycle mean of the graph Il( 8) as 8 is varied. 

In Section 4 we define the concept of a downward (upward) optimal 
sequence: in brief, a sequence 8 such that /-L(1l(8)) does not increase 
(decrease) when the lengths of the arcs 8 do not increase (decrease). 
Equivalently, a sequence is downward optimal if and only if (1.9), with r i and 
r; replaced by di and d; respectively, holds; and it is upward optimal if and 
only if (1.9), with r i and r; replaced by d; and di respectively, holds. In 
Theorem 4.15 we prove our most general sufficient condition for 8 to be 
downward optimal. A simple intuitive special case is stated in Theorem 4.17 
and Corollary 4.18. 

In Section 5 we derive analogous results for upward optimal sequences; 
see Theorems 5.6 and 5.8. Among others, our results in Sections 4 and 5 
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imply the result in [2] that if either (1.5) holds or (1.6) holds, then the 
implication (1.3) = (1.4) holds . We remark that we have found somewhat 
shorter proofs for the special cases of Theorems 4.17 and 5.8, which however 
are not given in our paper. 

In Section 6 we prove several sufficient conditions for the maximum cycle 
mean /L(t:.(8» to be invariant under all permutations of (d l , ..• , dp ). 

2. EIGENVALUES OF PRODUCTS OF CERTAIN MATRICES 

In this section we describe all the eigenvalues of products of matrices 
which are slight generalizations of the matrices Ark defined in the previous 
section. All the matrices in this paper are n X n matrices. We start with a few 
defmitions. 

DEFINITION 2.1. A path in a digraph is a sequence {(tk> tk+l)}k=l of m 
arcs . We denote such a path by (tl , ... , t m+l ). A path (tl , ... , tm+l ) is said to 
be a cycle if tm+l = t l . Such a cycle is said to be simple if t l , ... , tm are 
distinct. 

CONVENTION 2.2. Throughout this paper, 8 and 8' are considered tobe 
sequences (dl , ... , d p) and (d~, ... , d~) of positive integers respectively, and 
X is considered to be a sequence (c I , ... , cp ) of numbers. For a positive 
integer m, m > p , we let d m = d(m-l)(modp)+l and d'", = d(m-l)(modp)+l' 

DEFINITION 2.3. 

(i) We denote by t:.( 8) the arc-weighted digraph with vertex set {l, .. . , p}, 
and with an arc from i to j with weight di whenever j - i = d; (mod p). 
Such an arc will be denoted by idI The weight d; of the arc idl is also 
called the length of that arc. ' , 

(ii) We denote by t:.( 8, X) the vertex-weighted and arc-weighted digraph 
with vertex set {l, .. . , p}, with weight Ci on vertex i, i = 1, ... , p, and with 
same arcs as in d( 8). 

DEFINITION 2.4. Let A be an n X n matrix. The digraph G( A) of A is 
defined to be the digraph with vertex set {1, . . . , n}, and where there is an arc 
from i to j if and only if a;j =1= O. 
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NOTATION 2.5. Let d and n be positive integers, d ,,;; n, and let c be a 
number. We denote by Ad. c the n X n matrix defined by 

{

I, i = j + 1, 

(Ad.Jij= c, (i,J) = (l,d), 

0, otherwise. 
LEMMA 2.6. Let B be the matrix product Ad c Ad c •.. Ad c' and let 

1, 1 2, 2 -1' p 

f3 = (i o, ... , it), it = io, be a cycle in G(B). Then f3 corresponas to a cycle 
y = (Jl' .. . , jz) in Ma, X), where (rr~= 1 bik_IiYI t = (rri= 1 cj)P I d for d = 

2:i= 1 djk · 

Proof. Since 

it follows by Notation 2.5 that 

1 . 1 ..... 1 . C· ' 1 . 1 ..... 1 . C· • 1 . 1 ..... 1 . b .. =~ l~ J+dj~ ••• 
'j 

i-I d i -l d'+d, -1 

P 

Also, TI~= Ibi " is the (io, io) diagonal element of the matrix Bt. Therefore, k-I k 

rr~= 1 bik_lik is a product of a total of tp 1's and c's, where if some C occurs in 
position 1 then the next c occurs dz positions further down. Observe that the 
cycle f3 in G(B) corresponds to the cycle y = iOd (io + d i )d ... in 

10 0 iO+djQ 

Ma,x)· Note that the vertices JI, ... , Jz of the cycle yare given by JI = io 

and Jk+ 1 = Jk + dje k = 1, ... , 1 - 1. Observe that we have TI~= Ibik_Iik = 

TIi=ICjk' Since the total weight d = 2:i=ldjk of arcs in y is equal to tp, we 
have lit = pi d, and our claim follows. • 

Conversely, we have 

LEMMA 2.7. Let B = Ad c Ad c ... Ad c' and let y = (j'l" . . , jz) be 
I. I 2· 2 p' P 

a cycle in Ma, X). Let d = 2:k=ldj' Then y corresponds to a cycle f3 = 
(io, ... , i), it = io, in G(B), where tTI~=lbik_Iiylt = (TIi=ICA)P1d. 

Proof. Let m be the total weight of arcs in y. Since y is a cycle, it 
follows that m is divisible by p. Let a be the sequence 

(Jl,Jl-1, ... ,1,dj,dj. -l, ... ,l,dj' +d ,dj'+d -1, ... ). 
I I I 1J I h 

m 
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Similarly to the discussion in the proof of Lemma 2.6, it follows that 
f3 = (aI' a l +p ' a l +2p"'" a l +m- p ' a l) is a cycle of m/p arcs in G(B) 
satisfYing our requirements. • 

DEFINITION 2.8. A connected component of a digraph G is a maximal 
set of vertices such that for every two vertices i and j in the set there exists a 
sequence (t l , ... , tm) of vertices such that tl = i, tm = j, and for every 
k E {l, ... , m - 1} either (tk> t k + 1) or (tk + l' t k ) is an arc in G. 

LEMMA 2.9. Let B = Ad c Ad c ••• Ad c' Then every connected com-
1> 1 2. 2 P' P 

ponent of G( B) has one cycle and maybe some paths terminating at vertices 
of the cycle. 

Proof. Our claim follows from the fact that in each Ad. c . every row 
contains exactly one nonzero element. Therefore, every row ~(B contains 
exactly one nonzero element, that is, every vertex i in G( B) has exactly one 
arc originating at i. • 

COROLLARY 2.10. The spectrum of B = Ad c Ad c ••• Ad c consists of 
I· 1 2· 2 . P' r 

the multiset S = {tth roots of TI~=lbik_lik: (io, . . . , it), it = i o, tS a cycle in 
G(B)} and n -lSI zeros. 

Proof. In view of Lemma 2.9, the irreducible components (diagonal 
blocks in the Frobenius normal form) of B are the submatrices whose 
digraphs are the cycles of G( B) as well as maybe some zero 1 X 1 matrices. 
The claim follows. • 

3. SPECTRAL RADII OF PRODUCTS OF MATRICES AND MAXIMAL 
CYCLE MEANS OF DIGRAPHS 

In this section we apply the results of the previous section to evaluate the 
spectral radius of the product AT AT ... AT . For the sake of consistency 

1 2 P . 

with the previous section we use the sequence (d l, . .. , dp ), where di = ri, 
i = 1, ... , p. Also we use c for the constant p of Section 1. From now on in 
this paper, we assume that C l = ... = cp = c, where c is a real number, 
O<c<1. 

NOTATION 3.1 

Let y be a cycle in Ma). We denote by ]L(Y) the cycle mean of y, that 
is, the average of weights of arcs in y. We denote by ]L(Ma» the maximal 
cycle mean of M a), that is, the maximal ]L( y) where y is a cycle in M a). 
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DEFINITION 3.2. A cycle ')' in Ll( 8) is said to be maximal if JL( ')') = 

JL(Ll( 8 )). A cycle')' in Ll( 8) is said to be minimal if JL( ')') .:;; JL( ')' ') for any 
cycle ')" in Ll(8). 

REMARK 3.3. It is easy to verifY that there always exist a simple maximal 
cycle and a simple minimal cycle. 

We now obtain the following theorem as a corollary of Lemmas 2.6, 2.7 
and Corollary 2.10. 

THEOREM 3.4. The spectrum of B = Ad cAd c'" Ad c consists of a 
multiset S = {tth roots of ctp/p,(y):')' is a ~ycle'in Ll(8(t is a positive 
integer depending on ')'} and n - lSI zeros. 

Proof. By Corollary 2.10, the spectrum of B consists of the multiset 
S = {tth roots of TIt ~ lbik_Iik : (io,"" it), i t = io, is a cycle in G(B)} and 
n - I S I zeros. Let ')' be a cycle in Ll( 8) with l arcs and total weights d of 
arcs . Then JL( ')') = d Il. Our claim now follows by Lemmas 2.6 and 2.7. • 

The follOwing corollary of Theorem 3.4 is an important tool in our study. 

THEOREM 3.5. The spectral radius of B = Ad cAd c ... A d c is equal 
to c P / p,(1)(5)). 1, . , p' 

Proof. By Corollary 2.10, the positive eigenvalues of Bare 

{cp / p,(y ) : ')' is a cycle in Ll(8)}. 

Since 0 < c < 1, it follows that the largest one is c p/ p,(1)(5)). • 
NOTATION 3.6. We denote by p(8, c) the spectral radius of the product 

B=A A .. ·A dl , cd., c dp , c· 

We conclude this section with a couple of examples that illustrate our 
results. 

EXAMPLE 3.7. Let n = 6, let c = 0.5, and let 8 = (2,4,6, 3). The cycles 
in Ll(8) are 12 361 and 242. Both have cycle mean 4, and hence we have 
JL(Ll(8)) = 4. Indeed, the nonzero eigenvalues of A2,o.5A4,o.5A6,o.5A3,o.5 are 
the second roots of 0.52 and the first root of 0.5, and so we have p(8, c) = 

0.5 = 0.54/ 4 = c p/ p,(I>(IJ)) . Another example is when we choose n = 10, 
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c = 0.2, and 8 = (7,4,10). In this case, the only cycle in M8) is 17243101, 
and hence we have JLCM8» = 7. The nonzero eigenvalues of 
A 7. 0.2 A4 0.2 A lO•0.2 are the seventh roots of 0.2 3

, and thus p(8, c) = 0.5017 
= 0.2 3/ 7 = cp/!L(t!.(o)). This latter example also shows that the numbers t in 
the definition of the set S in Theorem 3.4 are not necessarily the numbers of 
arcs in the cycles 'Y, as one might think in view of the first example. 

4. DOWNWARD OPTIMAL SEQUENCES 

In view of Theorem 3.5, in order to study p( 8, c) it is enough to study 
jL(M8». Indeed, in the sequel we study maximal cycle means of digraphs 
M8). Since 0 < c < 1, it also follows from Theorem 3.5 th'at the bigger 
jL(M8» is, the bigger p(8 , c) is. 

NOTATION 4.1. We denote by 8 ~ 8' the case where d; ~ d;, i E 

{l, ... , pl. 

DEFINITION 4.2. 

(i) The sequence 8 is said to be downward optimal if jL(M8» ~ 
jL(M8'» whenever 8 ~ 8' . 

(ii) The sequence 8 is said to be upward optimal if JLCM8» ,;;;; jL(M8'» 
whenever 8 ,;;;; 8' . 

The follOwing example is of a sequence which is neither downward 
optimal nor downward optimal. Examples of optimal sequences will be given 
in the sequel. 

EXAMPLE 4.3. The only cycle in M6, 2,14) is 161, and hence 
jL(M6, 2,14» = 6. The cycle 15314221 is the only cycle in M5, 2, 14), and so 
jL(M5, 2,14» = 7 > jL(1l(6, 2,14», implying that (6,2,14) is now downward 
optimal. The only cycle in M7, 2,14) is 17221, and so jL(M7, 2,14» = 4.5 < 
jLCM6, 2,14», implying that (6,2,14) is not upward optimal. 

In this section we shall look for conditions for sequences of positive 
integers to be downward optimal. For the sake of convenience in stating our 
results we now define a digraph which is a spread of the digraph Il( 8) over 
the positive real axis. 
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DEFINITION 4.4. We denote by X(8) the digraph whose vertices are the 
positive integers, and with arc from i to j whenever j - i = di . Such an arc 
(i,j) is said to be of length di . 

DEFINITION 4.5. The total length of the arcs in a path .:y in M 8) is said 
to be the length of .:y . 

OBSERVATION 4.6. There is a correspondence between an arc idj in 
A( 8) and all arc~ (k, l) in X( 8) such that i = (k - I)(mod p) + 1. There­
fore, a path in A( 8) corresponds to a unique path in A( 8), but a path in 
A(8) corresponds to infinitely many paths in A(8) (with different starting 
points). Also, a path in A( 8) whose length is divisible by p corresponds to a 
unique cy"cle in A( 8), and a cycle in A( 8) corresponds to infinitely many 
paths in A( 8), where the length of each is equal to the total weight of the 
arcs in 1'. 

DEFINITION 4.7. Let l' = (io, i l , . .. , i q), iq = io, be a cycle in A(8). A 
spread of l' is an infinite sequence (t l , t 2 , ... ) of positive integers such that 

tl = (i j -I)(modp) + 1 for some j E {O, ... , q} 

and 

k = I,2, .. .. 

OBSERVATION 4.8. Every cycle l' in A(8) has infinitely many spreads. 
Also, every truncation (from the beginning) of a spread of l' is a spread of 1'. 

LEMMA 4.9. Let 8' .;;; 8, let l' and 1" be cycles in A(8) and A(8') 
respectively , and let (t l , t 2 , ..• ) and (t~ , t~ , . .. ) be spreads of l' and 1" 
respectively. Ifforsome i andj we have t; = tj , then t;+I';;; tj +l . 

Proof. The claim follows immediately from Definition 4.7 and the fact 
that d; .;;; di , i E {I, . .. , pl. • 

LEMMA 4.10. Let 8' .;;; 8, let l' and 1" be cycles in A(8) and A(8') 
respectively, and let (t l , t 2 , •.. ) and (t~ , t;, . . . ) be spreads of l' and 1" 
respectively. Assume that there exists a positive integer k such that no path in 
X(8) corresponding to any k consecutive arcs of l' lies in the interior of the 
union of any k arcs of X( 8). Then if for some i and j we have t; < tj , then 
t;+k .;;; tj +k· 
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Proof. Assume t~ the contrary that t;+k > tj+k. Then the path {3 = 
(tj , tj + l' ... , ti + k) in AU», corresponding to ~ consecutive arcs of ", lies in 
the interior ot the path (t;, t; +l> . .. ' tj+k) in AU,'). Since 8' ~ 8, it foJIows 
by Definition 4.4 that every arc in A(8') is contained in an arc in A(8). 
Therefore, the path (3 lies in the interior of the union of k arcs of X( 8), in 
contradiction to the conditions of the lemma. • 

A repeated application of Lemmas 4.9 and 4.10 yields the following. 

COROLLARY 4.11. Let 8' ~ 8, let" and ,,' be cycles in A(8) and A(8') 
respectively , and let (fl' tQ, ... ) and (t~, t;, . .. ) be spreads of" and ,,' 
respectively, such thq,t t~ ~ t 1. Assume that there exists a positive integer k 
such that no path in A( 8) corresponding to any k consecutive arcs of" lies in 
the interior of the union of any k arcs of X( 8). Then there are infinitely many 
i's for which t; ~ t i . 

LEMMA 4.12. Let 8' ~ 8, let" and ,,' be cycles in A(8) and A(8') 
respectively, and let (t l , tQ, . . . ) and (t~, t;, . .. ) be spreads of" and ,,' 
respectively, such that t~ ~ t 1 < t;. If f.L(" ') > f.L(,,), then there exists a 
positive integer M such that t; > tj for all i > M. 

Proof. Let the total weights of arcs in " be m1 p, and let the total 
weights of arcs in ,,' be mQ p . Let m be the least common multiple of m l 

and m Q • Then the segment oflength mp in X(8) starting at tl is covered by 
~n integral number of repetitions of ", and the segment of length mp in 
A( 8 ') starting at t~ is covered by an integral number of repetitions of " '. Let 
kl and kQ be the total numbers of arcs in these repetitions of " and ,,' 
respectively. Since f.L(A(8'» > f.L(A(8», and since kl = mp/f.L(A(8» and 
kQ = mp/f.L(A(8'» , it follows that kl > kQ. The segment of length mp in 
X(8) starting at tl ends at t 1+ k" while the segment of length mp in X(8') 
starting at t~ ends at t~+k .. Also, since tl < t;, we have 

( 4.13) 

Let 1 be a positive integer satisfying 1 > kQ/(k l - kQ) or, eqUivalently, 

( 4.14) 

We now prove that M = 1 + (Z + I)k l satisfies the required property. Let 
m > M, and let m - (1 + k 1) = hlkl + r l = hQkQ + rQ, where hI and hQ 
are nonnegative integers and r 1 < k l , rQ < kQ. Since m> M, we have 
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m - (1 + k1 ) > lkl' and it follows from (4.14) that hi + 1 .,;;;; h2 . Therefore, 
with (4.13) we obtain 

Let'}' and '}" be cycles in M8) and M8') respectively. We remark that, by 
Observation 4.8, we can find spreads (t 1, t 2 , ... ) and (t~, t~, . . : ) of'}' and '}", 
respectively, such that t~ .,;;;; t 1 < t~. Therefore, as a corollary of Corollary 
4.11 and Lemma 4.12 we now obtain the follOwing theorem. 

THEOREM 4.15. If there exists a cycle'}' in M 8) a;ryd a positive integer k 
such that for every k consecutive arcs of ,}" a path in a(8) corresT,!onding to 
those arcs does not lie in the interior of the union of any k arcs of M 8), then 
'}' is a maximal cycle and 8 is a downward optimal sequence. 

Proof. Let:y be any cycle in Mo). It follows from Corollary 4.11 and 
Lemma 4.12 that /1-( '}') ~ /1-(:Y), and therefore'}' is a maximal cycle in M 8). 
Also, /1-('}') ~ /1-('}") for every cycle '}" in M8') where 8' .,;;;; 8, and hence 8 
is a downward optimal sequence. • 

COROLLARY 4.16. If there exist~ a positive integer k such that for every k 
consecutive arcs in M 8), a path in a( 8) correponding to those arcs does not 
lie in the interior of the union of any k arcs of M 8), then every cycle in M 8) 
is a maximal cycle, and 8 is a downward optimal sequence. 

If we choose k = 1, then Theorem 4.15 and Corollary 4.16 yield the 
follOwing. 

THEORE~ 4.17. If there exists a cycle'}' in M8) such for every arc of ,}" 
an arc in M 8) corresponding to that arc does not lie in the interio!' of 
another arc of M8), then'}' is a maximal cycle and 8 is a downward optimal 
sequence. 

COROLLARY 4.18. If no arc of XU» lies in the interior of another arc of 
X(8), then every cycle in a(o) is a maximal cycle, and 8 is a downward 
optimal sequence. 

It is natural to ask whether Theorem 4.15 is equivalent to its weaker form 
in Theorem 4.17. The answer to this question is negative, as demonstrated by 
the follOwing example. 

EXAMPLE 4.19. The digraph a = MIl, 14, 1, 1, 13) consists of the arcs 
1112, 2141, 314, 415, and 5133. We have /1-(a) = 12.5, and the only maximal 
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cycle is l' = (1,2,1). Observe that 1112 corresponds to (6,17), which lies in 
the interior of (5.18), corresponding to 513 3. Therefore, the condition in 
Theorem 4.17 is not satisfied. Now, take the consecutive two arcs 1112 and 
2141 of 1'. Since their ~otal length is 25, the union of two arcs to contain a 
corresponding path in MIl, 14, 1, 1, 13) in its interior should be of length at 
least 27. The only possibilities for such pairs of arcs would therefore be the 
pairs of arcs corresponding to 214 1,2141 or to 2 14 1,5133 or to 5131,2141. It is 
easy to check that none of these unions contains a path corresponding to the 
consecutive two arcs lu2 and 2141 in its interior. Therefore, the condition in 
Theorem 4.15 is satisfied for k = 2. 

The converse of Theorem 4.15 and of Corollary 4:18 does not hold in 
general, as demonstrated by the following example. 

EXAMPLE 4.20. The digraph M6, 1, 8) consists of the loop 161 and the 
arcs 213 and 38 2. We have p.(M6, 1,8» = 6, and the only maximal cycle is 
the loop on 1. The arc 161 corresponds to (4, 10), which lies in the interior of 
(3,11), corresponding to the arc 382. Thus, for every positive inte$er k, k 
consecutive arcs 161 correspond to the path (4, 10, ... ,4 + 6k) in A(6, 1,8), 
which lies interior of the union U:= 1(6i -3, 6i + 5) of k arcs, each corre­
sponding to 38 2. However, since 

p.(A(I,I,8)) = p.(A(2, 1,8)) = p.(A(3, 1,8)) = p.(A(4, 1,8)) 

= p.( A(5, 1,8)) = 4.5, 

since 

JL( A ( 1, 1, 7)) = 3, 

p.(A( 4,1,7)) = 4, 

p.(A(2, 1,7)) = 4.5, 

p.( A(5, 1,7)) = 6, 

p.(A(3, 1, 7)) = 3, 

p.( A( 6,1, 7)) = 6, 

and since clearly p.(A(d1, 1, d3» .::;; 6 whenever d1, d3 .::;; 6, it follows that 
6 = p.(A(6, 1,8» ;;;. p.(A(d~, 1, d~» for every positive integers d~, d~ such 
that 6 ;;;. d~, 8 ;;;. d~, and so the sequence (6, 1, 8) is downward optimal. 

Yet, in the case p = 2 the converse of Theorem 4.15 is true. Observe that 
A(d1, d 2 ) and A(d2 , d1) are the same, up to relabeling of the vertices, and 
therefore, without loss of generality, we may assume that d 1 ;;;. d2 . 

THEOREM 4.21. Let d 1 and d 2 be positive integers, d1 ;;;. d2 . Then the 
following are equivalent: 
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(i) (d1, d 2 ) is a downward optimal sequence. 
(ii) Either d 1 is odd and d 1 - d 2 ~ 2, or d 1 is even. 
(iii) For every two consecutive arcs of a maximal cycle in 6.(d1, d 2 ), a 

path in X(d1, d 2 ) correspond~ng to those arcs does not lie in the interior of 
the union of any two arcs of 6.(d1, d 2 ). 

Proof. (i) ~ (ii): If d 1 is odd and d 1 - d2 > 2, then we have 

d 2 even, 

ObselVe that j.L(6.(d1 - 1, d2 )) = d 1 - 1 > (d1 + d 2 )/2 ~ j.L(6.(d1, d2 )), 

and hence (d1, d2 ) is not downward optimal. 
(iO ~ (iii): Distinguish between three possible case: 

(a) d 1 is even. The maximal cycle is 1d 1, as well as 2d 2 if d2 = d 1. 
1 , 

(b) d 1 and d2 are odd. The maximal cycle is 1d1 2d ,1. 
(c) d 1 is odd and d2 is even. The maximal cycle is 2d,2. 

In any case, it is easy to verify that, since d 1 ~ d2 and d 1 - d2 ~ 2, (iii) 
holds. 

(iii) ~ (i) by Theorem (4.15). • 

5. UPWARD OPTIMAL SEQUENCES 

The sufficient conditions for downward optimality proven in Theorem 
4.15 and in Theorem 4.17 are not sufficient for upward optimality, as 
demonstrated by the follOwing example. 

EXAMPLE 5 .1. The digraph 6.(2,2,3,1,2) consists of the arcs 12 3, 224, 
331, 415, and 522. We have j.L(6.(2, 2, 3,1,2)) = 2.5, and the only maximal 
cycle is -y = 12 331. No arc of -y lies in the interior of any arc of X(2, 2, 3, 1,2). 
Thus, by Theorem 4.15, (2,2,3, 1,2) is a downward optimal sequence. 
However, the only cycle in the digraph 6.(3,2,3,1,2) is -y' = 2 24 152 2, and 
so j.L(6.(3, 2, 3, 1,2)) = ~ < j.L(6.(2, 2, 3, 1,2)), implying that (2, 2, 3, 1,2) is 
not an upward optimal sequence. 
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In this section we shall prove, among other things, that the sufficient 
condition for downward optimality proven in Corollary 4.18 is also sufficient 
for upward optimality. 

DEFINITION 5.2. A set S of arcs in Xe 8) is said to be nonoverlapping if 
for every two arcs (t 1 , t 2) and (t3, t4) in S we have either t2 ~ t3 or t4 ~ t 1• 

LEMMA 5.3. Let 8' ;;;. 8, let 'Y and 'Y' be cycles in Ll( 8) and Ll( 8') 
respectively, and let (t 1, t 2, ... ) and (t~ , t; , . .. ) be spreads of'Y and 'Y' 
respectively. Assume that there exists a positive integer k such that no union 
of k non overlapping arcs of K( 8) lies in the interior of a path of k arcs in 
Ll( 8) corresponding to k consecutive arcs of 'Y. Then if for some i and j we 
have t; > tj , then t;+k ;;;. tj+k . 

Proof. Assume to the contrary that t; + k < t. +k. Then the path 8' = 
(tj, !j+l' ... ' tj+k) in X(8) lies in the interior of the path (t;, ti+l'···' t i +k) 
in Ll(8). Since d: ;;;. d;, i E {I, . .. , p}, it follows that the union of the k 
nonoverlapping arcs {(t}'+Z,t}'+1 + dt~ ):j = 1, .. . ,k} lies in the interior of 

_ }+ I 

the path (t i , t i + 1' ... ' t i +k) in Ll(8), in contradiction to the conditions of the 
lemma. • 

A repeated application of Lemmas 4.9 and 5.3 yields the follOwing. 

COROLLARY 5.4. Let 8' ;;;. 8, let'Y and 'Y' be cycles in Ll(8) and Ll(8') 
respectively, and let (t l' t 2' .. . ) and (t~, t~, .. .) be spreads of 'Y and 'Y' 
respectively, such that t~ ;;;. t 1. Assume that the;:e exists a positive integer k 
such that no union of k nonoverlapping arcs of Ll( 8) lies in the interior of a 
path of k arcs in K(8), corresponding to k consecutive arcs of 'Y. Then there 
are infinitely many i's for which t; ;;;. t i . 

Let'Y and 'Y' be cycles in Ll(8) and Ll(8') respectively. We remark that, 
by Observation 4.8, we can find spreads (t 1, t 2, ... ) and (t~ , t~ , ... ) of'Y and 
'Y', respectively, such that tl ~ t~ < t 2. Therefore, as a corollary of Corollary 
5.8 and Lemma 4.12 we now obtain the follOwing results. 

COROLLARY 5.5. If there exists a cycle 'Y in ~(8) and a positive integer k 
such that no unior; of k nonoverlapping arcs of ~(8) lies in the interior of a 
path of k arcs in Ll( 8) corresponding to k consecutive arcs of 'Y, then 'Y is a 
minimal cycle. 

Proof. It follows from Corollary 5.4 and Lemma 4.12 that JL( 'Y) ~ JL(.y) 
for any cycle .y in Ll( 8). • 
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THEOREM 5.6. If there exists a maximal cycle 'Y in Ll( 8) and a positive 
integer k such that no union of k nonoverlapping arcs of X( 8) lies in the 
interior of a path of k arcs in X( 8) corresponding to k consecutive arcs of 'Y, 
then 8 is an upward optimal sequence. 

Proof. It follows from Corollary 5.4 and Lemma 4.12 that f.L( 'Y) ~ f.L( 'Y') 
for every cycle 'Y' in il( 8') where 8' ~ 8, and hence 8 is an upward optimal 
sequence. • 

One cannot relax the requirement that 'Y is maximal from the condition in 
Theorem 5.6, as is demonstrated by the follOwing example. 

EXAMPLE 5.7. The digraph M6, 1,2) consists of the loop 161 and the 
arcs 213 and 322. We have f.L(Ll(6, 1, 2)) = 6, and the only maximal cycle is 
the loop on 1. Since the cycle 'Y = 2 132 2 consists of an arc of length 1 and an 
arc of length 2, it follows that no arc of M 8) lies in the interior an arc of 'Y. 
Nevertheless, (6, 1, 2) is not an upward optimal sequence, as f.L(Ll(7, 1, 2)) = 

1.5 < 6 = f.L(Ll(6, 1,2)). We remark that by Theorem 5.6, the sequence 
(7, 1,2) is upward optimal. 

If we choose k = 1, then Theorem 5.6 yields the follOwing. 

THI~.oREM 5.8. If there exists a maximal cycle 'Y in Ll( 8) such that no 
arc of Ll( 8) lies in the interior of an arc in Ll( 8) corresponding to an arc of 
'Y, then 8 is an upward optimal sequence. 

Theorem 5.6 is not equivalent to its weaker form in Theorem 5.8. The 
follOwing example demonstrates a case where the condition in Theorem 5.8 is 
not satisfied, while the condition in Theorem 5.6 is satisfied for k = 2. 

EXAMPLE 5.9. The digraph M5 , 2,1) consists of the arcs 153, 221, and 
311. The only cycle 'Y in Ll(5,2, 1) is 15311. Observe that the arc 221 and 311 
correspond to (2,4) and (3, 4) respectively, which lie in the interior of (1, 6), 
corresponding to the arc 153 of 'Y. Thus, the condition in Theorem 5.8 is not 
satisfied. _However, it is easy to verifY that no union of two nonove!lapping 
arcs of Ll(5, 2, 1) lies in the interior of a path of two arcs in M5 ,2, 1) 
corresponding to the two consecutive arcs of 'Y , and therefore, by Theorem 
5.6, (5,2, 1) is an upward optimal sequence. 

The converse of Theorem 5.6 does not hold in general, as demonstrated 
by the follOwing example. 
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EXAMPLE 5.10. The digraph M3, 1,7) consists of the loop 131 and the 
arcs 2 13 and 371. We have J.L(M3, 1, 7)) = 3, and the only cycle 'Y is the loop 
on 1. The arc 2 13 corresponds to (2,3), which lies in the interior of (1,4), 
corresponding to the arc 131 of 'Y. Nevertheless, it is easy to verifY that 
whenever d~ ~ 3, d~ ~ 1, and d~ ~ 7, the maximal cycle in the digraph 
Md~, d~, d~) is either a loop of length at least 3, or a two arc cycle of length 
at least 6, or a three arc cycle of length at least 12. In any case, we have 
J.L(Md~, d~, d~)) ~ 3 = J.L(M3, 1,7), and so (3,1,7) is an upward optimal 
sequence. 

Yet, in the case p = 2 the converse of Theorem 5.6 is true. 

THEOREM 5.11. Let d l and d 2 be positive integers, d l ~ d2 . Then the 
following are eqUivalent: 

CO (dl , d 2 ) is an upward optimal sequence. 
(ii) Either d l is odd and d 2 is even, or d 2 is odd and d1 - d 2 ~ 2, or d l 

is even and d 2 = d l . 
(iii) No union of two nonoverlapping arcs of ~(dl' d 2 ) lies in the interior 

of a path of two arcs in ~(dl ' d 2 ) corresponding to two consecutive arcs of a 
maximal cycle in Mdl , d 2 ). 

Proof. (i) = (ii): Distinguish between three possible cases: 

(a) d l and d 2 are even and d l > d 2 . We have J.L(Mdl + 1, d 2 )) = d 2 

< d l = J.L(Mdl , d 2 ))· 

(b) d l is even, d 2 is odd, d l - d 2 > 2. Here J.L(Mdl + 1, d 2 + 1)) = 

d 2 + 1 < d l = J.L(Mdl , d 2 )). 

(c) d l and d 2 are odd, d l - d 2 > 2. Here J.L(Mdl , d 2 + 1)) = d 2 + 1 
< (dl + d 2 )/2 = J.L(Mdl , d 2 ))· 

In any case, it follows that (d l , d2 ) is not downward optimal. 
(ii) = (iii): Distinguish between four possible case: 

(a) d 1 is odd and d 2 is even. Here the maximal cycle is 2d 22. 
(b) d l is even and d 2 = d l . Here the maximal cycles are Id,I and 2 d22. 
(c) d l is even and d 2 = d l - 1. Here the maximal cycle is IdJ . 
(d) d l and d 2 are odd, and d l - d z ~ 2. Here the maximal cycle is 

I d ,2 d 21. 

In any case, it is easy to verifY that (iii) holds. 
(iii) = CO by Theorem (5.6). • 

Finally for this section, we use our results to prove a necessary and 
sufficient condition for a sequence to be both downward optimal and upward 
optimal. Our result yields an assertion of [2]. 
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The following is an immediate corollary of Theorem 5.6. 

COROLLARY 5.12. If there exists a positive integer k such that no union of 
k nonoverlapping arcs of Li( lj) lies in the interior of a path of k arcs in Li( lj), 
then every cycle in a( lj) is a minimal cycle, and lj is an upward optimal 
sequence. 

Corollary 5.12, together with Corollary 4.18, yields 

COROLLARY 5.13. If no arc of Li(lj) lies in the interior of another arc of 
Li(lj), then every cycle in A(lj) is both a maximal cycle and a minimal cycle, 
and lj is both a downward optimal sequence and an upward optimal 
sequence. 

An immediate consequence of Corollary 5.13 is the following theorem, 
proven in [2]. 

THEOREM 5.14. If d i ,;;;; r + di+r for all i , r E {1, . . . ,p}, then lj is 
both a downward optimal sequence and an upward optimal sequence. 

Proof. Let i and r be any positive integers, and let i, r E {1, ... , p} be 
such that i (mod p) = i(mod p) and r{mod p) = r (mod p). Then 

(5.15) d i = d, ,;;;; r + dl+ T = r + d i +r ,;;;; r + d i +r for all i and r . 

Now, let (i, i + d) and (j,j + dj ) be two arcs in Li(lj), and assume that 
j < i. By (5.15) we obtain that 

j + dj ,;;;;j + (i - j) + dj+(i_j) = i + d i , 

an~ so (i , i + d) does not lie in the interior _of (j , j + d/ Therefore, no arc 
in A( lj) lies in the interior of another arc in A( lj), and our claim follows from 
Corollary 5.13. • 

6. ORDER INVARIANCE 

DEFINITION 6.1. The sequence lj is said to be order invariant [Jor the 
graph A(lj)] if J.L(A(lj)) is order invariant, that is, if J.L(A(dI, ... , dr)) = 

J.L(A(lj)) for every permutation dI , ... , d p of d1 , . .. , d p• 

In this section we study conditions for order invariance of lj. 
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DEFINITION 6.2. Let a = (a1, .. . , ap ) be a sequence of positive inte­
gers. The maximal mean of a, denoted by m(a), is defined to be the 
maximal average of any consecutive elements of the cycle (a1, ... , a p ) (that 
is, a 1 is considered subsequent to a p ) whose sum is an integer multiple of 
p. 

PROPOSITION 6.3. There exists a permutation (1, ... , fJ) of (1 , . .. , p) 
such that ,.,,(A(di, ... , d p» = m(d/, ... , d~). 

Proof. Without loss of generality we may assume that the consecutive 
elements of the (d1, ••• , dp ) whose sum is an integer multiple of p and 
whose average is maximal are the first m elements of (d). , .. . , dr). We now 
use the follOwing algorithm for finding the permutation (1, . .. , fJ). 

Step 1: Let i = 1 and let hl = 1. 
Step k + 1, k = 1, ... , P - 1: Let h = (h k + d k - I)(mod p) + 1. 

We choose 

h = (h, if h has not yet been determined . 
k+ 1 A 

the smallest i such that i has not yet been determined, otherwise, 

and we let hk + 1 = k + 1. 

It is easy to verify that A(di, .. . , d p) has a cycle with m arcs weighted 
d 1, •• • , dm , and that the weights of any other cycle in A(di , .. . , d p) are 
consecutive elements in (d1, . • • , dp ). Therefore, by Notation 3.1 and Defini­
tion 2.2 it follows that ,.,,(A(di , . . . , d p» = m(d1, ..• , dp). • 

The follOwing example illustrates the algorithm defined in the proof of 
Proposition 6.3. 

EXAMPLE 6.4. Let p = 5 and (d1, ... , ds) = (3,7,7, 1, 8). We have 
m(d1, . • . , dp)A = 5, ~btained as the average of d 1 and d 2 • We now find the 
permutation (1, . . . , 5). 

Step 1: i = 1. 
Step 2: h = (1 + d 1 - 1) (mod 5) + 1 = 4 . .4 has not yet been deter­

mined, and so .4 = 2. 
Step 3: h = (4 + d 2 - I)(mod5) + 1 = 1. i has already been deter­

mined, and the smallest i such that ; has not yet been determined is 2. 
Hence 2. = 3. 

Step 4: h = (2 + d 3 - 1) (mod 5) + 1 = 4 . .4 has already been deter­
mined, and the smallest i such that ; has not yet been determined is 3. 
Hence.3 = 4. 



80 L. ELSNER, D. HERSHKOWITZ, AND H. SCHNEIDER 

Step 5: h = (3 + d4 - 1) (mod 5) + 1 = 4 . .4 has already been deter­
mined, and the smallest i such that i has not yet been determined is 5. 
Hence.5 = 5. 

The required permutation of (1, 2, 3, 4, 5) is thus (1,3,4, 2, 5). Indeed, the 
only cycle is Ll(di,"" di) = Ll(3, 7, 1, 7, 8) is 13471, and we have 
JL(Ll(di, ... , dp)) = 5. 

An immediate corollary of Theorem 3.5 and Proposition 6.3 is the 
following necessary condition for order invariance of 8. 

THEOREM 6.5. If 8 is order invariant, then all permutations of 
(d1, . . . , dp ) have the same maximal mean. 

The converse of Theorem 6.5 is not true in general, as demonstrated by 
the following example. 

EXAMPLE 6.6. All permutations of (2, 4, 5) have the same maximal mean 
4.5. Nevertheless, Ll(2, 4,5) consists of the arcs 12 3, 243, and 352, and so 
JL(Ll(2, 4, 5)) = 4.5, while Ll(2, 5, 4) consists of the arcs 12 3, 251, and 34 1, and 
so JL(Ll(2, 4, 5)) = 3. 

In the converse direction we still have the following. 

PROPOSITION 6.7. There exists a permutation (i., ... , j3) of (1, ... , p) 
such that JL(Ll(8)) ~ m(di,"" d j) 

Proof. Let d;l' ... , d;, be the weight~ of the arcs in a maximal cycle in 
Ll(8). Clearly, for every permutation (1, ... , j3) of (1, ... , p) in which 
i 1, ... , it are consecutive elements, we have JL(a(8)) = average(d; , ... , d; ) 

I , 

~ m(di, ... , dp). • 

Example 6.6 above shows that the "~ " in the statement of Proposition 
6.7 cannot be replaced by " = ". 

We thus do not have a necessary condition for order invariance of 8 
which is also a sufficient condition. We conclude the paper with five different 
sufficient conditions for order invariance of 8. 

THEOREM 6.8. If all the d/ s but one are the same, then 0 is order 
invariant. 

Proof. Observe that Ll( 8) is isomorphic to Ll(db ··., d p, d 1, . . . , d k -1) 

for all k E {l, ... , pl. Since in our case every permutation of (d1, . .. , dp ) is 
equal to a cyclic shift (db' .. , dp' d 1, •.. , d k - 1), our claim follows. • 
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THEOREM 6.9. If there exists a positive integer d, relatively prime to p, 
such that d i == d (mod p), i E {l, ... , p}, then 8 is order invariant . 

Proof. Since d i == d (mod p), i E {I, .. . , p}, and since d is relatively 
prime to p, it follows that the only possibility of partial sum of elements of 
(d l , ... , d p ) which is divisible by p is the sum of all elements. Therefore, 
A( 8) consists of one cycle involving all p vertices, and it follows that 8 is 
order invariant. • 

THEOREM 6.10. If the largest d; that is divisible by p is greater than or 
equal to the average of the two largest d/s that are not divisible by p, then 8 
is order invariant. 

Proof. Let d; be the largest element in (d l , ... , dp ) that is divisible by 
p. It is immediate to check that under the conditions of the theorem, the 
average of elements of (dl , ... , dp ) whose sum is divisible by p does not 
exceed d i • Therefore, the loop idi (up to relabeling) is a maximal cycle in 
A(dT,···, df) for every permutati~n (L .. . , 15) of(1, ... , p). • 

THEOREM 6.1l. If the largest d i is divisible by p, then 8 is order 
invariant. 

Proof. The claim follows from Theorem 6.10. • 
THEOREM 6.12. If no partial sum of the set of d;' s that are not divisible 

by p is divisible by p, then 8 is order invariant. 

Proof. It follows from the conditions of the theorem that, for every 
permutation (1, . . ·,15) of (1, ... , p), the only cycles in A(di,···, df) are 
loops. Therefore, j.L(A(dT, ... , d f)) is equal to the largest d; is divisible by p, 
which is order invariant. • 
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