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ALGORITHMS FOR COMPUTING BASES FOR THE PERRON 
EIGENSPACE WITH PRESCRIBED NONNEGATIVITY AND 

COMBINATORIAL PROPERTIES* 

MICHAEL NEUMANNt AND HANS SCHNEIDERt 

Abstract. Let P be an n x n nonnegative matrix. In this paper the authors introduce a method 
called the SCANBAS algorithm for computing a union of (Jordan) chains C corresponding to the 
Perron eigenvalue of P, such that C consists of nonnegative vectors only and such that at each height, 
C contains the maximal number of nonnegative vectors of that height possible in a height basis for 
the Perron eigenspace of P . It is further shown that C can be extended to a height basis for the 
Perron eigenspace of P. The chains are extracted from transform components of P that are, in turn, 
polynomials in P. When the Perron eigenspace has a Jordan basis consisting of nonnegative vectors 
only, this algorithm computes such a basis. The paper concludes with various examples computed by 
the algorithm using MATLAB. The work here continues and deepens work on computing nonnegative 
bases for the Perron eigenspace from polynomials in the matrix already begun by Hartwig, Neumann, 
and Rose and by Neumann and Schneider. 
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1. Introduction. In this paper we continue an investigation begun by Hartwig, 
Neumann, and Rose [6] and Neumann and Schneider [11] on nonnegative and combi­
natorial properties of bases for the Perron eigenspace of a nonnegative matrix, which 
can be extracted from certain polynomials in the matrix. 

More specifically, let P be an n x n nonnegative matrix and p( P) its spectral 
radius which is well known to be an eigenvalue of P , called its Perron root. A more 
comprehensive explanation and detailed background to some of the concepts used in 
this introduction and appropriate references are given in the next sections. Let Z be 
the eigenprojection of Pat p(P). In [6] it was shown that for sufficiently small I: > 0, 
the matrix 

(1.1) 

is nonnegative and its columns contain a basis of nonnegative vectors for the (gener­
alized) eigenspace of P corresponding to p(P) known as the Perron eigenspace of P . 
Furthermore, an algorithm for computing I: and hence a method for computing such 
a basis was suggested in [6, Thm. 2.2]. 

In [11] it was observed that since J(I:) is an analytic function in P, it is a polyno­
mial in P , so that if P is put, say, in block lower triangular Frobenius normal form, 
then J( 1:) would be a block lower triangular matrix conforming to the block parti­
tioning in the Frobenius normal form of P. Thus combinatorial properties possessed 
by certain nonnegative bases for the Perron eigenspace of P that were present in the 
first proofs of the existence of such basis for the Perron eigenspace of P obtained by 
Rothblum [13] and Richman and Schneider [12] could be extracted from the columns 
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of J(E), and this idea led to the investigation in [11]. The combinatorial properties 
that the authors of [11] had in mind to recapture from the columns of J (E) were access 
relations in the directed graph of P or, more precisely, in the block directed graph 
that can be associated with the Ftobenius normal form of P known as the reduced 
graph of P. Indeed, in [11], it was shown that for sufficiently small E > 0, nonnegative 
bases from the columns of JT(E) could be chosen that are strongly combinatorial. (See 
§2 and [11] for precise definitions ofthese terms.) 

The purpose of this paper is to go one step deeper in search of combinatorial 
and algebraic properties of bases that can be extracted from the columns of J(E) 
and certain other nonnegative matrices that are polynomials in the matrix P and to 
compute such bases. Actually, we think of J(O) (E) := EJ(E) as a zeroth transform 
component of P. Other nonnegative matrices that are polynomials in P, which we 
will work with later, are the higher-order transform components 

Here 1/ is the index of the Perron root as an eigenvalue of P. 
Hershkowitz [7] defines the peak characteristic tuple (6, ... , €v) of the Perron root 

as an eigenvalue of P, and he shows that for each h = 1-, . -.~ , I/; -€h is the maximal 
number of nonnegative vectors of height h in a height basis for the Perron eigenspace 
and that a height basis for the eigenspace exists with that many nonnegative vectors 
at each height h = 1, . . . ,1/. 

The principal question that we shall answer in this paper is this: Can we extract 
from the columns of the transformed components J(O) (E), ... , J(v-1)(E), a union C of 
nonnegative Jordan chains that contains exactly €h vectors of height h, h = 1, ... ,1/, 

where the tuple (6, ... , €v) is the peak characteristics mentioned above? Moreover, 
can this union be extended to a height basis for the eigenspace? We achieve this via a 
scanning process of the transform components that begins by stacking the transform 
components on each other from the lowest to the highest. We call this process the 
SCANBAS algorithm. The algorithm is set out in §5 after some preparations and 
preliminary results from §§2-4. We go on to show in Corollary 4 that if ('TIl, ... , 'TIv) 
is the height characteristic of the Perron root as an eigenvalue of P with 'TIk = €k for 
k = t, ... , 1/, so that by Hershkowitz and Schneider [8, Thm. (6.6)] there is a Jordan 
basis for the Perron eigenspace of P corresponding to its Perron root such that all 
Jordan chains of length t and higher consist of nonnegative vectors only, then our 
SCANBAS algorithm produces such chains. In particular, if the Perron eigenspace 
of P has a Jordan basis consisting entirely of nonnegative chains, our SCANBAS 
algorithm computes such a basis. In §6 we conclude the paper by presenting various 
examples of bases that were produced by our SCANBAS algorithm implemented by 
using MATLAB. These examples show that generally C cannot be extended to a 
Jordan basis for the eigenspace. We end the section with a brief description of the 
MATLAB programs that were actually used in the computation of the examples. 

Finally, we find it convenient to work and state the results of this paper in terms 
of the minus M-matrix A = P - pep); that can be associated with our nonnegative 
matrix P. 

2. Notations and preliminaries. For a positive integer n, we denote by (n) 
the set {I, ... , n}. 

In all our considerations we assume that A is an n x n real matrix given in a block 
lower triangular form with p square diagonal blocks as follows: 
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o 
(2.1) o ) . , 

A~,p 
where each diagonal block is either an irreducible matrix or the 1 x 1 null matrix. The 
above form is called the Probenius normal form of A. It is well known that any square 
matrix is symmetrically permutable to such a form. The reduced graph of A, 'R(A), 
is defined to be the graph with vertices {I, ... ,p}, where (i,j) is an arc from i to j if 
Ai,j i= O. A vertex i in 'R(A) is said to be singular if Ai,i is singular. Otherwise the 
vertex is called nonsingular. The set of all singular vertices in 'R(A) will be denoted 
by S(A). A sequence of vertices (it, ... , ik) in 'R(A) is said to be a path from il to 
ik if there is an arc in 'R(A) from i j to ij+l for all j E (k - 1). The path is said to 
be simple if iI, ... , ik are distinct. The empty path will be considered a simple path 
linking every vertex i E 'R(A) to itself. If there is a path (in 'R(A)) from i to j, we 
write that i t j. If i i= j and there is a path from i to j, we write that i >- j. 

Let x ERn. We partition x = «Xl)T, ... , (xp)T)T in conformity with (2.1). Let 
i E (P). We say that that the level of i in 'R(A) is k (lev(i) = k) if the maximal 
number of singular vertices on a path ending at i is k. We say that the level of x E Rn 
is k (lev(x) = k) if 

k = max{lev(i) I Xi i= O}. 

For an n x n matrix A we denote by: 
N(A), the nullspace of Aj 
E(A), the generalized nullspace of A, viz., N(An); 
v(A), the index of 0 as an eigenvalue of A, viz., the size of the largest Jordan 

block associated with O. Where no confusion is likely to arise, we write v for v(A). 
We let Z(O)(A) be the eigenprojection of A corresponding to the eigenvalue 0 and 

we put Z(k) (A) = Ak z(O) (A), k = 0, . .. ,v - 1. Where no confusion is likely to arise, 
we write Z(k) for Z(k)(A), k = 1, .. . , v - 1. The matrices Z(k), k = 0, ... , v-I, 
are called the principal components of A (corresponding to the eigenvalue 0). For 
background material on the principal components, see Lancaster and Tismenetski 
[10, p. 314] and, in the case of nonnegative matrices, see Neumann and Schneider 
[11]. 

Let a ~ (n). By A[a] we denote the principal submatrix of A whose rows and 
columns are determined by a. Similarly, for an n-vector x, we denote by x[a] the 
subvector of x whose entries are indexed by a. For an array C, we use C ~ 0 to 
denote when all its entries are nonnegative numbers. C > 0 denotes the fact that 
C ~ 0, but C i= O. C» 0 denotes the fact that all of the entries of C are positive 
numbers. 

Let P be an n x n nonnegative matrix. The Perron Frobenius theory (cf. Berman 
and Plemmons [2]) tells us that the spectral radius of P, given by the quantity 

p(P) = max{I,X1 : det(P - AI) = O}, 

is an eigenvalue of P that corresponds to a nonnegative eigenvector. In particular, 
if P is irreducible, then p(P) is simple and the corresponding eigenvector is , up to 
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a multiple by a scalar positive. The matrix A = P - p(P)J, which has all its off­
diagonal entries nonnegative, is the n x n minus M- matrix that we associate with 
P and, in several sections of our paper, it will be convenient to work with A rather 
than with P. (We call A a mi"!-.ys M-matrix if -A is an M-matrix. For the many 
equivalent conditions for a real matrix with nonpositive off-diagonal entries to be 
an M-matrix, see Berman and Plemmons [2, Chap. 6].) Suppose now that m = 
dim(E(A)) . It is known that m is equal to the number of singular vertices in n(A) . 
Rothblum [13J has shown that v(A) is equal to the maximum over all lengths of the 
simple paths in n(A) , a result we shall refer to as the Rothblum index theorem. Let 
S(A) = {at, .. . ,am}. Rothblum [13J and, independently, Richman and Schneider 
[12] (See also [14]) have shown that E(A) possesses a basis of nonnegative vectors 
that is strongly combinatorial in the sense defined in Definition 1. 

DEFINITION 1. Let A be the n x n minus M-matrix given in form (2.1) and 
consider n(A) . 

(i) A nonnegative basis u (1), ... ,uCm ) is a (nonnegatively) proper combinatorial 
basis for E(A) if 

and 

for all i E (P) and j E (m). 
(ii) A nonnegative basis uCI), ... ,uCm) is called a (nonnegatively) strongly combi­

natorial basis for E(A) if 

uCi)[iJ = {»o ijJi!:aj, 
o otherwise. 

Let x E E(A). We say that the height of x is k (ht(x) = k) if k is the smallest 
nonnegative integer such that Akx = O. The fundament of x is, according to Her­
shkowitz and Schneider [9], the vector A k-l x. For a set of vectors S = {x, y , ... } in 
E(A), the fundament of S is the set of vectors formed from the fundaments of the 
elements of S . 

Let A be a minus M-matrix. Then it is known that ht(x) S;lev(x) for all x E E(A), 
d. [8, Cor. (4.17)J . A vector x E E(A) for which ht(x) =lev(x) is called a peak vector. 
If x is a peak vector, then lev(Ax) = lev(x) - 1 by [9, Prop. 6.5J . Also every non­
negative vector in E(A) is a peak vector. 

3. Jordan bases with nonnegative chains. Let A E Rnn be given as in (2.1). 
We shall use the following notation subsequently: 

R+. - the set of nonnegative vectors in nn. 
F = E(A) nR+.. 
Fk = N(Ak) n R+., k = 0, ... ,v. 
Ek = span(Fk ), k = 0, ... , v. 
Sk=Ak-1Ek, k=I, . .. ,v. 

Henceforth, we let A E Rnn be a (singular) minus M-matrix of index v . Since ev­
ery nonnegative vector in E(A) is a peak vector, we have the following graph theoretic 
classification of Fk and Ek. 

(3.1) Fk = {x E F lev (x) S; k}, k = 0, .. . , v. 
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(3.2) Ek = {x E E(A) : lev(x) ~ k}, k = 0, ... , v. 

We note that 

(3.3) {O} = Eo r; E1 r; ... r; Ev = E(A). 

Now by (3.1) and (3.2) and because lev(Ax) =lev(x) - 1 for x E Fk, it follows 
that 

(3.4) AEk C Ek-l, k = 1, ... , v. 

Hence we have 

(3.5) {O} r; Sv r; ... r; SI = E1 r; N(A). 

DEFINITION 2. (i) (Hershkowitz and Schneider [8, Def. (2.6)]) The height char­
acteristic of A is defined to be the v-tuple 

1](A) = (1]1 (A), ... , 1]v(A)), 

where 1]k(A) =dim(N(Ak))-dimN(Ak-1), k = 1, ... , v. 
(ii) The peak characteristic of A is defined to be the v-tuple 

~(A) = (6(A), ... ,~v(A)), 

where ~k(A) =dim(Sk), k = 1, ... ,v. 
Where no confusion is likely to arise, we denote the height characteristic of A 

by 1] = (1]1, ... , 1]1') and the peak characteristic of A by ~ = (6,·.·, ~v ). In [7, 
Def. (4.1)), Hershkowitz defines the peak characteristic of A by letting ~k =dimEk­
dim(N(Ak-1) nEk). Since Sk is isomorphic to Ek/(N((A)k-1) n E k), k = 1, ... ,v, it 
follows that his definition of the peak charactersitic of A coincides with the definition 
given above. 

For the sake of completeness, we prove the following proposition that forms part 
of [7, Thm. (6.5)). Recall, cf. [8, Def. (3.1)]' that a basis B for E(A) is called a height 
basis if the number of basis elements of height k is equal to 1]k, k = 1, ... ,v. 

PROPOSITION 1. Let A be a minus M-matrix and let B be a height basis for 
E(A). Let {3k be the number of peak vectors in B of height k, k = 1, ... , v. Then 
(3k ~ ~k, k = 1, ... ,v. 

Proof Let 1 ~ k ~ v and let X(1), ... ,x(s) be peak vectors of height k in the height 
basis B for E. Then X(1), ... ,x(s) are linearly independent mod N(Ak-1) by [8, Prop. 
(3.14)). Hence A k- 1x(1), . .. ,Ak- 1x(s) are linearly independent vectors. 0 

Hershkowitz [7, Thm. (6.5)J also proves that for every minus M-matrix, there 
exists a height basis that has ~k nonnegative vectors of height k, for k = 1, ... ,v. In 
§5 we give an algorithm that (in exact arithmetic) computes such a basis. 

4. The transform components. We begin by introducing the (€) transform 
components of A. 

DEFINITION 3. For € > 0 and for k = 0, ... , v - 1, we define the kth transform 
component of A by 
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( 4.1) 
Z(k+1) Z(v-l) 

J(k)(€) = Z(k)+ __ + ... + __ . 
€ €v-k-l 

In [6] it was shown that provided € > 0 is sufficiently small, a basis of nonnegative 
vectors for E(A) can be chosen from the columns of J(O)(€). Moreover, a method was 
given for determining such €'s, cf. [6, Thm. 2.2]. The results of [6] were improved 
in [11], where it was shown that provided € > 0 is sufficiently small, the nonnegative 
basis for E(A) chosen from the columns of J(O)(€) can be chosen to be strongly 
combinatorial. We now strengthen the results of both papers by showing that the 
method used in [6] can be adapted to compute €'s that ensure that the columns of 
J(O)(€) contain a strongly combinatorial basis and that all transform components are 
nonnegative and have interesting combinatorial properties. To this end, for 1 ~ i, j ~ 
p and for 0 ~ k ~ v-I, let IL~~ be the least element in Zi,~) and let 

(k) \ . {(k) }\ li,j = mm ILi,j ,0 . 

We note that by [11, Thm. 1], IL~~-l) > 0, when d = d(i,j) 2 1. Let 

(d-l) 
. ILi,j 

IL = mm (k) (d-2) , 
li,j + ... + li,j 

(4.2) 

where the minimum is taken over all i,j,k such that 1 ~ i,j ~ p, 0 ~ k ~ v -1, and 
d = d(i,j) > k. We comment that we here take a ratio piO, where p > 0, to be +00. 

LEMMA 1. Let A be a minus M-matrix and suppose 1 ~ i, j ~ p and 0 ~ k ~ v-I. 
Let 0 < € E min{I,IL}, where IL is given by (4.2). 

(i) If d(i,j) ~ k, then Jf,~)(€) = O. 

(ii) If d(i,j) > k, then Ji(,;)(€) ~ o. 
Proof (i) By [11, Lemma 2], if d(i,j) ~ k, then z1:;> = 0 for all q such that 

k ~ q ~ v-I and the result follows. 
(ii) Let d = d(i,j) > k. Then 

By [11, Thm. 1] Z1,~-1) ~ 0 and so IL~~-l) > o. Let 0 < € < 1 and let a be the 

least element in Ji(,;) ( € ). Then 

Hence a > 0 if 

(d-2) (k-l) 
(k) I ILi,j a>-T· _ ... _--+--

- <,J €d-k-2 €d-k-l 

1 (k-l) 
> ___ ( (k) + ... + ~d-2») + ~. 
- €d-k-2 I<,J 1<,1 €d-k-l 

(k-l) 
ILi,j 

€ < (k) (d-2) 
li,j + ... + li,j 
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and the result follows. 0 

We now make more precise a result mentioned in [l1J. 

COROLLARY 1. Let aI, ... , am be the singular vertices of'R.(A). Let v U) be 
a column of jCO)(f) clwsen from the columns of the ajth block column of J(O)(f), 
j = 1, ... , m. Then V(l), . .. ,v(rn) is a strongly combinatorial basis for E(A) and, 
what is more, they satisfy: 

(AkvU))i »0 ifd(i,aj) > k, 

(AkvU))i = ° if d(i,aj) ~ k. 

Proof We observe that AkvU) is a column of J(k)(f) belonging to the ajth block 
column J(k) (f), k = 0, ... ,11-1 and j = 1, ... ,m. 0 

We note that this basis satisfies the properties of Rothblum, [13, Thm. 3.1J. 
Additionally we have the following corollary. 

COROLLARY 2. Let v(1), ... ,v(rn) be a basis of E(A) which satisfies the conclusion 
of Corollary 1. The subset consisting of those vectors whose level does not exceed k 
forms a basis for E k , k = 0, ... ,11-1. 

Proof It holds that V(l), .. • ,v(m) is a strongly combinatorial basis for E(A). 0 

5. The SCANBAS algorithm. From now on we shall assume that f has been 
chosen so that the transform components J(k)(f), k = 0, ... ,11-1 satisfy the conclu­
sions of Lemma 1. 

Observe that in the algorithm below, the index h is decreased in each iteration. 
Thus when we determine the sets Fh and the chains Ci,h, the sets Fk and Ci,k are 
already determined for k = h + 1, ... , 11. 

THE SCANBAS ALGORITHM 

Set h = 11. 

Step 1. Scan J(h-l)(f) to extract a set 

of null vectors of A, which is maximal with respect to the property that the union (ih 
of Fh and the sets Fk, k = h + 1, ... ,11 is linearly independent. 

Step 2. Then for each u(h,i,h), i = 1, ... ,Sh, select the chain 

Ci,h = {UU,i,h) I j = 1, ... ,h}, 

which consists of the columns in J(O) (f), ... ,J(h-l)(f) corresponding to u(h,i,h) , i.e., if 
u(h,i,h) is the rth column of J(h-l)(f), then uU,i,h) is the rth column of JU-I)(f), j = 

1, ... ,h. 
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If h > 1, reduce h by 1, and repeat. 
If h = 1, then stop. 

585 

Remark. Note that U(j,i,h) is the vector of height h - j + 1 in the ith chain of 
length h. 

THEOREM 1. Let C be the union of the chains 

Then 

Ci,h = {u(j,i,h) \j=I, ... ,h}, i=I, ... ,sh, h=I, ... ,v. 

(i) C consists of nonnegative vectors. 
(ii) C is a linearly independent set of vectors. 

(iii) Let 1 ~ h ~ v. Then 9h = Uk=hFk is a basis for Sh. 
(iv) C contains exactly ~h vectors of height h, h = 1, ... , v. 
(v) C can be extended to a height basis for E(A). 

Proof (i) Each vector in C appears in a column in some j(h), h = 0, ... , v-I, 
and these matrices are nonnegative. 

(ii) The set 91 defined above is the fundament of C and, by construction, 91 is 
linearly independent. Hence C is linearly independent, e.g., Bru and Neumann [3]. 

(iii) Let 1 ~ h ~ v. First, let x E 9h' Then x E Fk for some k, h ~ k ~ v. Hence 
x is a column of j(k-l) (E) and therefore x = Ak-ly , where y is a column of j(O) (E). 
Since x E N(A), it follows that y must be in Fk. Hence x E A k-l Ek = Sk ~ Sh' 

Conversely, let x E Sh' Then x = Ah-ly , where y E Eh and so, by Corollary 
2, y is a linear combination of columns of j(O) (E) that lie in Fh • Hence x is a linear 
combination of columns of j(h-l) (E) that lie in N(A). Since by the first part of the 
proof of (iii), Fk ~ Sh, k = h + 1, ... , v, it now follows that the set 9h obtained in 
Step 2 of the SCANBAS algorithm is a basis for Sh. 

(iv) Let Ch be the set of all vectors in C of height h. Then the map x -> Ah-IX 

is a bijection of Ch onto Fh, and hence (iv) follows from (iii). 
(v) Since, by (iv), Ah-1Ch = Fh and Fh is linearly independent, it follows that 

Ch is linearly independent mod E h- 1 • Hence we can extend Ch to a set Bh, which is 
a basis Eh mod Eh-l. It follows that B = Uh=IBh is a height basis for E(A), cf. [8, 
Prop. 3.14]. 0 

COROLLARY 3. It holds that 

~h = Sh + ... + Sv, h = 1, ... , v. 

Let x E E(A) be a vector of height k. Then the the chain derived from x is 
defined to be the set {x, Ax, ... , Ak- 1x}. The chains derived from a subset of E(A) 
is the union of all chains derived from the vectors in this set. The technique used 
to prove the following important corollary is related to the proof of Hershkowitz and 
Schneider [8, Prop. (6.1)]. 

COROLLARY 4. Let 1 ~ t ~ v and let 'TIk = ~k' k = t, ... , v. Then the chains 
Ci,h, where 1 ~ i ~ Sh and t -1 ~ h ~ v, can be embedded (extended) to a jordan 
basis for E(A). 

Proof For k = t, .. . ,v, let 1tk consist of all vectors U(I,i,k) E C, i = 1, ... , Sk . 
Since ht(U(I,i,k)) = k and ~k = 'TIk, it follows that U~=kAr-k1tr is a basis for N(Ak) 
mod (N(Ak-l)). Now let k = t-1. Then the set of vectors u(1,i,k), i = 1, ... ,Sk, can 
be completed to a set 1tk such that U~=kAr-k1tr is a basis for N(Ak) mod (N(Ak-l)). 
Furthermore, for k = 1, ... , t-2, there exist sets 1tk such that U~=kAr-k1tr is a basis 
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for N(Ak) mod N(Ak- 1 ). The chains derived from Uk=lJik now form a Jordan basis 
for E(A) with the required properties. 0 

Remark. In [7, Thm. (6.6)J it is shown that there exists a Jordan oasis for .E(A) 
such that all chains of length greater than or equal to t are nonnegative if and only if 
~k = 17k, k = t, ... ,1/. Thus, if a Jordan basis exists such that all chains of length t or 
greater ire nonnegative, then the SCANBAS algorithm will produce such chains. In 
particular, if a nonnegative Jordan basis for E(A) exists (viz., ~k = 17k, k = 2, ... , 1/ 

or see [9, Thm. 6.6J for many other equivalent conditions), then the SCANBAS 
algorithm produces a nonnegative Jordan basis for E(A). Finally, since we always 
have ~v = 17v, cf. [8, Prop. (4.2)], the SCANBAS algorithm always produces a set 
of nonnegative chains of length 1/ which can be extended to a Jordan basis E(A) by 
adding chains of length at most 1/ - 1. The result that there is a Jordan basis for 
E(A) such that all chains of length 1/ are nonnegative is known; see [8, Cor. (6.12)J 
for the existence of such chains. 

6. Examples and concluding remarks. We call a set C of vectors a maximal 
nonnegative union of chains (MNUC) provided C is a union of nonnegative chains, C 
is linearly independent, and C contains ~h vectors of height h. By Theorem 1, the 
SCANBAS alogorithm produces an MNUC. In this section we give several examples 
of MNUCs for various matrices and the relation of these MNUCs to Jordan bases. 

We call a diagram of pluses with ~h pluses in row h (counting from the bottom) 
the Peak diagmm of the matrix. Similarly we call a diagram of stars with 17h pluses 
in row h (counting from. the bottom) the Jordan diagmm of the matrix. (As is very 
well known, the number of stars in each column, read from the left, yields the Jordan 
(Segre) characteristic of the matrix.) 

Example 1. We begin with an example where the MNUC consists of complete 
Jordan chains and may be completed to a Jordan basis by adjoining an eigenvector. 

Let 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 0' 0 0 0 0 

a= 1 0 1 -1 0 0 0 
1 1 0 0 0 0 0 
1 1 1 0 1 0 0 
2 1 2 1 1 0 0 

.. -~~ 
~ ....... 

" -...... 

We puf SGQ, = scanbas( a). Then 

0 0 1 0 0 
0 0 0 0 0 
0 1 1 0 1 

sea = 0 1 1 0 1 
0 1 1 0 0 
2 3 3 1 1 
4 6 6 3 2 
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Then 

0 0 1 0 0 1 
0 0 0 0 0 -1 
0 1 1 0 1 -1 

jna= 0 1 1 0 1 0 
0 1 1 0 0 1 
2 3 3 1 1 0 
4 6 6 3 2 0 

is a Jordan basis since 

0 0 0 0 0 0 
0 0 0 0 0 .() 

0 0 1 0 0 0 
a x jna = 0 0 1 0 0 0 

0 0 1 0 0 0 
0 2 3 0 1 0 
0 4 6 0 3 0 

We observe that the Jordan and Peak diagrams can be combined as 

+ 
+ + 
+ + *. 

Example 2. We now give an example of a minus M-matrix whose Perron eigen­
space has a nonnegative Jordan basis and the basis with such specifications produced 
by our SCANBAS algorithm. Let 

0 0 0 0 0 0 
0 0 0 0 0 0 

b= 
1 1 0 0 0 0 
2 1 0 0 0 0 
2 1 1 1 0 0 
1 1 2 1 0 0 

Here the SCANBAS algorithm yields the MNUC scb = scanbas(b) given by 

0 0 1 0 0 0 
0 0 0 0 0 1 

scb= 
0 1 1 0 1 1 
0 2 2 0 1 1 
3 5 5 2 3 3 
4 5 5 3 4 4 

This is easily seen to be a nonnegative Jordan basis consisting of two chains each 
of length 3. 

Example 3. We give an example of a matrix that possesses an MNUC that can 
be embedded in a Jordan basis, but where no MNUC can consist of complete Jordan 
chains. 
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Let 

0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 0 0 0 0 

e= 1 1 0 0 0 0 
2 1 1 1 0 0 
1 1 1 1 0 0 

Then the index of e is 3 and, if we choose € = 1, we obtain the transform components 

1 0 0 0 0 0 
0 1 0 0 0 0 

jOe = 1 1 1 0 0 0 
1 1 ·0 1 0 0 

, 
4 3 1 1 1 0 
3 3 1 1 0 1 

0 0 0 0 0 0 
0 0 0 0 0 0 

jle = 
1 1 0 0 0 0 
1 1 0 0 0 0 

, 
4 3 1 1 0 0 
3 3 1 1 0 0 

and 

0 0 0 0 0 0 
0 0 0 0 0 0 

j2e = 
0 0 0 0 0 0 
0 0 0 0 0 0 
2 2 0 0 0 0 
2 2 0 0 0 0 

Af3 we can see by inspection of the transform components, our SCANBAS algo­
rithm yields see = scanbas(e) given by 

0 0 1 0 
0 0 0 0 
0 1 1 0 

see = 
0 1 1 0 
2 4 4 1 
2 3 3 0 

This set may be extended to a Jordan basis 

0 0 1 0 1 0 
0 0 0 0 -1 0 

jne= 
0 1 1 0 0 1 
0 1 1 0 0 -1 , 
2 4 4 1 0 0 
2 3 3 0 0 0 
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where 

0 0 0 0 0 0 
0 0 0 0 0 0 

c x jnc = 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 2 4 0 1 0 
0 2 3 0 0 0 

Thus the combined Peak and Jordan diagrams here are 

+ 
+ * 
+ + * . 

We label the columns of jnc (from left to right) by vll , v12 , v13 , v2l , v22 , V3l 

Then we have the Jordan chains (v13 , v12 , vll ), (V22 , v2l ) and (V3l ). Ifsome MNUC 
can be extended to a Jordan basis, then we would also get a combined Peak and 
Jordan diagram for c of the form 

+ 
+ * 
+ * + . 

We shall show that this is impossible; for let (w13 , w12 , w13 ), (W22 , W2l ), and 
(W3l ) be another Jordan basis. Note that w3l is a linear combination of vll , V2l , and 
v3l with nonzero coefficients for v3l, since W3l does not belong to range(e), see Bru, 
Rodman, and Schneider [4] for arguments of this type. But then, by inspection of the 
vectors, W3l cannot be nonnegative. 

Example 4. We give an example of a matrix for which it is impossible to embed 
the chains of any MNUC into a Jordan basis. 

Let 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 

d= 0 0 1 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 2 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 0 

Then the SCANBAS algorithm yields the MNUC sed = scanbas(d) 

0 0 0 1 0 0 
0 0 0 0 0 0 
0 0 1 1 0 0 
0 0 0 0 0 0 

sed = 0 1 1 1 0 0 
0 1 1 1 0 0 
0 0 0 0 0 1 
2 4 4 4 1 1 
2 3 3 3 0 0 
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A Jordan basis for d is given by 

0 0 0 1 0 0 1 0 0 
0 0 0 0 0 0 -1 0 0 
0 0 1 1 0 1 0 0 1 
0 0 0 0 0 -1 0 0 -1 

jnd= 0 1 1 1 0 0 0 1 0 
0 1 1 1 0 0 0 -1 0 
0 0 0 0 0 0 0 0 -1 
2 4 4 4 1 0 0 0 0 
2 3 3 3 0 0 0 0 0 

Thus the peak diagram for d is 

+ 
+ 
+ + 
+ + 

and the Jordan diagram is 

* 
* "* 
* * 
* * * *" 

We claim that no Jordan basis for d is an extension of an MNUC. We label the 
columns of J"nd (from left to right) as xli X 12 x 13 X14 X 21 X 22 x 23 X 31 X41 , , , , , , , , . 

Suppose that there is a Jordan basis whose elements of height 3 are w13 and w23 , 

where w 13 is of form d( W 14 ). Then, w 13 is a multiple of x13, while w23 is a linear 
combination of x 13 and x 23 , where x 23 must have a nonzero coefficient. Hence w23 is 
not nonnegative. But if the Jordan basis is an extension of an MNUC, w23 must be 
nonnegative. Our claim follows. 

Finally, we outline how our SCANBAS algorithm is implemented using MAT­
LAB. The entire process is controlled by a function called scanbas.m whose input 
is the minus M-matrix A and whose output is an MNUC. This function first calls 
another MATLAB function nnb.m that returns an € > 0 and J(O) ~ O. The value 
value of € > 0, which is returned, is also sufficient to ensure that all higher-order 
transform components of A are nonnegative. To achieve its purpose, nnb.m initially 
determines the eigenprojection Z(O) by calling on a function drazin.m. The original 
version of drazin.m was written by Professor Robert E. Hartwig of North Carolina 
State University. This function computes the eigenprojection via the evaluation of 
the Drazin inverse AD, viz., Z(O) = 1- AAD, which is carried out using an algorithm 
due to Hartwig [5] . (For other methods of computing the Drazin inverse of a matrix, 
see the shuffle algorithm due to Anstreicher and Rothblum [1].) We mention that 
in drazin. m, the reduction steps used to implement Hartwig's algorithm are executed 
using the [q,r]=qr(·) command of MATLAB, not only for accuracy, but for the conve­
nience of having the reducing matrices that this method needs from step to step [5]. 
The function drazin.m also returns II, the index of A at O. With Z(O) and II at hand, 
nnb.m calls the function macse.m, which computes an € > 0 such that all transform 
components are nonnegative. This is done by generating iteratively all the principal 
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components of A. With all this data at hand, nnb.m finally computes J(O) and re­
turns the control to scanbas.m which now proceeds to compute an MNUC according 
to Steps 1 and 2 of the SCANBAS algorithm given in §5. This segment of scanbas.m 
starts by setting up an array W that contains, juxtaposed, all, say up to a multiple, 
transform components generated iteratively from J(O). Steps 1 and 2 are now carried 
out using a nested for/if loops. 
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