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ABSTRACT 

A characterization is obtained for the matrices A with the property that every 
(some) Jordan basis of every A-invariant subspace can be extended to a Jordan basis 
of A. These results are based on a criterion for a Jordan basis of an invariant subspace 
to be extendable to a Jordan basis of the whole space. The criterion involves two 
concepts: the constancy property and the depth property. 
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1. INTRODUCTION 

Let A be an n X n complex matrix considered as a linear transfonnation 
en -., en. A chain (for A) is a set of nonzero vectors 

{u,(A - AI)u, ... , (A - Al)k -lU} (1.1) 

such that (A - AnkU = O. The complex number A is necessarily an eigen
value of A and (A - AI)k-Iu is an eigenvector. A Jordan basis for an 
invariant subspace W is a basis for W which is the union of chains. A Jordan 
basis of en will be called a Jordan basis for A. That is, a Jordan basis for A is 
a basis of the form 

where U j E en and (A - AI)k lUi = O. The existence of a Jordan basis for any 
n X n matrix A is well known and follows from the existence of the Jordan 
nonnal fonn of A. 

Given a Jordan basis (1.2), certain A-invariant subspaces are seen imme
diately. Namely, for any choice of integers m, (i = 1, ... , t) such that 0 ~ mj 
~ k j • the subspace 

(1.3) 

is A-invariant. i.e., Ax EM for every x EM [the equality mj = k, for some i 
is interpreted as the indication that i is missing in the formula 0.3)]. The 
A-invariant subspaces that arise in this way, starting with any Jordan basis, 
are called marked in [2]. Equivalently, an A-invariant subspace M is caned 
marked if there is a Jordan basis for the restriction AIM: M -., M which can 
be extended (by adjoining to it new vectors) to a Jordan basis for A in en. 

Generally, not every A-invariant subspace is marked (an example is given 
in [2]). The existence of nonmarked invariant subspaces is sometimes over
looked in linear algebra texts. In this paper we characterize those matrices A 
for which every invariant subspace is marked. We also characterize the 
matrices A with a stronger property, namely, that every A-invariant subspace 
is strongly marked. Let us define this notion: an A-invariant subspace M is 
strongly marked if every Jordan basis of M can be extended (by adjoining 
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new vectors) to a Jordan basis for A in en. These notions call our attention to 
a more general question: when can a given Jordan basis for an' A-invariant 
subspace be extended to a Jordan basis for the whole space en? We solve 
this problem in Section 2 in tenns of the height and depth of vectors and 
related properties. Another characterization Gn different tenns} of this ex
tendability property is given in [1]. 

These results are used in subsequent sections to characterize marked and 
strongly marked subspaces. This characterization goes as follows. (The multi
plicities of a matrix A corresponding to its eigenvalue Ao are simply the sizes 
of the Jordan blocks with the eigenvalue Ao in the Jordan nonnal form of A.) 

THEOREM 1.1. Let A be an n X n matrix. Then every A-invariant sub
space is marked if and only if for every eigenvalue A 0 of A the difference 
between the biggest and the smallest multiplicity of A corresponding to Ao 
does not exceed 1. 

THEOREM 1.2. Let A be an n X n matrix. Then every A-invariant sub
space is strongly marked if and only if for every eigenvalue Ao of A all 
multiplicities of A corresponding to A 0 are equal. 

To illustrate these results consider the following example. Let 

A=[! 

1 
o 
o 

° o 

o 
o 
o 
o 

° 

o 
o 
1 
o 
o !I 

According to Theorems 1.1 and 1.2, every A-invariant subspace is marked, 
but there are A-invariant subspaces which are not strongly marked. For 
example, K(A) is not strongly marked. Here and elsewhere in this paper 
K(A) stands for the kernel (null space) of the matrix A. Indeed, a Jordan 
basis for A,K(A) given by (a},0,/32,0,1'l)T,(a2,O,/3z,0,'Yz)T,(a3,0,/33,0,'Y3)T 
(here a j , f3 j , 1'j, E e) can be extended to a Jordan basis for A if and only if 
there are two zeros among the nUlllbers 'Y l' l' 2' 'Y 3' An easy (but somewhat 
tedious) analysis shows that the following is a L'Omplete list of all A-invariant 
subspaces which are not strongly marked: K(A); all 2-dimensional A
invariant subspaces spanned by eigenvectors, with the exception of 
Span{(l, 0, 0, 0, O)T, (0, 0,1,0, O)T); all 4-dimensional A-invariant subspaces 
containing K(A). 
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As a coronary we recover the following result from [2] (Theorem 2.9.2). In 
fact the conclusion of Theorem 2.9.2 of [2] is weaker in the sense that only 
the marked property of every A-invariant subspace is asserted there. 

COROLLARY 1.2. l£t A be an n X n matrix such that for every eigenvalue 
A of A at least one of the following holds: 

(a) the geometric multiplicity (i.e., the dimension of K(A - AI) is equal 
to the algebraic multiplicity; 

(b) dim K(A - AI) = 1. 

Then every A-invariant subspace is strongly marked. 

The proofs of Theorems 1.1 and 1.2 will be given in Sections 3 and 4, 
respectively. 

We conclude the introduction by remarking that it is sufficient to prove 
Theorems 1.1 and 1.2 (and Theorem 2.1 stated below) for the case when A 
has a single eigenvalue Ao (without loss of generality it can be assumed that 
Ao = 0). This follows readily from the well-known fact that every A-invariant 
subspace M can be written as 

where A l' ... , A r are all the distinct eigenvalues of A and 

is the root subspace of A corresponding to A j' Thus, it will be assumed in 
Sections 2, 3, and 4 that A is nilpotent: An = o. 

2. HEIGHT AND DEPTH 

Let A be an n X n nilpotent complex matrix. 
For a given x E en let the height of x [notation: ht(x)] be the minimal 

nonnegative integer k such that Akx = 0 (as usual, we assume AO = 1; thus 
zero is the only vector of height zero). For x :1= 0, the depth of x [notation: 
dpth(x)] is by definition the maximal nonnegative integer k such that 
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x = Ak y for some y. Note the following easily verified properties: For 
complex numbers a I' ... , a Ii' and vectors x I' ... , x II we have 

ht(.t aix i) ~ max{ht(xJ: i = 1, ... , s}, 
,= 1 

(i) 

dpth ( ,t aix t ] ~ min{ dpth( Xi): i = 1, ... , s}, 
1=1 

(ii) 

and the strict inequality 

dpth( x) "* dpth( y) => dpth( x + y) = min{ dpth( x), dpth( y)}. (iii) 

provided all vectors in (ij) and (iii) are nonzero. Also, for 0"* u E e", we 
have 

ht( Au) = ht( u) - I, (iv) 

dpth( Au) > dpth( u), ( v) 

provided that Au "* O. 
We address the question when a given Jordan basis B (1.2) for W can be 

extended to a Jordan basis for the whole space en, i.e., when there is a 
Jordan basis T in en such that B ~ T (as sets of vectors). The answer is 
based on two notions that we call the constancy property and the depth 
property. 

We say that a nonzero vector x has the constancy properly (CP) if either 
Ax = 0 or Ax =1= 0 and 

dpth( Ax) = dpth( x) + l. 

A set S of nonzero vectors is said to have' the CP if every vector in S has the 
CPo In particular, the notion of the constancy property can be applied to a 
chain S = {x, Ax, ... , Ak -1 x}; thus, this chain has CP if and only if 

dpth(Ai-lx) = ' dpth( x) + i -1, i=I, ... ,k. (2.1) 
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As by (iv) ht{Aix) = k - i (0 ~ i ~ k - 1), these equalities can be rewritten in 
the fonn 

dpth( x) + ht( x) = dpth( A'x) + ht(Aix), i = 0, ... , k - 1. ( 2.2) 

Also, if dpth(Ak-1x) = k -1, then necessarily dpth(x) = ° and (2.2) holds, 
and thus the chain {x, Ax, ... , Ale-IX}' has the CPo 

In what follows we use the notation (q) for the set {I, ... , q}. 
We say that a linearly independent set of vectors {Xi: i E (q)} has the DP 

(the depth property) if w = EiE(q)a,x
i
, w oF 0, implies that 

dpth( w) = min {dpth ( Xi) : i e (q) and a i :;: O}. (2.3) 

The two properties CP and DP do not imply each other, as examples will 
presently show. First, note that every chain {x, Ax, ... , Ale-IX} is linearly 
independent, by a standard argument. It follows from (iii) and (v) that every 
chain has the DP. An example of a chain without the CP (but with DP) is 
furnished by {u, Au} where 

1 ° o 1 
o 0 
o 0 ~l 

and u = (0, 1, 0, l)T. The following example shows a linearly independent set 
of chains without the DP. Let 

1 
o 
o 

u = (1,0, 1)T, and v = (0,0, 1)T. Then each of the (singleton) chains {u} and 
(v) has the CP, the set {u, v} is linearly independent, but (u, v} does not have 
the DP. Indeed, dpth(u) = dpth(v) = 0, but for a nonzero vector w = au + f3v 
we have dpth(w) = 0 if a + f3 =F 0 and dpth(w) = 1 if a + f3 = o. 

The main result of this paper is the following (which holds without the 
assumption that A is nilpotent, though the proof is given only for nilpotent 
A; see the end of Section 1). 

THEOREM 2.1. Let A be a complex n X n 1TUltriX. Let B be a Jordan basis 
for an A-invariant subspace W. Then B can be extended to a Jordan basis for 
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A in en if and only if B has the CP and the DP. 

Proof. " If": Let 

be a Jordan basis for cn. It is enough to prove that C has the CP and the DP, 
for then any subset of C has the CP and the DP. 

Let w be a nonzero vector in cn. Then w can be written uniquely as 

t k;-l 

w = E E aijAJu ;, 
j = 1 j =0 

aijEC, j=O, ... ,k j -l, i=I, ... ,t. 

Then, for p ~ 0, A,IW has the unique representation 

I k;-l 

AflW = E E ai.J_pAJUi' 
;=1 j=O 

j=O, ... ,k;-I, i=I, ... ,t, 

where aij = ° whenever j < 0, i = 1, ... , t. If Aw =1= 0, then it follows easily 
that 

dpth( w) = min{ j: at least one of a ij , i = 1, ... , t, is nonzero). (2.4) 

In particular, 

j=O, ... ,k j -l, i=I, ... ,t. (2.5) 

Thus, by (2.1), C has the CP, and, by applying (2.5) to (2.4) we see that C 
has the DP. 

Hence if B is a subset of C, then B has the CP and the DP. 
"Only if": We suppose that W =1= C", for otheIWise of course there is 

nothing to prove. We consider two cases. In each case we construct a 
subspace W' which proper]y contains W and a Jordan basis B' ~ B for W' 
such that B' has the CP and the DP. 

We say that a chain {u, Au, ... , Ak-1u}' is maximal if it is not contained 
(set theoretical1y) in a larger chain; in other words, a chain {u, Au, ... , Ak - lU} 

is maximal if dpth(u) = O. 

Case 1: Some chain of B is not maximal. Suppose that S = {u, ... , 
Ah-1u} is a chain of B, and that dpth(u) = d> O. Let y E en satisfy Ady = U. 
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Then dpth(y)=O. Let S'={y, ... ,Ad+h-1y). We let B' consist of the chains 
of B with S replaced by S', and we let W' = span(B'). 

Claim 1.1. B' is linearly independent. Otherwise, there exists a nontrivial 
linear relation on B', and since this cannot be a nontrivial linear relation on 
B, it must involve an element of form Ary, where r < d. We choose the 
minimal such r. Multiplying this linear relation by Ad -,., we obtain a linear 
relation on the elements of B, which is nontrivial, since it involves Ady = U. 

But this is impossible, since B is linearly independent. 
Claim 1.1. The chain 5' = {y, ... , Ad +h - 1 y) has the CP. Otherwise, by 
(2.1), dpth(Ad+h-1)y) > d + h -I, and there is a y' E en such that 

But then 

dpth(Ah-1u) -dpth(u) ~ d + h - d = h, 

which is impossible by (2.1), since S has the CPo Hence dpth(Al1+h-1y) = 
d + h -1, and hence S' has the CPo 
Claim 1.3. B' has the DP. Recall that every chain has the DP. Suppose B' 
does not. Since Band S' have the DP, it is easily shown using (iii) that there 
exists awE W and an 

x = E 'Y.yA~y, 
sE (r ..... d -I) 

'Yy E C, 'Yr '* 0, 

where 0 ~ r < d, such that w"* 0, x * 0, 

dpth( w) = dpth( x) = r, 

and, for v = w + x, 

dpth( v) > r. 

We then obtain 

dpth ( Ad - r V ) ~ dpth ( v) + d - r > d. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

But this is impossible, for Ad-rv is a linear combination of nonzero elements 



EXTENSIONS OF JORDAN BASES 217 

of B one of which is Ady = u, and dpth(u)= d. This proves the claim, and 
completes the proof of case I. 

Case II: Every chain of B is maximal. 

Claim II.l. There exists v E cn, v$. W, with ht(v) = 1 (i.e., v is an eigen
vector of A). Let u E cn, U $. W. Let ht(u) = h. If An-1u $. W, the claim is 
true. Otherwise there exists a least r, 0 < r < h - 1, such that Ar u E W. 
Thus Ar u is a linear combination of B, and, since B has the DP, it is a linear 
combination of elements of B whose depth is at least 1. Thus there exists a 
wE W such that Aw = Aru. Let x = w - Ar-1u. Then x$. Wand Ax = 0, 
which proves the claim. 

We now choose a chain S = {u •... , Ali - 1 u} of maximal length such that 
Ah-1u = v is not in W. Let 8' = BUS. Then it is easy to prove that 
W n span(S) = 0, and it follows that B' is a basis for W' = W E9 span(S). 

Claim II. 2. The chain S has the CPo Since S is a maximal chain beginning 
at u, clearly dpth(u) = O. Suppose S does not have the CPo Then, by (2.1), 
dpth(A,,-Iu»h-l. Hence there is a wEC" such that Ahw=Ah-lu. 
Thus the chain {w, ... , AIi-Iu} has greater length than S, contrary to the 
assumption that S is a maximal chain whose last element is not in W. 
Claim II. 3. B' has the DP. Suppose B' does not have the DP. Since Band 
the chain S have the DP, there must exist 

v=w+x, WE W, x E span(S), 

such that 

dpth( v) > min{ dpth( w ),dpth( x)}. (2.10) 

By OiO, we then have 

dpth( w) = dpth(x) = d, say, (2.11) 

when 0 ~ d < h. By (2.11), we have 

x = E 'Yr Aru , 'Yr E C, I'd * O. 
r E (d •. . .• h-l) 

By (2.10), there is a z E C" such that A'l+ lZ = V. Then 

Ah - Ah - d - 1 - Ah - d - 1 + Ah- d - 1 - Ah - d - 1 + Ah- 1 
Z - V - U? x - W 'Yd U. 
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Since Ah-d-1w E Wand 'YdAh-IU::l= 0, it follows that there is a chain of 
length h + 1 which ends outside W, contrary to our assumption on S. This 
proves our claim, and completes the proof of case II. 

Thus in either case, we have constructed an invariant subspace W' with 
dim(W') > dim(W) and a Jordan basis B' d B with the DP such that B' has 
the CPo By repeating this argument we obtain a Jordan basis for en, which is 
an extension of B. • 

Another necessary condition for extendability of B to Jordan basis if en 
can be given in tenns of multiplicities, as follows. We write the list of all 
multiplicities (including repetitions, if necessary) in a non increasing order: 
Al ~ ... ~ Aq • A sequence of positive integers f31'"'' f3 p will be caned a 
sublist of multiplicities if p ~ q and there is a one-to-one map ~: {l, ... , p} ~ 
{l, ... ,q} such that (3i = AW ) for i = l, ... ,p. By the index of a chain 
S={x, ... ,Ak-Ix}, denoted ind(S), we mean dpth(Ak-1x)+1. 

By (2.4), it is easy to see that if a Jordan basis B of W. is extendable to a 
Jordan basis of en, then the numbers ind(Si)' where SI'"'' Sr are the chains 
in B, fonn a sublist of multiplicities. The following example shows that a 
Jordan basis B with the CP and for which ind(S), i E (r), fonn a sublist of 
multiplicities need not be extendable to a Jordan basis of en, 

EXAMPLE 2.1. Let 

A=[~ 
1 0 
o 0 
o 0 
o 0 n 

Let u = (1,0, 1,0)T, V = (0,0, 1,0)T, Then (u, v} forms a Jordan basis B of 
the subspace W= span{(I,O,O,O)T,(O,O,l,O)T}. By Theorem 2.1 the basis B 
cannot be extended to a Jordan basis in e4

, since dpth(u) = dpth(v) = 0, 
while dpth(u - v) = 1. However, the basis B has the CP and {I, I} is a sublist 
of multiplicities, 

3. PROOF OF THEOREM 1.1 

Let A be an n X n nilpotent matrix. We start with the following: 

PROPOSITION 3.1. Suppose that every A-invariant subspace is marked. 
Then the lengths of any two maximal chains (in a Jordan basis of A) differ by 
less than two. 
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Proof. Arguing by contradiction, assume that 

u , Au , ... , Ar 
- 3 U (3.1) 

is a maximal chain in a Jordan basis of A, and 

v, Av, ... , AT-IV 

is a not necessarily maximal chain in the same Jordan basis of A. Put 
z = u + Av. Note that Ar

-
2z = Ar

- lV. Further note that dpth(z) = 0 [indeed, 
if Ay = z for some y, then u = A(y - v), which is a contradiction with the 
maximality in (3.1)]. We have ht(Ar

-
2z) = 1, dpth(Ar

-
2z) ~ r -1, ht(z) = 

r -1, and dpth(z) = 0; so the chain z, Az, ... , Ar
-

2z does not have the CP 
and hence by Theorem 2.1 cannot be extended to a Jordan basis for en. 
Observe that every Jordan basis for span{z •... , AT-2Z} has the form 

where 

{ w, Aw, ... , AT - 2 w} , 

r -2 

W = E aJAJz , 
j=O 

We see that dpth(z) = 0 and dpth(A r
-

2 w) = dpth(a oAT
-

2 w) = 

dpth(aoA,.-2z ) ~ r -1. Thus, the chain {AJw};:J does not have the CP, and 
by Theorem 2.1 it cannot be extended to a Jordan basis for A. Therefore, the 
A-invariant subspace span{z, ... , Ar

-
2z} is not marked. • 

PROPOSITION 3.2. Let A be an n X n nilpotent matrix with sizes of all 
Jordan blocks equal to q or q - L Then all chains have the CPo 

Proof. Let w be a vector in e'l such that Aw =1= O. We shall show that 

ht( w) + dpth( w) = ht( Aw) + dpth( Aw ) . (3.2) 

It follows from our assumptions that we may write 

w=u +v, 

where u and v are linear combinations of vectors in Jordan chains of lengths, 
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respectively. q and q -1. Suppose that 

ht( u) = h, ht( v) = k. 

Then 0 ~ h ~ q, 0 ~ k ~ q -1. If h = 0 (i.e. u = 0) or k = 0 (i.e. v = 0), then 
we are basically in the situation [as far as (3.2) is concerned] when all the 
multiplicities of A are equal. But in this case (3.2) follows easily [see also the 
equivalence (1) ~ (2) in rheorem 1.2' of Section 4]. So suppose that h, k ~ l. 
Note that we cannot have h = k = 1, for then Aw = 0, contrary to assump
tion. So either h > 1 or k > 1. It is easily checked that 

ht(w) = max{h.k}, 

dpth( w) = min{ q - h , q -1- k} , 

ht(Aw) = , max{h -1, k -I}. 

dpth(Aw) = min{q - h + 1,q - k}. 

If h > k, it follows that 

ht( w) + dpth( w) = ht( Aw ) = dpth( Aw) = q, 

while if h ~ k 

ht(w)+dpth(w) =ht(Aw)+dpth(Aw) =q-l. 

In either case, (3.2) holds and the proposition follows. • 
PROPOSITION 3.3. Let A be an n X n nilpotent matrix with sizes of all 

Jordan blocks equal to q or q -1. Let M be an A-invariant subspace of ell, 
and let B be a Jordan basis for M with a maximal number of eigenvectors of 
depth q -1. Then B has the DP. 

Proof. Let B be the Jordan basis 
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and let 

k = max { k i : i = 1, ... , t} . 

Let Bh , h = 1, ... , k, be the subset of B consisting of vectors of height h or 
less, viz. . 

We shall prove by induction that Bh , h = 1, . . o,k, has the DP. 
We first consider B1• In view of our assumptions on multiplicities, each 

vector in B 1 has depth q - 2 or q - 1 (since it is an eigenvector of A). 
Consider the linear combination of B}: 

p 

0=1= w = E ajAkj-lg j + {3.3} 
j= I 

where we may assume that 

i=l, ... ,p, 

i=p+l, ... ,t. 

Now suppose that B1 does not have the DP. Then we may find a vector w of 
fonn (3.3) such that at least one of the coefficients ai' 1 ~ i ~ p, is nonzero 
and dpth( w) = q - 1. But then 

I> 

V = E ajAki-lg
i 

i= 1 

(3.4) 

also satisfies dpth( v) = q - 1 by (iii). Let s, 1 ~ 8 ~ p, be an index for which 
as =1= 0 in (3.4) and such that k ~ is minimal among k j for which a i =1= 0 in 
(3.4). Suppose, without loss of generality, that (Xi =1= 0, i = 1, ... , s and (Xi = 0, 
i = s + 1, ... ,p. Let 

i=] 
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and in B replace the Jordan chain 

{Aigs:j =O, ... ,ks -I} 

by the Jordan chain 

{AJu:j=O, ... ,k!(-I}. 

The result is a Jordan basis for M for which the number of eigenvectors of 
depth q -1 is t - P + 1. But, since B has t - P such eigenvectors, this 
contradicts our assumption on B. Hence Bl has the DP. 

Now assume inductively that 1 < h ~ k and that Bh -1 has the DP. To 
prove that Bh has the DP, we consider 

t k.-1 

O=1=W= E E aijAjgp 
i=l j=k; 

where k: = max{O, k j - h}, i = 1, ... , t. We must prove that 

(3.5) 

dpth(w) = min{dpth(A}gj):a ij *0, j = k;, .... kj -1, i = I""Jt}. (3.6) 

If aij = 0 whenever j = k j - h, then w is a linear combination of elements 
of Bh - l , and (3.6) follows from our inductive assumption. So assume that 
a 6j =1= 0 for some j = ks - hand 1 ~ s ~ t. Note that it follows from our 
assumption on multiplicities that 

i=I, ... ,s 

(since the above vectors are eigenvectors). and 

since h ~ 2 (and hence this vector is not an eigenvector). Thus to prove (3.6) 
it is enough to prove 

dpth( w) = min{dpth(Algj): ajl * 0, j = k: .... , k j - 2, i = I''''J t}. (3.7) 
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To prove (3.7) we note that 

t k;-2 

Aw = E L aijAJ+lgj 
i=lj=k; 

223 

(and thus Aw =1= 0). Since AJ+lgj E Bh- 1, j = k;~ .... k j - 2, i = 1 .... , t, our 
inductive assumption yields 

dpth(Aw) = min{dpth{Ai+lgJ :a ii =1= 0, j = k[ .... ,k j -2, i = I, ... ,t). 

(3.8) 

By Proposition 3.2, every chain has CPo Hence, 

dpth(Aw) = dpth( w) + 1, 

dpth(AJ+lgj ) = dpth{A)gj) + 1, j=k;, ... ,k j -2, i, ... ,t. 

Hence (3.7) now follows from (3.8), and thus Bh has the DP. By induction, 
we obtain that Bk has the DP, and since Bk = B, the result follows. • 

Proof of Theorem 1.1. We may assume that A is nilpotent. If the 
difference between the biggest and the smallest multiplicity of A is at least 
2, then by Proposition 3.1 not every A-invariant subspace is marked. Con
versely, assume that the multiplicities of A are equal to q and q -1, for 
some q ~ 2. In view of Propositions 3.2 and 3.3, every A-invariant subspace 
M has a Jordan basis with the DP that also has the CPo The theorem now 
follows from Theorem 2.1. • 

We can augment Theorem 1.1 by the following statement. 

THEOREM 3.4. Assume A is a nilpotent. Then every A-invariant subspace 
is marked if and only if there is q such that the index of every vector in en is 
either q or q - 1. 

Theorem 1.1 was contained in an unpublished manuscript by the authors 
dated July 1988. A related result (in the framework of solutions of Riccati 
equations) was obtained independently in [3]. 
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4. PROOF OF THEOREM 1.2 

We will actually prove a more informative result. 

THEOREM 1.2'. The following are equivalent for a nilpotent matrix A: 

(1) All multiplicities are equal (to q). 
(2) For all x E en" CO}, ht(x)+dpth(x) = q. 
(3) All invariant suhspaces are strongly marked. 

Proof. 0) ~ (2): Let C be a Jordan basis in en. Then every element of 
C of height h has depth q - h, and (2) follows because C has the OP (see 
the proof of the "if' part of Theorem 2.1). 

(2) => (3): Clearly, (2) implies that every chain has the ,CPo Let W be an 
invariant subspace for A. Since all Jordan bases for W contain the same 
number of eigenvectors, and by (2), an eigenvectors have the same depth 
q - 1, it follows that every Jordan basis for W satisfies the hypotheses of 
Proposition 3.3. Hence every Jordan basis for W has the OP. We now obtain 
(3) by Theorem 2.1. 

(3) ~ (1); Suppose (1) is false, and x and y generate Jordan chains of 
lengths q and r respectively, where r < q. Let u = Ar-1y - Aq-Ix and 
v = Aq-IX • Then dpth(u) = dpth(v) = q -1, but dpth(u + v) = r -1. Hence 
the Jordan basis {u, v} for the invariant subspace span {u, v} does not have 
the OP. By Theorem 2.1, span{u, v} is not strongly marked. • 

We now give a characterization of condition (1) in Theorem 1.2' in terms 
of the Weyr characteristic. Recall that the Weyr characteristic of a matrix X 
corresponding to eigenvalue A is the vector (WI' w 2 , ... , Wd), ~here 

j = 1,2, .... d, 

and d is the largest multiplicity of X corresponding to A. 

PROPOSITION 4.2. The following statements are eqUivalent for a nilpotent 
matrix A (we denote by d the largest multiplicity of A): 

(i) K(Ad-1)CR(A); 

(ii) the Weyr characteristic of A is (WI>'" > Wd). where W l = W 2 = ." 

=Wd; 

(iii) all multiplicities of A equal d. 
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Here R(A) denotes the range of A. Proposition 4.2 can be easily proved 
by inspecting the Jordan fonn of A. 

We thank D. Hershkowitz for reading the manuscript and suggesting 
several improvements in the exposition. 
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