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On the Minimum Number of Interrupts in Time-Slot 
Assignments for Time-Division Multiple-Access Systems 

Chi-Kwong Li and Hans Schneider 

Abstract-We study the minimum number of interrupts in an 
optimal time-slot assignment of a time-division multiple-access 
(fDMA) system. If the number of channels c in the TDMA 
system equals 2, then there always exists an optimal assignment 
with at most one interrupt. If c ~ 3, then there exist TDMA 
systems for which each optimal assignment requires at least 
(c-l)(c - 2) interrupts. 

I. INTRODUCTION 

SUPPOSE a list of requests for communication services 
of specified duration (measured in terms of number of 

time slots) between certain transmitters and receivers is given. 
Assume that all communication between transmitters and 
receivers must be scheduled in a c-channel environment in 
which no transmitter or receiver may use two channels at 
the same time. Such a system is known as a time-division 
multiple-access (TDMA) system. The problem of how to find 
the optimal assignment, i.e., the assignment which schedule 
all communication using the minimum number of time slots, 
can be answered by the theory of doubly stochastic matrices 
(e.g., see [2]). 

Suppose in a time slot assignment, a channel is configured to 
serve the ith transmitter and the jth receiver at a certain epoch. 
In the next epoch, the channel has to be reconfigurated to serve 
the ath transmitter and the /Jth receiver where (i , j) =f. (a,/J). 
These reconfiguration processes could be expensive. If the 
communication services are demand assigned and centrally 
controlled, then the bandwidth of the communication resources 
required to coordinate time slot assignments will increase with 
the number of channel reconfigurations required. So, besides 
minimizing the number of time slots required in a schedule 
of the service, one might also want to minimize the .number 
of reconfigurations. Notice that here we count the number of 
reconfigurations of individual channels, other authors (e.g., 
[2]) have counted as one reconfiguration all changes made 
at the same time. 

In many TDMA systems the communication resources 
required to coordinate time slot assignments are self-hosted. 
Channel time-slot assignments must be received before they 
can be activated. Thus in the kth scheduling epoch bandwidth 
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must be assigned for communicating the time slot schedule 
to be used in the (k + 1 )st epoch. Suboptimal schedules will 
result if either too much or insufficient bandwidth is reserved. 
Bounds on the number of reconfigurations required in an opti
mal assignment can be used to bound the bandwidth required 
for communication of control information. The purpose of this 
note is to study the minimum number of reconfigurations in 
an optimal assignment of a TDMA system. 

II. MATHEMATICAL FORMULATION 

Let Xl, " ', xm be the transmitters and Yl,' .. ,Yn be the 
receivers. Denote by A = (aij) the m x n matrix such that aij 
represents the number of time slots required for transmitting 
information from transmitter Xi to receiver Yj. We call A 
the traffic matrix of the TDMA system. For a given time 
slot assignment that requires T time slots, the corresponding 
schedule matrix S = (8ij ) is the exT matrix such that 

8ij E {(p , q) : 1 :::; p :::; m, 1 :::; q :::; n} U {(O, O)} 

where Sij = (p, q) =f. (0,0) means that at the jth time slot, the 
ith channel is active and is transmitting information from xp 
to Yq; and Sij = (0,0) means that the ith channel is inactive 
at the jth time slot. Clearly, the total number of (p, q) pairs in 
S equals apq . By the restriction on the system, excluding the 
(0,0) pairs, the (p, q) pairs in a column of S has different first 
coordinates, and different second coordinates. In the ith row 
of S , a nonzero pair (p , q) represents a configuration of the 
ith channel. An active configuration (p, q) is a reconfiguration 
if either it is the first active configuration in a channel or the 
last previous active configuration of the same channel has a 
different value. (There is no change of configuration in the 
channel if some nonzero (p, q) pairs and (0,0) pairs occur 
alternatively.) Clearly, the number of reconfigurations is at 
least the number of positive entries in the traffic matrix. If 
there is a difference between these two numbers, there must 
be certain service between some transmitters and receivers that 
are not scheduled continuously. We say that interrupts occur 
at the corresponding entry in the traffic matrix and define the 
number of interrupts of the assignment to be the difference 
between the number of reconfigurations and the number of 
positive entries in the traffic matrix . In the following section, 
we shall study the minimum number of interrupts in an optimal. 
assignment of a TDMA system. Notice that (e.g., see [2]) the 
problem of finding a time-slot assignment for a TDMA system 
can be reduced to finding a representation A = E~=l aiPi 
where ai are positive integers and Pi are 0 - 1 matrices of 
rank not greater than c and have at most one positive entry 

0090-6778/91$01.00 © 1991 IEEE 



1730 IEEE TRANsAcnONs ON COMMUNICATIONS. VOL. 39, NO. 12, DECEMBER 1991 

in each row and in each column. For such a representation, 
2::=1 Cl:i will be the total number of time slots required 
for the corresponding assignment. Suppose A = 2:~=1 Cl:iPi 

is a representation corresponding to an optimal assignment. 
Then a rearrangement of the summands in the representation 
will change the corresponding schedule matrix and hence 
will affect the number of interrupts. Moreover, there may 
be different choices for the set of permutation matrices used 
to represent an optimal assignment. This will also affect the 
number of interrupts. As a result, one has to find the optimal 
set of permutation matrices used for the representation and the 
best arrangement of them in order to get a minimum number 
of interrupts in the optimal assignment. 

The above question was previously considered in [l]. Here 
we give a complete proof that, if the number of channels 
e in the TDMA system equals 2, then there always exists 
an optimal schedule with at most one interrupt. However, if 
e ~ 3, then there exist IDMA systems for which each optimal 
assignment requires at least (e - 1)(e - 2) interrupts. In fact, 
this is true for almost all TDMA systems in a certain class. 
This answers a question raised in (1]. A somewhat related 
problem is studied in (3]. 

III. RESULTS 

The following result is known, e.g., see (2]. 
Proposition 1: Given a TDMA system with traffic matrix, 

A, the minimum number of time slots required for an assign
ment equals 

max{R(A), C(A), fs(A)/el} 

where R(A) and C(A) denotes the maximum row sum and 
column sum of A, respectively, s{A) denotes the sum of all 
entries of A, and f'l denotes the ceiling function. 

Recall that a time-slot assignment for a IDMA system is 
optimal if the time slots used is minimum. In general, there 
may be more than one optimal assignment. Certainly, one 
'vould choose the one with minimum number or interrupts 
so as to minimize the cost for configurating the system. In 
the following proposition, we show that one could always find 
an optimal assignment whose number of interrupts is of the 
order 0 ( en 2) . 

Proposition 2: Let the m x n matrix A be the traffic matrix 
of a TDMA system. Suppose m ~ n and A has p(A) positive 
entries. Then there is an optimal assignment with number of 
interrupts not more than C(J,2 - p(A) where d = max{ m, n}. 

Proof" Using the method in (2], one sees that the problem 
of finding a time-slot assignment for a TDMA system can be 
reduced to finding a representation A = 2::=1 Cl:iPi where 
Cl:i are positive integers and Pi are 0 - 1 matrices of rank 
not greater than e and have at most one positive entry in 
each row and in each column. By the discussion after the 
proof of Theorem 2.2 in (2], we see that there is an optimal 
assignment requiring t matrices Pi such that t is not greater 
than d2 . Writing down the corresponding schedule matrix, one 
sees that reconfigurations can only occur at the first column 
or at the end of 0::1 th column, (Cl:l + Cl:2)th column, etc. It 
follows that the maximum number of reconfigurations in the 

schedule matrix is not greater than ed2 . By the fact that the 
number of interrupts equals the difference of the number of 
reconfigurations and p(A), we get the result. D .. 

Actually, the discussion following Theorem 2.2 in (2] 
shows that the bound in Proposition 2 may be improved in 
certain circumstances. For example, if k = m = n, ed2 -

p(A) may be replaced by e(n2 - 2n + 1) - p(A), and if, in 
addition, A is fully indecomposable, then we obtain the bound 
n(p(A) - 2n + 2) - p(A). 

Clearly, if e = 1, one can find an optimal assignment with 
no interrupt. In (1], the authors asserted correctly that, if e = 2, 
one can always find an optimal assignment with at most one 
interrupt. The proof given there is incomplete. We give a proof 
for the statement in the sequel. . 

We first quote some remarks from (1] which are useful in our 
discussion. Suppose we are dealing with a TDMA system in 
a e-channel environment. Notice that the scheduling problem 
is invariant under permutation of the rows and columns of the 
traffic matrix. Assume that the optimal assignment requires 
T time slots. If there are two rows (resp. columns) of the 
traffic matrix A whose entries have sum not greater than 
T and if AI is obtained from A by deleting the two rows 
(resp. columns) and adjoining their sum as the last row (resp. 
column) to the resulting matrix, then the optimal assignment 
for the TDMA system with traffic matrix AI also requires T 
time slots. Moreover, if AI has an optimal assignment with k 
interrupts, then A has an optimal assignment with no more 
than k interrupts. Notice that if A has more than 2e - 1 
rows or columns, we can always combine rows or columns 
as described above. By these observations, we can prove the 
following lemma and proposition. 

Lemma: If m = e = 2, then there is an optimal time slot 
assignment with no interrUpt. 

Proof" Let T be the minimum number of time slots 
required for the optimal assignment. By the discussion before 
the lemma, we may assume that A = (aij) is a 2 x 3 
matrix, otherwise, we combine columns of A. The problem 
is easy if T = C(A), say T = all + a21. In this case, 
we have a22 + a23 ~ all and a12 + a13 ~ a21' Assuming 
t = 2:~=1 (ali - a2i) ~ 0, we may construct the schedule 
matrix as 

s = [all * (1,1) a12 * (1,2) 

a22 * (2,2) a23 * (2,3) t * (0,0) 
a13 * (1,3)] 

a21 * (2, 1) 

where T * (p, q) denotes T consecutive (p, q) pairs. 
Now suppose T = R(A). We may assume that all rows 

of A have sum T, otherwise increase some of the entries. 
Suppose all is the largest entry of A and a13 ~ a12. Then 
all ~ a22 + a23, otherwise all + a21 > T . We consider two 
cases. 

Case 1: a22 + a23 ~ all + a12· Since all ~ an and 
a22 + a23 ~ all, we may construct the schedule matrix as 

s = [all * (1, 1) a12 * (1,2) 

a22 * (2,2) a23 * (2,3) 
aI3 *(1,3)]. 
a~I*(2,1) 

' .. ~ 

," , 
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Case 2: a22 + a23 > all + a12. Then a21 < a13 and 
a23 > a12· We may construct the schedule matrix as 

S= [a13 *(1,3) all*(I,I) a 12 *(1,2)] . 

a21 * (2, 1) a22 * (2,2) a23 * (2,3) 

In both cases, no interrupt occurs. 0 
Proposition 3: Given a TDMA system with c = 2, there is 

an optimal assignment with at most one interrupt. 
Proof: Let T be the minimum number of time slots 

required in an optimal assignment for the TDMA system. By 
combining columns or rows of A as mentioned before, we 
may assume that A = (aij) is 3 x 3. Let Si and ri, i = 1,2,3, 
be the ith column and ith row sum of A, respectively. We 
may further assume that 

max{rl,r2,r3 , s),s2,S3} = r3 < T, (1) 

(if r3 = T, we can combine the first two rows and apply the 
Lemma), and rl + r2 + r3 = 2T. Then rl + r2 > r3, other
wise rl + r2 + r3 < 2T. Let 

which is an integer as rl + r2 + r3 = 2T is even. Then 

min{rl , r2} ~ 2q. 

(2) 

(3) 

We now schedule the first q time slots. Consider the first two 
rows. Assume all = max {aii : 1 ~ i ~ 2, 1 ~ j ~ 3}. We 
consider two cases. 

Case 1: Suppose all ~ q. If an + a23 ~ q, construct the 
first q columns of S as 

(4) 

where t = min { a22, q} . Suppose a22 + a23 < q. Then by (3), 
(/21 ~ q. Moreover, a12 + a13 ~ q, otherwise by (2) we 
have 

1'3 ~ S) ~ all + a21 = rl + r2 - (a12 + a13) - (a22 + a23) 

> rl + r2 - 2q = r3, 

which is impossible. So we may construct the first q columns 
of S as 

_ [h(1,2) (q-t)*(1,3)] 
Sl -

q * (2,1) 

where t = min{a)2,q} . 

(5) 

Case 2: Suppose all < q. Then by (3) and the fact that 
all ~ a13, we have all + a12 > q. Moreover, as q > all ~ 
a21 and r2 ~ 2q, we have a22 + a23 > q. We may construct 
the first q columns of S as 

Sl - . 
_ [all * (1,1) (q - all) * (1,2)] 

an * (2,2) (q - a22) * (2,3) 
(6) 

After that, we combine the rest of the services required in the 
first two rows of A to form a new matrix 

A' = [dll 

a3) 

whose row sums equal r3 and columns sums are not greater 
than 83, By the Lemma, we get a schedule matrix S2 of A' with 
no interrupts. If we construct a schedule matrix by adjoining 
S2 to Sl to get [Sl I S2] and expanding every entry dlj in the 
first row of S2 into two parts corresponding to alj and a2j 
according to its original composition, we get an optimal time
slot assignment. However, there may be two interrupts at the 
qth column of S. To avoid this, we modify the construction as 
follows. Suppose the last column of Sl is [(I,i),(2,j)]t such 
that the number of (1, i) pairs and (2,j) pairs are less that ali 
and a2j, respectively. Let the first and last entries in the first 
row of S2 be (1,0:) and (1,7), respectively. If 0: == i, then 
the possible interrupt at ali can be avoided by constructing S 

. as [Sl I S2] and splitting d lQ with (1, i) pairs preceding (2, i) 
pairs. If 0: = j, then split dlQ with (2, i) pairs preceding 
(1, i) pairs and interchange the rows of S2 to get S~. The 
possible interrupt at a2j can then be avoided by constructing 
S as [Sl I S~] . If 0: '" i,j, then 7 == i or 7 == j. Construct S~ 
from S2 by interchanging its tth and (q - t + 1 )th columns 
for all t, Then we are back to the previous case and one of the 
possible interrupts in ali or a2j can be avoided. Consequently, 
there will be at most one interrupt in the assignment. 0 

In view of the above results, the question was raised in [1] 
whether one can always get an optimal assignment with c - 1 
interrupts. Unfortunately, this is not true in general as shown 
by the following proposition, 

Proposition 4: Suppose c ~ 3. There exists a TDMA sys
tem such that every optimal assignment of it has at least 
(c - l)(c - 2) interrupts. 

Proof' Let n be the set of all c x c doubly stochastic 
matrices. Suppose k = (c - If Then it is well known (e.g., 
see [4]) that n has (affine) dimension k, and every X in 
n can be written as a convex combination of no more than 
k + 1 permutation matrices. Note that if q < k, then the set 
of convex combinations of q + 1 given permutation matrices 
has (affine) dimension less than k. Since the number of such 
convex polytopes is finite, their union cannot cover n, so 
there has to be an open set contained in the complement 
of their union. Thus, there is a rational doubly stochastic 
matrix which is a convex combination of k + 1 but not fewer 
permutation matrices. As a result, we can construct a c x c 
traffic matrix A such that all of its row sums and column 
sums equal r and it is a positive integral combination of k + 1 
but not fewer permutation matrices. Suppose S is a schedule 
matrix of A corresponding to an optimal time-slot assignment 
with minimum number of interrupts. Then each column of S 
corresponds to a c x c permutation matrix. Assume the ith and 
the (i + 1 )th column of S are different for i == jl , . .. , jt. Then 
A can be written as the positive integral combination of t + 1 
permutation matrices. Thus, t ~ k. Notice that between the ith 
and (i + 1 )th column of S for i == jl, ... , jt, there are changes 
in configurations in at least two channels (since one cannot 
change just one element in a column of S to obtain a new 
column which still corresponds to a permutation). There are c 
initial configurations and ·at least 2k additions reconfigurations. 
Thus, the number of interrupts is at least 

c + 2k - peA) ~ c + 2(c - 1)2 - c2 = (c - l)(c - 2). 0 
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We observe that it follows from the proof of Proposition 4, 
that, when c 2: 3, for "almost all" schedule matrices corre
sponding to a traffic matrix with equal row and column sums 
the number of interrupts in an optimal assignment must be at 
least (c - l)(c - 2). 

Corollary: If c > 3, there exists a TDMA system such that 
every optimal time-slot assignment of it has more than c - 1 
interrupts. 

The above Corollary shows that the number of interrupts 
required in an optimal assignment is greater than c - 1 in 
general if n > 3. If n 2: m = c = 3, then we can always find 
an optimal assignment with at most two interrupts. We pose the 
following question: if c 2: 3, does every TDMA system have 
an optimal assignment with exactly (c - 1)( c - 2) interrupts. 
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