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ON THE INERTIA OF INTERVALS OF MATRICES· 

DANIEL HERSHKOWITZt AND HANS SCHNEIDER:j: 

Abstract. The inertia of intervals and lines of matrices is investigated. For complex n x n matrices A and 
B it is shown that. under mild nonsingularity conditions. A + IB changes inertia at no more than n2 real values 
of I. Conditions are given for the constancy of the inertia of A + IB, where I lies in a real interval. These 
conditions generalize and organize some known results. 

Key words. inertia, constant inertia, inertia change point. interval of matrices. matrix stability, Lyapunov 
operators, Z-matrices 

AMS(MOS) subject classification. 15 

1. Introduction. Bialas [1], Johnson and Rodman [4], Villiaho [7], and Fu and 
Barmish [2], [3] have recently studied the inertia of intervals and lines of matrices. We 
extend these investigations under nonsingularity conditions. While some of our results 
are not difficult and are related to known results, taken together they show interrelations 
between various types of conditions, and as such they organize knowledge in this area 
of inertia theory. 

Let A and B be square complex matrices and suppose there is a real t such that the 
Lyapunov matrix L(A + tB) associated with A + tB is nonsingular. We show that A + 
tB changes inertia at no more than n 2 values of t. Let T be an interval, i.e., a connected 
subset of the real numbers. Under the assumption that L(A) is nonsingular, we state our 
principal condition, 

(CI) A + tB has constant inertia of type (rr, P, 0) for every tin T, 

and we compare several other conditions (some obviously equivalent) to (CI). Some of 
these conditions involve the real eigenvalues of A -IB and of L(A)-I L(B). Each of the 
conditions either implies or is implied by (CI). but not all are equivalent in general. By 
adding additional requirements on a single matrix or on the interval, such as stability, 
the reality of all eigenValues, or a condition we call Property X (which Z-matrices satisfy), 
some implications in one direction become equivalences. 

Section 2 of our paper contains notation, definitions. and some well-known results 
stated for easy reference. Section 3 contains preliminary results on eigenvalues and results 
on changes of inertia. Our main results on intervals with constant inertia, summarized 
above, may be found in § 4. In § 5 we give some applications to the convex hull of two 
matrices. We derive results from [I] - [ 4] and [7]. 

• Received by the editors December 19, 1988; accepted for publication (in revised fonn) September 8, 
1989. This research was supported by grant 85-00 153 from the United States-Israel Binational Science Foundation 
(BSF), Jerusalem, Israel. 

t Mathematics Department. Technion-Israel Institute of Technology, Haifa 32000, Israel 
(MAR23AA@TECHNION.BITNET). This research was completed while this author was a visiting professor 
at the University of Wisconsin. Madison. Wisconsin 53706. 

:j: Mathematics Department University of Wisconsin. Madison. Wisconsin 53706 (hans@math.wisc.edu). 
The research ofthis author was supported in part by National Science Foundation grants DMS-8521521, DMS-
8901445, and EMS-8718971. 

565 



566 D. HERSHKOWITZ AND H. SCHNEIDER 

Our principal theorems are proved for the case of general complex matrices, and 
we then apply the results to Hermitian matrices and Z-matrices. 

Properties of the Lyapunov operator A - L(A) that are crucial to our results are 
the following: 

( 1.1 ) If h is an eigenvalue of A, then 2 Re (h) is an eigenvalue of L(A). 

(1.2) If t is the maximal (minimal) eigenvalue of L(A), then there is an eigenValue 

h of A with 2 Re (h) = t. 

Similar results may be proved for any real linear operator, from the space of complex 
n X n matrices into a space of matrices, which satisfies (1.1) and (1.2). For spaces of 
real matrices, another operator that satisfies these conditions is found in [1] and [3]. 
The results in [I] are proved for that operator, whereas in [3] results are proved for all 
operators satisfying (1.1) and (1.2). The results in [2] are proved for the Lyapunov 
operator, as in the present paper. Only real matrices are considered in [1]-[3]. In referring 
to the results of these papers in the sequel, we do not distinguish between the various 
operators involved. We also observe that the results in [7] deal with real symmetric 
matrices (where there is no need to employ the Lyapunov operator), but some results 
in [7] hold under weaker nonsingularity assumptions. 

2. Notation and preliminaries. As usual, ~ and C denote the real and complex 
fields, respectively, and cnn denotes the complex space of all complex matrices. By .Yen 

we denote the real space of all n X n Hermitian matrices. In this paper, A and B will 
always be n X n complex matrices that may be considered fixed throughout. The convex 
hull of A and B is denoted by conv (A, B). The spectrum of a matrix A is denoted by 
spec (A) . The spectrum is considered to be a multiset, that is, every eigenvalue is counted 
as many times as its multiplicity. 

Notation 2.1. We denote the following: 
1I'(A )-the number of eigenvalues of A in the open right half plane, 
v(A)-the number of eigenvalues of A in the open left half plane, 
(l(A )-the number of eigenvalues of A on the imaginary axis. 
DEFINITION 2.2. The inertia In (A) of A is defined to be the triple 

(1I'(A), v(A), (l(A)). 
DEFINITION 2.3. (i) The matrix A is said to be positive [negative] stable if all its 

eigenvalues are in the open right [left] halfplane. 
(ii) The matrix A is said to be positive [negative] semistable if all its eigenvalues 

are in the closed right [left] half plane. 
(iii) The matrix A is said to be positive [negative] near-stable if A is positive [neg

ative] semistable but not positive [negative] stable. 
In this paper "stable," "semistable," and "near-stable" may be interpreted consistently 
to mean either "positive stable," "positive semistable," and "positive near-stable" or 
"negative stable," "negative semistable," and " negative near-stable." 

DEFINITION 2.4. The Lyapunov operator (or Lyapunov matrix) L(A) of A is defined 
to be the linear operator of J'fn into itself given by 

L(A)H=AH + HA *. 

For reference, we collect some !lroperties ofthe operator L(A). We follow the notation 
of [5] for the Kronecker (or tensor) product of matrices. 
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PROPOSITION 2.5. We have 
(i) L(A)=I@A+A@I. 

(ii) The spectrum of L(A) is the multiset { X + ji. : X, JL E spec (A)}. 
(iii) L(A) is nonsingular if and only if X + ji. =1= 0 for X, JL E spec (A). 
(iv) A is stable [semistable] (near-stable) if and only if L(A) is. 
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(v) The mapping A - L(A) is real linear, i.e., L(sA + tB) = sL(A) + tL(B), 
for all real numbers sand t. 

Proof. Parts (i) and (ii) are standard (e.g., see [5, Chap. 12]). Parts (iii) and (iv) 
follow immediately from (ii). Part (v) follows from the definition of L(A). 0 

In our proofs (as in the proof of almost any inertia theorem) we use properties often 
called "continuity of eigenvalues." The basic result is stated as Lemma 3 in [6]. Here 
we state consequences of this lemma in the forms needed for our applications. 

LEMMA 2.6. (i) Let A(t) be a continuous matrixfunction of the real variable t. Let 
X be an eigenvalue of A(O). Let S be a disc in the complex plane with center at X such 
that S does not contain any other eigenvalue of A (0). If there exists a positive 0 such that 
for all t, 0 < t < 0, A(t) has an even number of eigenvalues in S, then the multiplicity of 
X as an eigenvalue of A (0) is even. 

(ii) If A has no imaginary eigenvalues, then for all sufficiently small c, we have 
In (A + cB) = In (A). 

(iii) If In (A) =1= In (B), then there is a matrix C E conv (A, B) that has an imaginary 
eigenvalue. 

(iv) If A is stable but B is not stable, then there is a matrix C E conv (A, B) that 
is near-stable. 

Proof. Parts (i) and (ii) follow from Lemma 3 of[ 6]. Parts (iii) and (iv) follow 
from (ii) using the completeness of the real numbers and the connectedness of the interval 
[0, 1]. 0 

Convention 2.7. By the term "interval" we mean a connected subset of the real 
line. That is, open intervals, closed intervals, half-open intervals, halflines and the whole 
real line are intervals. 

DEFINITION 2.8. Let T be an interval. The matrix interval S(A, B; T) of matrices 
is defined to be the set {A + tB: t E T}. 

DEFINITION 2.9. Let to E IR. We say that to is an inertia change point for 
S(A, B; IR) if for every c > 0 there exists t E IR such that It - to I < c and Inertia 
(A + tB) =1= Inertia (A + toB). 

DEFINITION 2.10. Let T be an interval. 
(i) The interval T is called an interval of constant inertia (71", II, 0) for S(A, B; IR) 

if every matrix in S(A, B; T) has inertia (71", II, 0). 
(ii) The interval T is called an interval of semiconstant inertia (71", II, 0) for 

S(A, B; IR) if every matrix C E S(A, B; T) such that O(C) = 0 has In (C) = (71", II, 0). 
If T is an interval of constant inertia for S(A, B; IR) we may also say that 

S(A, B; T) has constant inertia or, when every matrix in S(A, B; T) is stable [semistable], 
that S(A, B; T) is stable [semistable]. 

DEFINITION 2.11. We call (A, B) a regular pair of matrices if there exists atE IR 
such that L(A + tB) is nonsingular. 

PROPOSITION 2.12. If(A, B) is a regular pair of matrices, then the number of 
complex numbers tfor which L(A + tB} is singular is at most n 2

• 

Proof. Since L(A + tB) is singular if and only if det (L(A + tB» = 0, and since 
p(t) = det (L(A + tB» is a polynomial of degree at most n 2

, it follows that either 
(A, B) is a regular pair, in which cast: p(t) has at most n 2 roots, or (A, B) is not a regular 
pair, in which case p(t) == O. 0 
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COROLLARY 2.13. If(A, B) is a regular pair of matrices , then the number ofcomplex 
numbers tfor which A + tB has an imaginary eigenvalue is at most n 2

• 

Proof The claim follows from Proposition 2.5(ii) and Proposition 2.12. 0 
Another corollary of Proposition 2.12 is the following. 
COROLLARY 2.14. (A, B) is a regular pair of matrices ifand only if(B, A) is a 

regular pair of matrices. 
Proof. If (A, B) is a regular pair of matrices then, by Proposition 2.12, there exists 

a nonzero number t such that L(A + tB) is nonsingular. Therefore, L(Alt + B) is 
nonsingular, and so (B, A) is a regular pair of matrices. 0 

Since for all complex n X n matrices A, (1, A) is a regular pair, it follows from 
Proposition 2.12 and Corollary 2.14 that L(A + t/) is nonsingular for all but at most n2 

complex numbers t. 

3. Observations on eigenvalues and inertia. We start with an immediate observation. 
OBSERVATION 3.1. Let A be nonsingular, and let t be a nonzero real number. Then 

the following are equivalent: 

(ad -1 It is an eigenvalue of A -lB. 

(a2) 1+ tA-IB is singular. 

(a3) A + tB is singular. 

Accordingly, we label the three equivalent conditions in Observation 3.1 (under the 
assumption that A is nonsingular) as condition (a). 

If L(A) is nonsingular then, applying Observation 3.1 to L(A) and L(B), we obtain 
the following equivalent conditions: 

(lad L(A) + tL(B) is singular. 

(la2) 1+ tL(A)-1 L(B) is singular. 

(la3) -lit is an eigenvalue of L(A)-I L(B). 

By Proposition 2.5 (v), condition (la I ) is equivalent to 

(l3..!) L(A + tB) is singular. 

We now label the four equivalent conditions (lal)-(l14) (under the assumption that 
L(A) is nonsingular) as condition (la). 

A third condition we will discuss is 

(ie) A + tB has an imaginary eigenValue. 

THEOREM 3.2. Let A and B be n X n complex matrices, let t be a nonzero real 
number, and assume that L(A) is nonsingular. Then we have 

(a)-(ie)-(la). 

Proof First observe that if L(A) is nonsingular then A is nonsingular, so both 
conditions (a) and (la) are well defined. The implication (a) - (ie) follows from the 
trivial implication (a3) - (ie). The implication (ie) - (la) follows from (ie) - (114), 
which follows from Proposition 2.5(ii) . 0 

Clearly, the converses of the implications (a) - (ie) and (ie) - (la) do not hold 
under the stated hypotheses. 
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We now add three more conditions that relate to the previous eight. 

(ic) t is an inertia change point for S(A, B; IR ). 

(ns) A + tB is near stable. 

(us) A + tB is not stable. 

THEOREM 3.3. Let A and B be n X n matrices, let t be a nonzero real number, and 
assume that L(A) is nonsingular. Then we have 

(a) - (ie) ¢>(ic)- (la)- (us). 

(ns) l' 

Proof. The implication (ns) - (ie) is clear by Definition 2.3(iii). The implication 
(ic) - (ie) follows from Lemma 2.6 (ii). The implication (ie) - (ic) follows from 
Corollary 2.13. The implication (la) - (us) follows from (l(4) - (us), which follows 
from Proposition 2.5(iv). 0 

The converses of the implications (ns) - (ie) and (la) - (us) do not hold. Also, 
neither (a) - (ns) nor (ns) - (a) holds. 

Theorem 3.3 yields the following corollary. 
COROLLARY 3.4. Suppose that (A, B) is a regular pair of matrices. Then the number 

of inertia change points for S( A, B; IR) is at most n2
• 

Proof. If (A, B) is a regular pair of matrices, then (ic) - (ie) holds even if L(A) 
is singular. To see that, let A' = A + t'B, where t' E IR is chosen so that L(A') is nonsingular. 
Let t be an inertia change point for S(A, B; IR). Obviously, t - t' is an inertia change 
point for S(A', B; IR). By Theorem 3.3 (applied to A' and B), A' + (t - t')B = A + tB 
has an imaginary eigenvalue. Our claim now follows from Corollary 2.13. 0 

THEOREM 3.5. Let (A, B) be a regular pair of matrices and let tl> ... , tm , where 
tl < ... < tm, be the inertia change points of S(A, B; IR). Let To = (-00, td, Ti = 
(ti, ti-d, i = 1, ... ,m, and Tm = (tm, (0). Then the intervals Ti, i = 0, ... ,m are max
imal intervals of constant inertia for S(A, B; IR) and the inertia of each matrix in 
S(A, B; Ti) is of the form (1ri' Vi, 0), i = 0, ... ,m. 

Proof. By standard results in analysis, T is an interval of constant inertia for 
S(A, B; IR) if and only if T contains no inertia change point for S(A, B; IR) and so the 
first part of the theorem follows. The second part of the theorem follows from the equiv-
alence of(ie) and (ic) in Theorem 3.3. 0 

4. Inertia of intervals. In this section we apply the observations made in the previous 
section in order to study the relation between global conditions. The global conditions 
correspond to the negations of the local conditions in the previous section. In these global 
conditions as well as in the rest of the paper T denotes an interval. 

The equivalent conditions 

(Ad A -I B has no eigenvalue with negative reciprocal in T. 

(A2 ) 1+ tA-IB is nonsingul¥ for every t in T. 

(A3) A + tB is nonsingular for every t in T. 

will be labeled condition (A). 



570 D. HERSHKOWITZ AND H~ SCHNEIDER 

The equivalence of the following four conditions follows from the equivalence of 
(la.)-(ll4) : 

(LA.) 

(LA2 ) 

(LA3) 

(L~) 

L(A) + tL(B) is nonsingular for every t in T. 

1+ tL(A)-1 L(B) is nonsingular for every tin T. 

L(A)-I L(B) has no eigenvalue with negative reciprocal in T. 

L(A + tB) is nonsingular for every t in T. 

These conditions will be labeled condition (LA). 

We also consider the conditions 

(IE) A + tB has no imaginary eigenvalue for any tin T. 

(CI) Tis an interval of constant inertia (11",11,0) for S(A, B; \R). 

THEOREM 4.1. Let A and B be n X n complex matrices, let T be an interval, and 
assume that L(A) is nonsingular. Then we have 

(LA)- (IE)<=>(CI)- (A). 

Proof. In view of Theorem 3.3 it is enough to prove the equivalence (IE) <=> (CI). 
From Theorem 3.3 and the proof of Theorem 3.5 it follows that (IE) implies that 
S( A, B; T) has constant inertia. By (IE) it follows that the inertia is of type (11", 11, 0). 
The implication (CI) - (IE) is trivial. 0 

By adding additional requirements, some of the implications in Theorem 4.1 become 
equivalences, as we will show presently. 

THEOREM 4.2. Let A and B be n X n complex matrices, let T be an interval, assume 
that L(A) is nonsingular, and assume that A + tB is stable for some tin T. Then we 
have 

(LA) <=> (IE) <=>(CI) - (A). 

Proof In view of Theorem 4.1 it is enough to prove the implication (CI) - (LA). 
Observe that under our additional assumption, (CI) implies that A + tB is stable for 
every t in T. By the implication (la) - (us) in Theorem 3.3 we now obtain (LA). 0 

The following theorem is found in [2] and [3] for real matrices. 
THEOREM 4.3. Let A and B be n X n complex matrices, and assume that A is 

positive stable. 
(i) If L(A)-I L(B) has no real eigenvalue, then A + tB is stable for every real 

number t. 
(ii) If L(A)-I L(B) has real eigenvalues, then let rl and r2 be the greatest and the 

least real eigenvalues of L(A)-I L(B). Define 

t l = {-~' 
-co, 

Then the interval T = (tl' t2) is the maximal interval of constant inertia (n, 0, 0) that 
contains the point t = O. 
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Proof. Part (i) follows immediately from the equivalence (LA) ~ (CI) in Theo
rem 4.2. 

(ii) Observe that L(A)-IL(B) has no real eigenvalue in TI = (-00, -1/t2), nor 
in T2 = (-l/t h (0) . Therefore, L(A)-IL(B), has no real eigenvalue with negative re
ciprocal in (0, t2) or in (tl, 0). By Theorem 4.2 it follows that (tl, 0) and (0, t2) are 
intervals of constant inertia (11", v, 0) for S(A, B; IR). Since A is stable, it follows from 
Theorem 3.3 that zero is not an inertia change point for S(A, B; IR). Hence, it follows 
that T = (t I, t2) is an interval of constant inertia (n, 0, 0) that contains the point t = 0. 
If tl 1= -00, then it follows that -1/ tl is an eigenvalue of L(A )-1 L(B), and by Theorem 
4.2 [t 1, t2) is not an interval of constant inertia (n, 0, 0). Similarly, if t2 1= 00, then it 
follows that -1/ t2 is an eigenvalue of L(A )-1 L(B), and by Theorem 4.2, (tj, t2] is not 
an interval of constant inertia (n, 0, 0). The maximality of T follows. 0 

DEFINITION 4.4. A square matrix A is said to have Property X if the minimal real 
part of an eigenvalue of A is an eigenvalue of A . 

For example, Hermitian matrices and Z-matrices have Property X. 
THEOREM 4.5. Let A and B be n X n complex matrices, let T be an interval, assume 

that L(A) is nonsingular, assume that A + tB is positive stable for some t in T, and 
assume that A + tB has Property X for every tin T. Then we have 

(CI) ~ (LA) ~ (IE) ~(A). 

Proof. Since A + tB is positive stable for some t in T, and since A + tB has Property 
X for every t in T, it follows, using continuity arguments (see Lemma 2.6 (iv)) that 
(A3) - (IE). So (A) - (IE), and our claim follows from Theorem 4.2. 0 

THEOREM 4.6. Let A and B be n X n complex matrices, let T be an interval, assume 
that L(A) is nonsingular, and assume that all eigenvalues of A + tB are real for every t 
in T. Then we have 

(LA) - (IE) ~ (CI) <0> (A). 

Proof. The implication (A3) - (CI) follows immediately by continuity (see Lemma 
2.6(iii)). So (A) - (CI), and the claim follows from Theorem 4.1. 0 

We now consider matrix intervals with the same inertia except for a finite number 
of points. 

First, we restate the implications (ic) - (la) and (a) - (ic) of Theorem 3.3 in a 
somewhat different form together with a partial converse. 

PROPOSITION 4.7. Let A and B be n X n complex matrices and assume that L(A) 
is nonsingular. Let G be the set of inertia change points for S(A, B; Ill), and let t be a 
nonzero number. 

(i) 1ft E G, then -1/ t is an eigenvalue of L(A )-1 L(B). 
(ii) If -1/ t is an eigenvalue of A -I B, then t E G. 
The converses of Proposition 4.7(i) and (ii) do not hold in general. We give a 

counterexample to the converse of Proposition 4.7(i). 
Example 4.8. Consider the matrices 

B= (2 0) ° -I . 

Observe that L(A) is nonsingular, and that A + tB has the inertia (I, 1,0) for allt in 
[-0.5, (0) except t = -0.5. However, it is easy to verify that L(A + B) is singular and 
hence, by the equivalence of conditions (la3) and (114), -1/ t is an eigenvalue of 
L(A)-I L(B) also for t = I. 
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Proposition 4.7 does not give necessary and sufficient conditions for a point t to 
belong to the exceptional set G of inertia change points for S(A, B; ~). However it does 
lead to a finite algorithm for finding these points. 

ALGORITHM 4.9. For the sake of simplicity, we assume that L(A) is nonsingular. 
Step l. Find the real nonzero eigenvalues of L(A )-1 L(B). 
Step 2. Take the negative reciprocals t I, ••• , tm of the numbers found in Step 1. 

The inertia change points for S(A, B; ~) are those ti, i E {I, ... , m}, for 
which A + tiB has an imaginary eigenvalue. 

Necessary and sufficient conditions for a point t to be an inertia change points for 
S(A, B;~) may be obtained under additional assumptions, as will be demonstrated in 
the sequel. 

First we consider intervals of semistability. 
THEOREM 4.10. Let A and B be n X n complex matrices, and assume thaL L (A) is 

nonsingular. Let T be an interval of semistability for S(A, B; IR). Then 
(i) For t E T, A + tB is near-stable if and only if t * 0 and -1/ t is an eigenvalue 

of L(A)-I L(B). 
(ii) A// the eigenvalues of L (A) -I L (B) whose negative reciprocals lie in the interior 

of T have even multiplicity. 
(iii) If A and B are real, then a// the eigenvalues of A -I B whose negative reciprocals 

lie in the interior of T have even multiplicity. 
Proof. (i) If T consists of one point to then, since A + toB is semistable, it follows 

by Proposition 2.5(ii) that A + toB is near stable if and only if L(A + toB) is singular 
(so to * 0 since L(A) is nonsingular), which is true if and only if -1/ to is an eigenvalue 
of L(A)-I L(B). If Tconsists of more than one point, then it consists of infinitely many 
points. By Theorem 3.3, every t for which A + tB is near stable is an inertia change point 
for S(A, B; ~). In view of Corollary 3.4, A + tB is stable for all t E T except for a finite 
number of t's. Part (i) now follows immediately from the equivalence (LA) ¢> (CI) in 
Theorem 4.2. 

(ii) Let X be an eigenValue of L(A)-I L(B) whose negative reciprocal lies in the 
interior of T, and let m be its multiplicity. Let r be a disc with center at X that contains 
no other eigenvalue of L(A) -I L(B), and such that the negative reciprocals of real numbers 
in r lie in T. Without loss of generality assume that A + tB is positive semistable for 
every t in T. Since L(A) is nonsingular, it follows that for all sufficiently small positive 
0, L(A + o/) is nonsingular. For such 0, (A + o/) + tB is positive stable for all t in T. 
By Theorem 4.2, the operator F( 0) = L(A + 0/)-1 L(B) has no eigenValue with negative 
reciprocal in T. Since F( 0) is an operator on the real space :Yen, its complex eigenvalues 
appear in conjugate pairs. Consequently, F(o) has an even number of eigenvalues in r. 
By Lemma 2.6(i) it now follows that the multiplicity on as an eigenValue of L(A)-I L(B) 
is even. 

(iii) Let 0 be a positive number. If A and B are real then C(o) = (A + oI)-IB is 
real, and hence the complex eigenvalues of C( 0) appear in conjugate pairs. By 
Theorem 3.2, if -1/ t is an eigenvalue of (A + 0/)-1 B, then -1/ t is an eigen
value of L(A + 0/)-1 L(B). As in the proof of part (ii), for 0 sufficiently small, 
L(A + 0/)-1 L(B) has no eigenvalue with negative reciprocal in T. Therefore, 
(A + 0/)-1 B has no eigenvalue with negative reciprocal in T. Since the complex eigen
values of C( 0) appear in conjugate pairs, it follows that C( 0) has an even number of 
eigenValues in r. By Lemma 2.6(i) it now follows that the multiplicity of X as an eigenValue 
of A-IB is even. 0 
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Remark 4.11. In general, if A + tB is near stable then the multiplicity of -1 / t as 
an eigenvalue of L(A) -I L(B) is not necessarily even. For example, take A to be an 
identity matrix of odd order, and let B = A . Then L(A) -I L(B) is an identity matrix 
of odd order and hence its only eigenvalue, 1, has odd multiplicity. Yet, A - B is 
near stable. 

Next we assume that all eigenvalues of A + tB are real for t in an interval T. The 
following result is essentially due to VaIiaho [7], where it is stated for Hermitian matrices. 
It is stated here for the sake of completeness. 

THEOREM 4.12. Let A and B be complex n X n matrices and assume that A is 
nonsingular. Assume that all eigenvalues of A + tB are real for all t E Ill. Let -1/ tj, i = 
1, ... ,m, where tl < ... < tm , be the distinct nonzero eigenvalues of A-lB. Let To = 
(-00, tl), T j = (tj, tj-d, i = 1,··· ,m, and Tm = (tm, 00). Then the intervals T j, i = 
0, ... , m are maximal intervals of constant inertia for S(A, B; Ill) and the inertia of 
each matrix in S(A, B; Tj) is of the form (1I"j, Vj, 0), i = 0, ... ,m. 

Proof As in Theorem 3.5, by standard results in analysis, Tis an interval of constant 
inertia for S(A, B; IR) ifand only if T contains no inertia change point for S(A, B; IR). 
By Theorem 3.3, if -1 / t is an eigenvalue of A -I B, then t is an inertia change point for 
S(A, B; IR) . Our claim now follows from Theorem 4.6. 0 

5. Stable convex hull of matrices. The results of the previous section can be applied 
in several directions. We conclude the paper by demonstrating a sample of such appli
cations. 

The following result was provep for real matrices in [I] and [2]. 
THEOREM 5.1. Let A and B be n X n complex matrices. Then the convex hull 

conv (A, B) is stable if and only if A is stable and L(A)-I L(B) has no nonpositive real 
eigenvalue. 

Proof If A is stable, it follows from the equivalence (LA) <=> (CI) in Theorem 4.2, 
applied to the matrices A and B - A and the interval T = [0, 1], that conv (A, B) is 
stable if and only if L(A) -I L(B - A) has no real eigenvalue less than -1, which is. 
equivalent to saying that L(A)-I L(B) has no nonpositive real eigenvalue. Since the 
stability of conv (A, B) of course implies that A is stable, the result now follows. 0 

THEOREM 5.2. Let A and B be n X n complex matrices, and assume that all the 
matrices in conv (A, B) have Property X. Then the following are equivalent. 

(i) The convex hull conv (A, B) is stable. 
(ii) A is stable and L(A) -I L(B) has no nonpositive real eigenvalue. 

(iii) A is stable and A -IB has no nonpositive real eigenvalue. 
Proof Our claim follows from the equivalences (A) <=> (LA) <=> (CI) in Theorem 

4.5, applied to the matrices A and B - A and the interval [0,1]. 0 
The following theorem is found in [4], where it is stated for Hermitian matrices. 
THEOREM 5.3. Let A and B be n X n complex matrices, and assume that all the 

matrices in conv (A, B) have all eigenvalues real. Then the following are equivalent. 
(i) A is nonsingular and A -I B has no nonpositive real eigenvalue. 
(ii) All matrices in conv (A, B) are nonsingular. 

(iii) conv (A, B) has constant inertia of type (11", v,O). 
Proof (i) <=> (ii) follows from the equivalence of conditions (AI) and (A2 ) applied 

to the matrices A and B - A and the interval T = [0, 1]. 
(ii) =:> (iii) by Lemma 2.6 (iii), since all matrices in conv (A , B) have all eigenvalues 

real. 
(iii) =:> (ii) is trivial. 0 
We end with an example that illustrates Theorem 5.2 and the analogue for the 

convex hulls of Theorem 4.IO(iii). 
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Example 5.4. Let 

A=( 2 
-I 

Then it is easy to show that all matrices in conv (A, B) are M-matrices and hence are 
semistable. Furthermore, each matrix in conv (A, B) is stable, except for (A + B)/2. 
Note that -I is an eigenvalue of A-I B of multiplicity two. For every positive t, 

conv (A + tI, B) is stable, and hence, by Theorem 5.2, (A + tl)-I B has no non
positive real eigenvalue. Indeed, the eigenvalues of (A + .11)-1 B are approximately 
-.8 ± .8775i. Note also that every matrix in conv (A + .1I, B) has Property X, but 
(A + .11)-1 B does not. 
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