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We continue our series of papers on the graph theoretic spectral theory of matrices. Let A be an M­
matrix. We introduce the concepts of combinatorial vectors and proper combinatorial vectors in the gen­
eralized nuUspacc E(A) of A. \\e explore the properties of combinatorial bases for E(A) and Jordan 
bases for E(A) derived from proper combinatorial sets of vectors. We use properties of these bases to 
prove additional new conditions for the equality of the (spectral) height (or Weyr) characteristic and 
the (graph theoretic) level characteristic of A. "We also explore the role of the HaU Marriage Condition, 
weU structured graphs and their anchored chain decompositions in the study of the equality of the two 
characteristics. 

1. INTRODUCTION 

With this paper we continue the series of papers [6], [4], [7], [5], and [8] on the 
graph theoretic spectral theory of matrices. In these papers we put emphasis on 
the relation between the combinatorial structure and the spectral structures of the 
generalized nullspace of the eigenvalue 0 of an M·matrix (or, equivalently, of the 
generalized eigenspace of the spectral radius of a nonnegative matrix). In this topic, 
conditions for the equality of the height (Weyr) and level characteristics for the 
eigenvalue 0 of an M ·matrix are of particular interest. This question was raised 
in Schneider [13], where conditions for the equality of the two characteristics are 
proved under some special hypotheses on the singular graph of the matrix. In the 
general case, necessary and sufficient conditions are found in Richman-Schneider 
[11], and in our recent paper [8], see [8] and the survey [14] for further informa­
tion and references. Related results appear in Richman [10], Bru·Neumann [1], and 
Huang [9]. 
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DMS-8901445. 
The research of both authors was supported also by their joint grant No. 8S~153 from the United 
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22 D. HERSHKOWITZ AND H. SCHNEIDER 

Let A be an M -matrix and let E(A) be the generalized nullspace of A. Let 'I(A) 
and >'(A) be the height and level characteristics of A respectively. In [11] it was 
proved that 'I(A) = >.(A) if and only if E(A) has nonnegative Jordan basis for -A, 
and several other equivalent conditions were proved. In [8] we introduced the con­
cepts of height and level bases for E(A) and, using these concepts, we proved a 
number of other conditions equivalent to 'I(A) = >.(A). In this paper we give fur­
ther equivalent conditions bringing the total to 36. Some of the new conditions are 
stated in terms of the concept of combinatorial bases for E(A) which we introduce 
here. Combinatorial bases are more general than the Rothblum bases found in [12] 
and, for example, in [1], as well as the preferred bases, found in [11], [6] and many 
other references. Later in this introduction we describe further main results of our 
paper. These involve the Hall marriage condition (first used in this particular con­
text by [10]), well structured graphs and anchored chain decompositions of graphs 
(both of which were introduced in [1], the latter under the name of covering strate­
gies). 

We now describe our paper in more detail. Section 2 is devoted to notation and 
definitions. Here we give the definitions of the height of a vector and of the level 
of a vector in E(A). We define peak vectors and peak bases, height bases and level 
bases for E(A). We also define the height characteristic 'I(A) and the level charac­
teristic >.(A). 

In Section 3 we introduce (proper) combinatorial vectors, and (proper) combina­
torial bases. We show that every combinatorial basis is a proper combinatorial basis 
and also a peak level basis, see Corollaries (3.15) and (3.17). 

In the graph theoretic Section 4 we explore the role of the Hall Marriage Con­
dition. In [10] it was shown that this condition (or equivalently the existence of 
systems of distinct representatives) for certain sets of predecessors in a graph S is 
equivalent to a condition on the combinatorial dual of the level characteristic >.(A). 
Here we show these conditions hold if and only if S is well structured, see Theorem 
(4.13). 

In Section 5 we apply the concepts and results developed in Sections 3 and 4 and 
we link graph theoretic and spectral properties. We show that every Jordan basis 
for E(A) derived from a proper combinatorial set of vectors corresponds to an 
anchored chain decomposition such that the proper combinatorial set corresponds 
to the final elements of the chains in the decomposition, see Theorem (5.9). We 
show by an example that the converse is false. 

In Section 6 we prove the conditions equivalent to 'I(A) = >.(A) that have been 
mentioned earlier, see Theorem (6.6). One new equivalent condition, for example, 
is the existence of a Jordan basis for E(A) derived from a proper combinatorial 
set of vectors. Another is that some combinatorial basis for E(A) is a height basis. 
Other new equivalent conditions involve level bases, or height bases, and the linear 
independence of the fundaments of Jordan sets derived from certain subsets of the 
bases. We also show that some conditions tbat appear to have a similar flavor are in 
fact not equivalent to 'I(A) = >'(A). Our Theorem (6.6) proves a somewhat stronger 
form of a theorem in [1] together with a converse that was conjectured there, see 
Remark (6.13). At the conclusion of our paper another conjecture on well structured 
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graphs in [1] is proved as a corollary to a result which extends a theorem in [10], 
see our Theorem (6.14) and Corollary (6.15). 

This paper and our paper [8] discuss conditions for the equality of the level char­
acteristic and the height characteristic of an M -matrix. A more general question 
concenring the relation between the two characteristics for M -matrices is raised in 
[14]. Some results for a similar question for general matrices over an arbitrary field 
are found in [5] and [3]. We hope that the concepts of height bases, level bases, 
peak vectors and bases, and combinatorial vectors and bases, defined in [8] and in 
this paper, will prove useful in further study of these questions. 

2. NOTATION AND DEFINITIONS 

In this paper we always assume that A is an n x n matrix. Most of our results are 
on M -matrices (see Definition (2.27)). However some of them and almost all the 
definitions and notation in this section hold for general matrices over an arbitrary 
field. Some definitions and notation are given in the rest of the paper. Almost all 
the definitions and notation given in this section are given in [8], where some further 
explanations may be found. 

(2.1) Notation For a positive integer n we denote by (n) the set {l,oo.,n}. 

(2.2) Notation For a set a we denote by lal the cardinality of a. 

(2.3) Notation For the matrix A we denote: 

N(A)-the nullspace of A. 

neAl-the nullity of A (the dimension of N(A). 

E(A}-the generalized nullspace of A, viz. N(An). 

meAl-the algebraic multiplicity of 0 as an eigenvalue of A (the dimension 

of E(A)). 

index(A}-the index of 0 as an eigenvalue of A, viz., the size of the largest 

Jordan block associated with O. 

(2.4) Definition An m x n matrix is said to have full column rank if its rank 
equals n. 

(2.5) Definition Let Band C be m x n matrices. We say that B and C have the 
same zero pattern if bjj = 0 if and only if Cjj = 0 for all i E (m), j E (n). 

(2.6) Definition For a vector x in E(A) we define the height of x, denoted by 
height(x), to be the minimal nonnegative integer k such that Akx = O. 

(2.7) Definition Let p = index(A). For i E (p) let T/j(A) = n(Aj) - n(Aj- 1). The 
sequence (T/l(A),oo.,T/p(A)) is called the height characteristic of A, and is denoted 
by T/(A). Normally we write T/j for T/j(A) where no confusion should result. 

We remark that in many references the height characteristic of a matrix A is 
called the Weyr characteristic of A, e.g. [13]. 
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(2.8) Definition Let A be a square matrix and let index(A) = p. 

(i) Let 5 be a set of vectors in E(A), and let 1/.(5) be the number of vectors 
in 5 of height k. We define the height signature 1/(5) of 5 as the p-tuple 
(1/1 (5), '12(5), ... , 1/q(5)). 

(ii) A basis 8 for E(A) is said to be a height basis for E(A) if 1/(8) = 1/(A). 

(2.9) Definition Let A be a singular matrix. 

(i) A sequence (xl, ... ,X' ) of vectors in E(A) is said to be a Jordan chain for 
A ifAxi = xi-I, i E {2, ... ,t}, and Ax' = O. We call x' the top of the chain 
(x', ... ,x' ). 

(ii) A basis for E(A) that consists of disjoint Jordan chains for A is said to be a 
Jordan basis for E(A). 

As is well known, E(A) always has a Jordan basis. 

(2.10) Remark Observe that every Jordan basis for A is a height basis, but clearly 
a height basis need not be a Jordan basis. 

We continue with some graph theoretic definitions. All the graphs we deal with 
are simple directed graphs. 

(211) Definition A graph 0 is said to be a subgraph of a graph H (0 ~ H) if 0 
and H have the same vertex set, and if every arc of 0 is an arc of H. 

(2.12) Definition Let 0 be a graph. 

(i) Let i be a vertex of O. A vertex j is said to be a predecessor of i if j = i or if 
there is a chain from j to i in O. The set of all predecessors of i is denoted 
by flo (i). 

(ii) Let T be a set of vertices in O. We denote by flo(T) the set UieTflo(i). 
(iii) Normally we write fl(i) and fl(T) for flo (i) and flo(T) respectively where 

no confusion should result. 

(2.13) Notation Let 0 be a graph, and let T be a set of vertices in O. We denote 
by top(T) the set {i E T : i rt. fl(T\{i})}. 

(214) Definition Let 0 be an acyclic graph, i.e., a graph that contains no simple 
cycle other than loops. Let i be a vertex of O. We define the level of i, level(i), as 
the maximal length (number of vertices) of a simple chain in 0 that terminates at i. 
We call the set of all vertices of level j the jth level of O. Let 0 have q levels, and 
let Aj be the cardinality of the jth level of O. The sequence (Al> ... ,Aq ) is called the 
level characteristic of O. 

Let A be a square matrix over some field. As is well known, after performing 
an identical permutation on the rows and the columns of A we may assume that 
A is in Frobenius normal form, namely a (lower) triangular block form, where the 
diagonal blocks are square irreducible matrices. 

(2.15) Convention We shall always assume that A is an n x n matrix in Frobenius 
normal form (Aij)i. Also, every n-vector b will be assumed to be partitioned into r 
vector components bi conformably with A . 
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(2.16) Notation For an II'Vector b we denote by supp(b) the set {i E (r) : bi f O}. 

(217) Definitioll The reduced graph R(A) of A is defined to be the graph with 
vertices 1, . .. ,r and where (i,j) is an arc if and only if Aij f O. Note that R(A) is 
acyclic. 

(2.18) Definitioll A vertex i of R(A) is said to be singular if Aii is singular. The 
set of all singular vertices of R(A) is denoted by S. 

(2.19) Definitioll The singular graph S(A) of A is defined to be the graph with the 
vertex set S, and where (i,j) is an arc if and only if i E /',.R(AJ<j). Note that S(A) is 
a transitive acyclic graph. 

(2.20) Definition Let b be an n-vector. The level of b, denoted by level(b), is de· 
fined to be the maximal level in S(A) of a singular vertex i such that bi f O. 

(221) Defillition A vector x E E(A) is said to be a peak vector if height(x) = 
level(x). A subset of E(A) that consists of peak vectors is called a peak set of 
vectors. A basis for E(A) that consists of peak vectors is called a peak basis for 
E(A). 

(2.22) Definition The cardinality of the jth level of S(A) is denoted by Aj(A). Let 
S(A) have q levels. The level characteristic (AI(A), ... ,Aq(A)) of S(A) is called the 
level characteristic of A, and is denoted by A(A). Normally we write Ai for Ai (A) 
where no confusion should result. 

(2.23) Convention We shall always assume that the levels of S(A) are L" ... ,Lq. 
The level characteristic of A will be assumed to be (AI. ... ,Aq). The height charac­
teristic of A will be assumed to be (1/I, ... ,1/p). 

(2.24) Definition 

(i) Let S be a set of vectors in E(A), and let A.(S) be the number of vec· 
tors in S of level k. We define the level signature A(S) of S as the q-tuple 
(AI(S), A2(S), ... , Aq(S)). 

(ii) A basis 8 for E(A) is said to be a level basis for E(A) if A(8) = A(A). 

(2.25) Remark Usually we order a level basis such that the levels of the vectors 
are non-increasing. 

(2.26) Definition A basis 8 for E(A) is said to be a height.level basis for E(A) if 
8 is both a height basis and a level basis for E(A). 

(227) Definition A Z·rnatrix is a square matrix of the form A = aI - P, where a 
is a real number and P is a (entrywise) nonnegative matrix. Such a Z·matrix is an 
M·rnatrix if a is greater than or equal to the spectral radius of P. 

(228) Remark It is well known that for an M ·matrix A we have p = q, see [12], 
[11]. 

(229) Definition A vector b is said to be (strictly) positive (b ;» 0) if all its entries 
are positive. 
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(2.30) Definition Let H be a set of vertices in R(A), and let II = IHI. A set of 
vectors {xi,i E H} is said to be an H-preferred set (for A) if 

and 

if i E l:>.R(A)(i)} 

if j rf.l:>.R(AJ<i) 

_AXi = LCikX'\ 
iEII 

i E H, j E (r), 

iEH, 

where the Cik satisfy 

clk > 0 

cik = 0 

if k El:>.R(A)(i)\{i}} 
otherwise 

iEH. 

(2.31) Definition Let H be a set of vertices in R(A). An H-preferred set that 
forms a basis for a vector space V is called an H-preferred basis for V . An S­
preferred basis for E(A) (if exists) is called a preferred basis for A. 

(2.32) Remark By the Preferred Basis Theorem (see paper [6] and the references 
there), if A is an M -matrix then there exists a preferred basis for E(A). 

3. COMBINATORIAL BASES 

(3.1) Definition Let A be an M-matrix, and let i be a singular vertex in R(A). 

(i) A vector x in E(A) is said to be an i-combinatorial vector if supp( x) ~ 
l:>.R(A)(i). 

(ii) An i-combinatorial vector x is said to be a proper i-combinatorial vector if 
Xi f O. 

(iii) A vector in E(A) is said to be a combinatorial [proper combinatorial] vector 
if it is an i-combinatorial [proper i-combinatorial] vector for some singular 
vertex i. 

We remark that an i-combinatorial vector x is defined in [5] to be a weak i­
combinatorial extension. 

(3.2) Definition Let A be an M -matrix, and let T be a set of singular vertices in 
R(A). 

(i) A set {Xi : i E T} of vectors in E(A) is said to be a T -<:ombinatorial set if xi 
is an i-<:ombinatorial vector, i E T. 

(ii) A set {Xi: i E T} of vectors in E(A) is said to be a proper T-<:ombinatorial 
set if xi is a proper i-combinatorial vector, i E T. 

(iii) A set of vectors in E(A) is said to be a combinatorial [proper combinatorial] 
set of vectors if it is a T-combinatorial [proper T -combinatorial] set of vectors 
for some set T of singular vertices. 
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(3.3) Remark Observe that every weakly preferred basis for E(A), as defined in 
[5], is a proper S-combinatorial set of vectors. 

(3.4) Observation Let x be an i-combinatorial vector. If x is a proper i-combina­
torial vector then we have level(x) = level(i). Otherwise we have level(x) < level(i). 

(3.5) Observation Let x be a proper i-combinatorial vector. Then the vector Xi is 
a nonzero vector in E(Aii) = N(Aii). Therefore, since N(Aii) is one dimensional, 
it follows that Xi is a nonzero scalar multiple of the unique unit (length 1) positive 
nullvector of Aii. 

(3.6) PROPOSITION Every proper combinatorial vector is a peak vector. 

Proof Let x be a proper i-combinatorial vector. Let B be a preferred basis for 
E(A). By Remark (3.3), there exists a proper i-combinatorial vector y in B. Denote 
by k the level of i. By observation (3.5) we can find a scalar c such that the vector 
Zi = (x + CY)i = 0, and hence the vector Z = x + cy is an i-combinatorial vector but 
not a proper i-combinatorial vector. By Observation (3.4), the level of z is less than 
k, and by Corollary (4.17) in [8], height(z) < k. Since height(y) = k, it follows that 
height(x) = height(z - cy) = k = level(x). • 

(3.7) COROLLARY Every proper combinatorial set of vectors is a peak set. 

The following elementary lemma is proven as Lemma (3.1) in [7]. 

(3.8) LEMMA For every vector x we have supp(Ax) <;; ~R(AJCSUPP(x)). 

(3.9) PROPOSITION Let T be a set of singular vertices in R(A), let T = (xi: i E T} 
be a proper T-combinatorial set of vectors, let Ci, i E T, be nonzero scalars, and let 

Then: 

(i) Y j f 0 for every j E top(T). 
(ii) level(y) = max(level(xi ) : i E T}. 
(iii) (AY)j = 0 for every j E top(T). 
(iv) level(Ay) < level(y). 

Proof 
(i) Clearly, Yj = CjX; f 0 for every j E top(T). 

(ii) follows from (i). 
(iii) follows from Observation (3.5). 
(iv) follows from Lemma (3.8) and (iii). • 

(3.10) THEOREM Every proper combinatorial set of vectors is linearly independent. 

Proof Let T be a proper T -combinatorial set of vectors. It follows from Propo­
sition (3.9) that every nontrivial linear combination of elements of T is not equal to 
zero. Our claim follows. • 
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(3.11) Definition A basis for E(A) which is a combinatorial [proper combinatorial] 
set of vectors is said to be a combinatorial [proper combinatorial] basis for E(A). 

(3.12) PROPOSlTION Every proper combinatorial set of vectors can be completed to 
a proper combinatorial basis for E(A~ 

Proof Let T ~ S, and let T be a proper T-combinatorial set of vectors. By 
LelIUDa (3.2) in [5], for every i E S there exists a proper i-combinatorial vector xi in 
E(A). Let S be a proper S-combinatorial set of such vectors. Observe that the union 
B of T and the proper (S\T)-combinatorial subset of S is a proper S-combinatorial 
set of vectors. Since the cardinality of B is meA), it follows from Theorem (3.10) 
that B is the required basis. • 

(3.13) PROPOSlTION Every combinatorial basis for E(A) is an S-combinatorial set 
of vectors. 

Proof Let B be a combinatorial basis for E(A). By Definition (3.11), B is a T­
combinatorial set of vectors for some T ~ S. By Definition (3.2), the cardinality of 
B is IT!- Since the cardinality of a basis for E(A) is meA) = lSI, it now follows that 
T=£ • 

(3.14) THEOREM Let B = {xi: i E S} be a combinatorial basis for E(A~ Then xi 
is a proper i-combinatorial vector, i E s. 

Proof Let i E S be of minimal level k such that the i-combinatorial vector xi is 
not a proper i-combinatorial vector. It follows from Observation (3.4) that 

k-l k-l 

L Aj(A) < L AlB), 
j=l j=l 

which contradicts (4.27) in [8]. • 
(3.15) COROlLARY A combinatorial basis {xi: i E S} for E(A) is a proper combi­
natorial basis. 

(3.16) Remark It follows from Theorem (3.14) and Corollary (3.15) that combina­
torial bases and proper combinatorial bases are the same. Therefore, in general we 
use only the term "combinatorial basis". 

(3.17) COROlLARY Every combinatorial basis for E(A) is a peak level basis. 

Proof Let B be a combinatorial basis for E(A). It follows from Theorem (3.14) 
and Corollary (3.7) that B is a peak basis. It follows from Theorem (3.14) and 
Observation (3.4) that B is a level basis. • 

(3.18) PROPOSlTION Let B = {xi : i E S} be a combinatorial basis for E(A), and 
let x E E(A). The coefficients Ci in the expression 

satisfy Ci = 0 whenever i ric DoR(A)(SUPP(x)). 
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Proof Let T = {i E S : Ci 'f O}. By Proposition (3.9.i). top(T) ~ supp(x). Hence, 
T ~ Ll.R(A)(top(T)) ~ Ll.R(A!Csupp(x)). and the result follows. • 

(3.19) THEOREM Let B = {xi: i E S} be a combintltorial basis for E(A1 and let 
j E S. The coefficients c i in the expression 

Axi = Lc;xi 

JET 

satisfy Ci = 0 whenever i = j or i rt Ll.R(A)(j). 

Proof Let T = {i E S : Ci 'f O}. By Proposition (3.18) we have T ~ supp(Axi). 
Since. by Lemma (3.8). we have SUpp(AX1) ~ Ll.R(A)(SUPp(xi )) = Ll.R(A)(j). it now 
follows that T ~ Ll.R(A)(j). We now show that j rt T. Assume that JET. Then. since 
T ~ Ll.R(A)(j). it follows that j E top(T). By Proposition (3.9.i) it implies that (Axj)i 
'f O. However. it follows from Proposition (3.9.iii) that (Ax1)i = O. This contradic­
tion yields that j rt T. • 

(3.20) Remark In view of Remark (3.3). Theorem (3.19) proves that for M ·ma· 
trices. combinatorial bases and weakly preferred bases coincide. 

We continue with the definition of induced matrices. as defined in Definition (7.1) 
in [8]. Induced matrices occur in [11] under the name of S·matrices. We shall use 
this definition in the sequel. 

(3.21) Definition Let A be an n x n matrix and let B = {xt, .... Xm(A)} be a basis 
for E(A). 

(i) We define the corresponding basis matrix to be the n x meA) matrix whose 
columns are xl ..... xm(A). We normally denote this matrix by B. 

(ii) Clearly there exists a unique meA) x meA) matrix C such that AB = BC. We 
call this matrix the induced matrix for A by B. and we denote it by C(A. B). 

(3.22) Observation (see Observation (6.6) in [8]) Let (>.t. .... >.p) be the level char· 
acteristic of an M ·matrix A. and let B be a level basis for A. We partition C into 
a p x p block matrix where the ith diagonal block is a >'p+1-i x >'p+1-i matrix. By 
Lemma (4.13) in [8]. for every nonzero element x of E(A) we have level(Ax) < 
level(x). Therefore. C in its block form appears as 

o 0 0 

Cp_l.p 0 0 
C= 

o 
Clp CI2 0 

Observe that our indexing of blocks is unusual. However. it is natural for this prob­
lem and it is consistent with the indexing used in [11] and [8]. It follows from 
the definition of a preferred basis that if B is a preferred basis then the blocks 
C12t ... ,Cp - l ,p have no zero columns. 
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We conclude the section with a corollary that follows immediately from Theorem 
(3.19) and from the definition of induced matrices. 

(3.23) COROllARY Let B be a combinatorial basis for E(A1 and let C = C(A.B). 
Theil G( C) is a subgraph of S( q which is a subgraph of SeA) (after relabellillg of 
vertices). 

4. THE HALL CONDITION 

In this section we show the relation of the Hall Marriage Condition to the con­
cept of a well structured graph as defined in [1]. and to an equivalent condition in 
[10]. 

We first state Hall's marriage Theorem essentially as it is found in [2, p. 155]. 

(4.1) THEOREM Let Elo ...• Eh be subsets of a given set E. 11Iell the followillg are 
equivalent: 

(i) We have 

I
UEil2:lal. 
'Ea 

for all a ~ (h) . (4.2) 

(ii) There exist distinct elemelIIs elo ... ,eh of E such that ei E Ei, i E (h) . 

The condition (4.2) is often referred to as the Hall Marriage Condition. We re­
fer to the equivalent condition (ii) as the SDR (system of distillct represelIIatives) 
Condition. 

(4.3) COROllARY Let Q be an m x 11 matrir, and define the sets Ej, j E (11), by 
Ej = {i E (m) : qij f OJ. 11Ien the following are equivalelll: 

(i) There exists a nonllegative matrix C of fuji column rank which has the same 
zero pattern as Q. 

(ii) There exists a matrix C of fuji columll rank which has the same zero pattern 
as Q. 

(iii) The sets E" ...• En satisfy the Hall Marriage Conditioll. 

Proof 

(i) *(ii) is obvious. 
(ii) *(iii) Let C be a matrix satisfying (ii). Then C has a nonsingular n x 11 sub­

matrix, which implies that there exist distinct e" ... ,en in (m) such that 
Cejj f O. Hence also qejj f 0, and the sets E, •... • En satisfy the SDR 
Condition. Our claim follows by Theorem (4.1). 

(iii) *(i) If the sets E" ... ,En satisfy the Hall Marriage Condition, then by The­
orem (4.1) we can find distinct et, . ..• en in (m) such that qed f O. We 
set Cejj = 1. j E (n). we set C;j = f> 0 whenever qij f 0 and if ej, 
i E (m ). j E (11). and we set all other entries of C equal to O. If f is suf­
ficiently small, then it is clear that C has a nonsingular n x n submatrix. 
and hence C has full column rank. • 



M-MATRlX 31 

(4.4) Definition Let S be an acyclic graph. A chain (ib ... ,ir) is called an anchored 
chain if the level of ik is k, k E (t). 

(4.5) Definition Let S be an acyclic graph. 

(i) A set I< of chains in S is said to be a chain decomposition of S if each vertex 
of S belongs to exactly one chain in 1<. 

(ii) A chain decomposition I< of S is said to be an anchored chain decomposition 
of S if every chain in I< is anchored. 

(iii) S is said to be weD structured if there exists an anchored chain decomposition 
of S. 

We comment that the term "well structured" is essentially due to [1). An an­
chored chain decomposition of S is called there a covering strategy for S. 

In view of Definition (2.11), the following proposition is clear. 

(4.6) PROPOSITION Let G be a subgraph of a G/. If G is well structured then G/ 
is well structured. Furthermore, every anchored chain decomposition of G is an an­
chored chain decomposition of G/. 

(4.7) THEOREM Let S be an acyclic graph with levels Lb . . . ,Lq, and let L1 be a 
subset of Lb k E (q -1). The following are equivalent: 

(i) The sets Et = Ll.(i) n L1, i E Lk+b satisfy the Hall Marriage Condition for all 
k E (q-l) . 

(ii) S is well structured, and there exists an anchored chain decomposition I< for S 
such thot all the elements in Lk \Lt, k E (q - 1), are final elements of chains 
in K. . 

Proof 
(i) =>(ii) It follows from (i) that the sets Ei = Ll.(i) n Lk, i E Lk+!> satisfy the Hall 

Marriage Condition, for all k E (q -1). We prove our assertion by in­
duction on q. For q = 1 there is nothing to prove. Assume our claim 
holds for q < h, h > 1, and let q = h. Let S/ be the acyclic graph ob­
tained from Sby removing the level L q• By the inductive assumption 
there exists an anchored chain decomposition 1</ for S/ such that all 
the elements in Lk \Lk, k E (q - 2), are final elements of chains in 1</. 

Clearly, all the elements in Lq_l are final elements of chains in 1</. Since 
the sets Et = Ll.(i) n L~_l' i E L q , satisfy the Hall Marriage Condition, 
it follows from Theorem (4.1) that we can find distinct predecessors in 
L~_l for the elements of L q • Accordingly, we append the elements of 
Lq to the corresponding chains in 1</ and we obtain an anchored chain 
decomposition I< for S which satisfies the conditions in (ii) . By Defini­
tion (4.5), S is well structured. 

(ii) => (i) This implication follows very easily by induction on the number q of 
levels of S, by use of the equivalence of the Hall Marriage Condition 
and the SDR Condition. The details are omitted. • 

(4.8) Definition Let JL = (JL""',JLr) be a non-increasing sequence of positive inte­
gers. Consider the diagram formed by t columns of stars, such that the jth column 
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(from the left) has Pj stars. The sequence p' dual to p is defined as the sequence 
of row lengths of the diagram (read upwards). 

The following observation and proposition are well known. 

(4.9) Observation Two equivalent definitions of p' are the following: 

(i) Let P = (ph ...• p,) be a non-increasing sequence of positive integers. and let 
s = Pl. The sequence p' = (pj •...• P;) dual to p is defined by 

P'k = max{i E (t) : pj ~ k}. k E (s). 

(ii) Let p = (ph ... • p,) be a non-increasing sequence of positive integers. The 
sequence p' dual to p is the non-increasing sequence of positive integers 
contained in (t). where for every k E (t). the number of elements of p' that 
are equal to k is equal to the difference Pk - Pk+l (where Pt+l is defined to 
be 0). 

(4.10) PROPOSITlON Let p' = (pj •. ..• P;) be the sequence dual to p = (ph ...• P,'). 
Then 

(i) PI + ... + p, = pi + ... + p;. 
(ii) (p·t = p. 

(4.11) Definition The length signature h(",) of a set '" of chains in S is defined to 
be the sequence of the lengths of the chains in "'. ordered in a non-increasing order. 

(4.12) THEOREM Let S be an acyclic graph with level characteristic A = (A' •...• Aq 1 
and let '" be a chain decomposition of S. Then the following are equivalent: 

(i) '" is an anclwred chain decomposition of S. 
(ti) A is a non-incrL'tlsing sequence. and h(",) = A'. 

Proof 
(i) =lo(ii) If '" is an anchored chain decomposition of S then. in view of Definition 

(4.8). it is easy to verify that h("'t = A. Hence. A is non-increasing. By 
Proposition (4.10.ii) it now follows that h(",) = A'. 

(ii) =lo(i) Clearly all chains of length q are anchored. Since h(",) = A'. it follows 
that the number of such chains is Aq. Therefore. the other chains form a 
chain decomposition for an acyclic graph with level characteristic A' = 
(AI - Aq •...• Ak - Aq). where k is the greatest index such that Ak > Aq. 
Since A = h(",)·. it follows from Definition (4.8) that A' is the dual of 
the sequence obtained by eliminating the first Aq elements of h(",). Our 
assertion now follows using induction. • 

(4.13) THEOREM Let S be an acyclic graph with levels Lh ..•• L q• Then thefollowing 
are equivalent. 

(i) S is well structured. 
(li) The sets Ej = !lei) n Lk, i E Lk+u satisfy the Hall Maniage Condition, for all 

k E (q -1). 
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(iii) The level characteristic A of S is a non-increasing sequence, and there exists a 
chain decomposition I< of S such that h(l<) = A'_ 

Proof 

(i) ¢}(ii) follows from Theorem (4.7) with Lk = Lk, k E (q - 1). 
(i) =?(iii) By Definition (4.5), (i) means that there exists an anchored chain de­

composition of S, and (iii) follows by Theorem (4.12). 
(iii) =}(i) Let I< be a chain decomposition of S snch that h(l<) = A'. By Theorem 

(4.12), " is ao aochored chain decomposition of S, and by Definition 
(4.5), S is well structured. • 

We note that the equivalence of conditions (ii) aod (iii) is already proven in [10]. 
Thus, Theorem (4.13) also follows from our Theorem (4.12) and Theorem 4.4 in 
[10], without the use of Theorem (4.7). However, the general case of Theorem (4.7) 
in full strength will be applied in the sequel, and it does not follow from Theorem 
(4.13). 

5_ JORDAN BASES DERIVED FROM PROPER COMBINATORIAL SETS 

In this section we apply the graph theoretic tools developed in the previous sec­
tion in order to obtain a necessary condition on the tops of the chains in a Jordao 
basis, provided the set of tops is a proper combinatorial set of vectors. 

(5.1) Definition Let W, and W2 be subspaces of a vector space V . We say that a 
vector z in V is in W, modulo W2 if z can be written as z = x + y, where x E W, 
and y E W2 . 

(5.2) LEMMA Let yl , . . . ,ym be elements of a Jordan basis 13 for A, all of same 
height I, all lops of chains. Then no nontrivial linear combinalion of yl, .. . ,ym is in 
Raoge(A) modulo N(At-I). 

Proof Assume that there exists a nontrivial linear combination y of yl •. .. • ym 
which is in Range(A) modulo N(At - I). Then y = Ax + w, where WE N(At-I). 
Since B is a height basis, it follows from Proposition (3.14) in [8] that the expres­
sion of W as a linear combination of elements of B does not involve elements of 
height greater than or equal to I, and therefore it involves none of y' •.. .• ym. Note 
that x E E(A). So x cao be expressed as a linear combination of elements of B. 
Consequently. Ax is a linear combination of elements of 13. none of which is a 
top of a chain. Therefore. the expression of Ax involves none of yl, .. .• ym. Hence. 
the expression of Ax + w involves none of yl, ... , ym , which contradicts the equality 
y=Ax+w. • 

(5.3) PROPOSITION LeI B be a height basis for an M -malrix A, and leI I be a 
positive inleger, 1 < I ~ p. LeI x', ... ,xm be the elements of B wilh heighl I, and leI 
yl •.. . ,yk be Ihe elements of B wilh heighll - 1 Furthermore, assume Ihat ym+I, ...• yk 
are laps of chains in some Jordan basis :r for E(A). Suppose thaI 

k 

Axi = L:Cj jyi + Wi, 

j=1 
where Wi E N(At - 2 ). i E (m). 
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TheIl the miltrix C = (cij)'{' is nonsinguJar. 

Proof Suppose that C is singular and let d be a nonzero m-vector such that 
Cd = o. Define the n-vector x by 

m 

X = Ldjxi. 
i_I 

Then x 'f O. Also. by Proposition (3.14) in [8]. x f/. N(A,-I) and hence 

Ax f/. N(A'-2). (5.4) 

Note that 
m k 

Ax = LLdiCjiyj + V. 

i=1 j=1 

Since Cd = 0 it now follows from (5.5) that 

m k 

Ax = L L dicjiy j + v. 
;=1 j=m+l 

By (5.4) it now follows that 
m k 

where v E N(A,-2). 

where v E N(A'-2). 

L L diCjiyj 
i=1 ;=m+1 

(5.5) 

(5.6) 

is a nontrivial linear combination of ym+" ...• yk. and hence (5.6) is a contradiction 
to Lemma (5.2). • 

We continue with the definition of Jordan set derived from a given set of vectors 
in E(A). 

(5.7) Definilion Let A be a matrix. 

(i) Let x be a vector in E(A). and let t = height(x). The Jordan chain (x. Ax •...• 
A'-2x .A'-IX ) is said to be the Jordan chain derived from x. The vector 
A'-IX is said to be the fundament of x. 

(ii) Let S be a set of vectors in E(A). The multi-set which consists of the union 
of the Jordan chains derived from the elements of S is said to be the Jordan 
set derived from S. The multi-set wruch consists of the fundaments of the 
elements of S is said to be the fwtdarnent of S. 

(iii) Let S be a set of vectors in E(A). and let J be the Jordan set derived from 
S. If J is a (Jordan) basis for A then we say that J is the Jordan basis for 
A derived from S. 

(5.8) Observation It is easily shown that the Jordan set derived from S is linearly 
independent if and only if its fundament is linearly independent. A related result is 
proved in Lemma 2.1 in [1]. 
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(5_9) THEOREM Let A be an M -matrix and assume that '1(A) = A(A} Let T be a 
set of singular vertices_ If there exists a Jordan basis :J for A derived from a proper 
T-combinatorial set of vectors, then there exists an anchored chain decomposition I< 

of SeA) such that T is the set of final vertices of the ciUlills in "'-

Proof Let:J be a Jordan basis derived from a proper T-combinatorial set T_ 
Let k E (p), and let Tk be the set of k-Ievel vertices in T_ Since T is the set of 
the tops of the chains in :J, and since '1(A) = A(A), it follows that the cardinality 
of Tk is '1k -'1k+1 = Ak - Ak+1> where '1p+1 = Ap+l = 0_ Let Lk = Lk \Tk_ Without 
loss of generality we assume Lk is indexed by the first Ak+1 elements of Lk- By 
Proposition (3_12), T can be completed to a combinatorial basis B_ Let C be the 
induced matrix C(A,B). By Proposition (5.3), the first Ak+1 rows of Ck,k+1 form 
a full column rank matrix for all k E (p - 1)_ This implies, by Corollary (4.3), that 
the sets E; = Ll.G(C)(i) n Lk, i E Lk+1> satisfy the Hall Marriage Condition, for all 
k E (p - 1)_ By Theorem (4.7), there exists an anchored chain decomposition I< for 
G(C) such that the elements in Tk = Lk\Lj" k E (p), are final elements of chains 
in 1\,. 

We must still show that T is the set of all final vertices in the chains in 1<, and 
that I< is an anchored chain decomposition for SeA). The first statement follows 
since the number of the Jordan chains in :J is A1> and the number of chains in I< is 
AI. The second statement follows by Proposition (4.6), since by Proposition (3.23), 
G( C) is a subgraph of SeA). • 

The converse of Theorem (5.9) is false in general. In the following example we 
give an M-matrix A with '1(A) = A(A), and a set T of singular vertices, such that 
there exists no Jordan basis derived from a proper T-combinatorial set of vectors, 
although there exists an anchored chain decomposition I< of SeA) such that T is the 
set of final vertices of the chains in 1<. 

(5.10) Example Let 
0 0 0 0 0 

0 0 0 0 0 

A= -1 -1 0 0 0 

-1 -1 0 0 0 

-1 -2 0 0 0 

We have '1(A) = A(A) = (3,2)_ It is easy to see that (3,1), (4,2) and (5) form an 
anchored chain decompOSition I< of SeA), where the set of final vertices of chains 
in I< is T = {1,2,5}. However, every proper 5-combinatorial vector is of the form 
[0 0 0 0 cJ"', where c 'f O. Since this vector is in Range(A), it follows from Lemma 
(5.2) that it cannot be a top of a Jordan chain in a Jordan basis. 

6. EQUAUTY OF THE HEIGHT AND THE LEVEL CHARACTE;RISTICS 

In this section we add twenty three statements equivalent to the conditions in 
Theorem (8.1) in [8]. The section in concluded with an affirmative answer to a 
conjecture in [1J. 
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(6.1) Definition Let A be a square matrix and let 8 be a height basis for E(A). A 
Jordan basis for A that is derived from a subset of 8 is called a Jordan basis linked 
to B. 

(6.2) Observation Let:J be a Jordan basis linked to a height basis 8, and let S 
be the subset of B such that :J is derived from S. Then S is the set of the tops 
of the Jordan chains in :J, and hence 1}k(S) = 1}k+l(A) -1}k(A), k E (p - 1), and 
1}p(S) = 1}p(A). 

(6.3) Remark Jordan bases linked to height bases are defined in Definition (6.7) in 
[8]. Proposition (6.1) in [8] proves tbat for every height basis B, there exists a Jordan 
basis :J that is linked to 8. The proof of that proposition describes the construction 
of such a :J. 

(6.4) Definition Let S be a set of vectors in E(A). We defme the level sum of S 
to be the sum of the levels of the elements of S. 

(6.5) PROPOSITION If x E E(A) is a peak vector then Ax is a peak vector. 

Proof By two results in [8], Lemma (4.13) and Corollary (4.17), we have level(x) 
-1 = height(x) - 1 = height(Ax) :5 level(Ax) < level(x), which yields that height 
(Ax) = level(Ax). • 

We now COme to the main result of the section, which adds 23 Conditions to 
Theorem (8.1) in [8]. 

(6.6) THEOREM Let A be an M -matrix. The following are equivalent: 

1. 1}(A) = A(A). 
2. Every vector in E(A) is a peak vector. 
3. Every basis for E(A) is a peak basis. 
4. Every height basis for E(A) has a peak subset S with level sum meA) such that 

the fundament of S is linearly independent. 
5. Every height basis for E(A) has a peak subset S such that the Jordan set derived 

from S is a Jordan basis for A. 
6. Some height basis for E(A) has a peak subset S with level sum meA) such that 

the fundament of S is linearly independent. 
7. Some height basis for E(A) has a peak subset S such that the Jordan set derived 

from S is a Jordan basis for A. 
8. Every level basis for E(A) has a peak subset S with level sum meA) such that 

the fundament of S is linearly independent. 
9. Every level basis for E(A) has a peak subset S such that the Jordan set derived 

from S is a Jordan basis for A. 
10. Every level basis for E(A) has a subset S with level sum meA) such that the 

fundament of S is linearly independent. 
11. Every level basis for E(A) has a subset S such that the Jordan set derived from 

S is a Jordan basis for A . 
12. Every combinatorial basis for E(A) has a subset S with level sum meA) such 

that the fundament of S is linearly independent. 
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13. Every combi1Ultorial basis for E(A) has a subset S such that the Jordan set 
derived from S is a Jordan basis for A. 

14. Some combi1Ultorial basis for E(A) has a subset S with level sum meA) such 
that the fundament of S is linearly independent. 

IS. Some combinatorial basis for E(A) has a subset S such that the Jordan set 
derived from S is a Jordan basis for A. 

16. Some level basis for E(A) has a peak subset S with level sum meA) such that 
the fundament of S is linearly independent. 

17. Some level basis for E(A) has a peak subset S such that the Jordan set derived 
from S is a Jordan basis for A. 

18. Some peak basis for E(A) has a subset S with level sum meA) such that the 
fundament of S is linearly independent. 

19. Some peak basis for E(A) has a subset S such that the Jordan set derived from 
S is a Jordan basis for A. 

20. There exists a peak set S with level sum meA) such that the fundament of Sis 
linearly independent. 

21. There exists a Jordan basis for A which is derived from a peak subset of E(A). 
22. Some height basis for E(A) is a peak basis. 
23. Every height basis for E(A) is a level basis for E(A). 
24. Every level basis for E(A) is a height basis for E(A). 
25. Some preferred basis for E(A) is a heigm basis for E(A). 
26. Some combinatorial basis for E(A) is a height basis for E(A). 
27. There exists a Jordan basis for A which is derived from a proper combi1Ultorial 

sel of vectoTS. 
28. There exists a nonnegative heighl.level basis for E(A). 
29. TIlere exists a nonnegative heighl basis for E(A). 
3~. There exists a nonnegative Jordan basis for - A. 
31. For all j, j E (p), lhere exists a nonnegative basis for N(Ai). 
32. For every level basis B for E(A) with induced matrix C = C(A,B1 the blnck 

q .. HI has full column rank for all k E (p -1). 
33. There exists a level basis B for E(A) wilh induced matrix C = C(A,B), such 

that for all k E (p - 1) the block Ck,k+1 has full column rank. 
34. For every combinatorial basis B for E(A), there exists a proper T·combina· 

torial subset of B with linearly independent fundamenl, where T is the set 
of final venices of the chains in some anchored chain decomposition of 
SeA). 

35. There exists a proper T·combinatorial sel of vectors with linearly independent 
fundamen4 where T is the set of fi1Ul1 vertices of the chains in some anchored 
chain decomposition of SeA). 

36. There exists a proper T·combinatorial sel of vectors with linearly independent 
fundamen4 where the sum of the levels of the venices in Tis meA). 

Proof The equivalence of Conditions (1), (2), (3), (22), (23), (24), (25), (28), 
(29), (30), (31), (32), and (33) is proven in Theorem (8.1) in [8]. Therefore, it is 
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enough to prove the implications: 

(4) '* (5); (6) '* (7); (8) '* (9); (16) '* (17); (18) '* (19). 

(3) =? (4) =? (6) =? (20) =? (21) =? (22), 

(4)&(24) =? (8) =? (10) =? (12) =? (14) =? (16) =? (20), 

(9) =? (11) =? (13) =? (15) =? (17), 

(14) =? (18) =? (20), 

(25) =? (26) =? (27) =? (21), 

(13) =? (34) =? (35) =? (36) =? (20), 

(4) '* (5); (6) '* (7); (8) '* (9); (16) '* (17); (18) '* (19). All these equivalences fol­
low from Observation (5_8). 

(3) =? (4). Let B be a height basis for E(A), and let .:J be a Jordan basis linked to 
B. Since by (3) B is a peak basis, it follows from Observation (6_2) tbat the set S 
of the tops of the chains in .:J satisfies the conditions of (4). 

(4) =? (6) =? (20) is triviaL 
(20) =? (21). Let S satisfy the conditions in (20)_ By Observation (5.8), the Jordan 

set .:J derived from S is a linearly independent set. Furthermore, since .:J is de­
rived from the peak set S with level sum m(A), the cardinality of .:J is m(A), and 
hence .:J is a Jordan basis for A. 

(21) =? (22). Let .:J be a Jordan basis for A which is derived from a peak subset of 
E(A). By Proposition (6.5), .:J is a peak basis, and (22) follows_ 

(4)&(24) =? (8) =? (10) are all immediate. 
(10) =? (12) follows since every combinatorial basis is a level basis. 
(12) =? (14) is trivial. 
(14) =? (16) follows since every combinatorial basis is a peak level basis. 
(16) =? (20) is immediate_ 
(9) =? (11) is trivial. 
(11) =? (13) follows since every combinatorial basis is a level basis. 
(13) =? (15) is trivial. 
(15) =? (17) follows since every combinatorial basis is a peak level basis. 
(14) =? (18) follows since every combinatorial basis is a peak basis. 
(18) =? (20) is trivial_ 
(25) =? (26) is trivial since a preferred basis is a combinatorial basis. 
(26) =? (27)- Let B be a combinatorial basis for A which is a height basis. Clearly, 

every Jordan basis linked to B satisfies (27). 
(27) =? (21) follows since every proper combinatorial set is a peak set. 
(13) =? (34). Let B be a combinatorial basis for E(A), and let S be a proper T­

combinatorial subset of B sucb tbat the Jordan set derived from S is a Jordan 
basis for A_ Then the fundament of S is linearly independent. Furthermore, by 
Theorem (5.9) there exists an anchored chain decomposition", of S(A) such that 
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T is the set of final vertices of the chain in "'. 

(34) => (35) is triviaL 
(35) => (36). Clearly, if T is the set of final vertices of the chains in some chain de­

composition of SeA) then the sum of the levels of the vertices in T is meA). 
(36) => (20) follows since a proper combinatorial set is a peak set, and since the 

level of a proper i-combinatorial vector is equal to the level of i. • 

(6.7) RemLJrk The following four conditions hold for every M-matrix A, and hence 
they are not equivalent to the conditions in Theorem (6.6). 

(a) Every height basis for E(A) has a subset S such that the Jordan set derived 
from S is a Jordan basis for A. 

(b) Some height basis for E(A) is a level basis for E(A). 
(c) Some level basis for E(A) has a subset S such that the Jordan set derived 

from S is a Jordan basis for A. 
(d) Every combinatorial basis for E(A) is a level basis for E(A). 

Condition (a) holds for every M -matrix A, since by Proposition (6.1) in [8], for 
every height basis B for E(A) there exists a Jordan basis linked to B. 

Condition (b) holds for every M-matrix, as proven in Corollary (5.6) in [8]. 
It follows from Conditions (a) and (b) that Condition (c) holds for every M­

matrix. 
Condition (d) is proven in Corollary (3.17). 

(6.8) RemLJrk By Theorem (6.6), the following condition follows from Condi­
tion (1). 

(e) Some level basis for E(A) has a subset S with level sum meA) such that the 
fundament of S is linearly independent 

However, we do not have (e) =>(1) in general, as demonstrated by the matrix 

A=(~ ~~). 
-1 -1 0 

Here we have >'(A) = (1,2) and 1/(A) = (2,1). The vectors [1 0 Of, [1 -1 O]T, 
and [0 0 l]T form a level basis B for E(A). The last two vectors have level sum 3 
(= meA)) and have a linearly independent fundament. Yet, >'(A) f 1/(A). 

(6.9) RemLJrk The following condition implies Condition (19) in Theorem (6.6). 

(f) Every peak basis for E(A) has a subset S such that the Jordan set derived 
from S is a Jordan basis for A. 

However, Condition (f) is not implied in general by the conditions in Theorem 
(6.6), as follows from Theorem (6.12) below. 

(6.10) PROPOSITION Every basis for E(A) has a subset S of 1/p, but /10 more, p­
height vectors, such that the fundament of S is linearly independent. 
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Proof Clearly, every set S of p-height vectors in E(A) is linearly independent 
modulo N(AP-I) if and only if the fundament of S is linearly independent. Let B 
be a basis for E(A). Since the p-height vectors in B span E(A) modulo N(AP-I), 
and since the dimension of E(A) modulo N(AP-I) is 1Jp, it now follows that we can 
find a set S of 1J p, but no more, p-height vectors such that the fundament of S is 
linearly independent. • 

(6.11) LEMMA There exists a peak basis B for E(A) such that all the elements of B 
are of height p. 

Proof Thke a preferred basis for E(A) and then add one of the p-level vectors to 
all the others to obtain a new basis B for E(A). Then B contains only nonnegative 
vectors, and hence, by Corollary (4.11) in [8], B is a peak basis. Also, all the vectors 
in B are of level p. • 

(6.12) THEOREM Let A be an M-matrix, and leI m = m(A)jp. Thefol/owing are 
equivalent: 

(i) Every peak basis for E(A) has a subset S such that the Jordan set derived 
from S is a Jordan basis for A. 

(ii) Some peak basis B for E(A), such that all the elements of B are of height p, 
has a subset S such that the Jordan set derived from S is a Jordan basis 
for A. 

(iii) 1J1 = m. 
(iv) 'I(A) = A(A) = (m,m, ... ,m). 
(v) 1Jp = m. 

Proof 

(i) =?(ii) is trivial, in view of Lemma (6.11). 
(ii) =?(iii) Let B be a peak basis for E(A), such that all the elements of Bare 

of height p . If there exists a subset S of B such that the Jordan set .J 
derived from S is a Jordan basis for A, then clearly the number 'II of 
Jordan chains in .J is equal to m(A)j p = m. 

(iii) =?(iv) Let 'II = m. Since 1J(A) is a non-increasing sequence, and since 1Jl + 
... + 'Ip = meA) = pm, it follows that 'I(A) = (m,m, ... ,m). By Theo­
rem (3.7) in [3] we have max{Ai : i E (p)} ~ m. Since Al + ... + Ap = 
meA) = pm, it follows that A(A) = (m,m, ... ,m). 

(iv) =?(v) is trivial. 
(v) =?(i) Assume that 'Ip = m. Let B be a peak basis for E(A). By Proposi­

tion (6.10) let S be a set of m p-height vectors in B such that the 
fundament of S is linearly independent. Since the level sum of S is 
mp = meA), it follows from Observation (5.8) that the Jordan set de­
rived from S is a Jordan basis for A. • 

We now explain the relation of Theorem (6.6) (and Theorem (5.9) used in the 
proof of Theorem (6.6)) to the results in [1]. 

(6.13) Remark The paper [1] investigates Rothblum bases, which are a special case 
of combinatorial bases. Using our terminology, Theorem 3.4 in [1] can be stated as: 
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(i) If there exists an anchored chain decomposition of SeA) such that for some 
Rothblum basis R for E(A1the fundament of the subset of R that corresponds 
to the final vertices of the chains in " is linearly independen~ then there exists 
a nonnegative Jordan basis for -A. 

(ii) If there exists a nonnegative Jordan basis for -A, then there exists a set T of 
singular vertices with level swn meA) and a proper T·combinatorial set T of 
Rothblum vectors with linearly independent fundamelll. 

The converse of part (i) is also conjectured in [I]. 
Observe that part (i) follows immediately from the more general implication 

(35) '9(30) in Theorem (6.6). Part (ii), as well as the converse of part (i), follows 
from the stronger result (30) '9(34) in Theorem (6.6). 

Let S be a transitive acyclic graph. In [11] the authors prove necessary and suffi· 
cient conditions on S such that all M -matrices A with SeA) = S satisfy 7J(A) = A(A), 
see also [14]. We conclude the paper with a companion result. 

(6.14) THEOREM Let S be a transitive acyclic graph. Thenthefol/owing are equiva­
lent: 

(i) There exists an M-matrix A with SeA) = S such that 7J(A) = A(A). 
(ii) The graph S is well structured. 
(iii) The sets Ei = l!.(i)nLb i E Lk+h satisfy the Hal/ Marriage Condition for all 

kE(q-1). 

Proof 
(i) '9(ii) By the implication (1) '9(35) in Theorem (6.6), if (i) holds then there 

exists an anchored chain decomposition of S. 
(ii) ~(iii) follows from Theorem (4.7) with Ll, = Lk. 
(iii) '9(i) Let S be a well structured graph with level Llo.",Lp- Let Q be a 

matrix such that G(Q) is equal to S with its loops removed. Then Q is 
a strictly lower triangular matrix. Let ILk I = Ak, k E (p), and partition 
Q in the same manner as the matrix C in Observation (3.22). Let k E 
(q - 1) and let F be the matrix Qk,k+1. Define 

Since S is well structured, it follows by Theorem (4.7) with Lie = Lk 
that the sets Ej, j E Lk+lo satisfy the Hall Marriage Condition. By 
Corollary (4.3) there exists a nonnegative matrix Hb which has the 
same zero pattern as Qk,k+lo such that Hk is of full column rank. Let 
A be any nonpositive matrix partitioned conformably with Q such that 
G(A) = G(Q) and Ak,k+l = -Ht for all k E (p - 1). Observe that A is 
an M -matrix, that the standard basis B of unit vectors is a level basis 
for A, and that C(A,B) = A . By the implication (33) '9(1) in Theorem 
(6.6) we obtain (i). • 

We note that the equivalence of conditions (i) and (iii) is already proven as The­
orem (3.2) in [10]. We have provided a proof for the sake of completeness, and as 
an application of Theorem (6.6). 
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As a corollary we obtain the following affirmative answer to the conjecture that 
concludes [1]. The corollary follows immediately from Theorems (6.6) and (6.14) 
above. 

(6.15) CoROLLARY Let A be an M -matrix. If there exists a nOlUlegative Jordan ba­
sis for -A then S(A) is well structured. 
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