
AN 100 BALANCING OF A WEIGHTED DIRECTED GRAPH
Hans Schneider and Michael H. Schneider

1 Introduction

A problem that occurs frequently in economics, urban planning, image re­
construction, and statistics is to adjuiit the entries of a large matrix so that
they satisfy prior linear restrictions on the entries. We have shown in [10]
and [9] that important instances of th€se problems can be posed as

Problem 1 Given a weighted, direct€d graph, (X, U, g), find arc weights,
iu, u E U that are "close" to the o1'iginal weights and satisfy a given set of
restrictions on the entries.

For example, in [9] we studied the problem of finding vertex weights 7rx

for which 7rx gu 7r:;l, U = (x,y), is a circulation in the underlying graph,
(X, U). We will refer to adjustments of this form as Scaling the data. In
[9] we discussed the relationship between this scaling problem and general
equilibrium modeling and analyzed a simple-iterative algorithm for finding
the 7r's.

The circulation conditions are linear restrictions requiring that at every
vertex, x, the II norm of the vector of weights on arcs directed out of x
equals the II norm of the vector of weights on arcs directed into x. A related
problem of scaling the data so that these vectors have equal 12 norms occurs
in pre-conditioning of square matrices to reduce round-off error in compu t­
ing eigenvalues [8]. The generalization to requiring equality of arbitrary Ip
norms for 1 ::; p < 00 can be reduced to the II balancing problem. The case
of requiring equality in the 100 norm produces a different problem which,
apparently, cannot be solved efficiently using the techniques described in
[10] and [9].

In this paper we are interested in showing that the an: \veights of G can
be adjusted so that every strong component is· balanced using a definition
based on the 100 norm and on a stronger notion of circulation. The term
balanced appears in many contexts in graph theory, optimization~ and matrix
theory. Our definition of balanced is related to matrix balancing as described
in [2,10]

In the case of II -balancing, it is easy to see that balancing every vertex
of G implies that G is also balanced at cutsets. That is, if the arc-v,,·eights
of G form a circulation, then for any subset of the vertices .4, the sum of

1

the weights on arcs directed out of A equals the sum of the weights on arcs
directed into A. Tile corresponding sta.tement is not true with respect tu
the 100 norm. This stronger circulation condition based on cutsets is the
appropriate definition in the :00 case. That is, \ve define a graph to be 100 -
balanced if for every subset of the vertices A the maximum weight on arcs
directed out of A equals the ma:cimum weight 011 arcs directed into A. We
call graphs with this property balanced and delete the 100 prefix.

We describe an algorithm for finding additive adjustments to the origi­
nal arc-weights so that the resulting graph is balanced. Specifically, given
arbitrary arcs weights, [Ju ,u E U, we want to find vertex weights 7ix ,X EX,
such that the weight function fu = 7rx + gu -7ry , 't.L = (x, y) E U, is balanced.
(We show in Section (3) that this problem has an equivalent multiplicative
form.) We show that if a graph is balanced, then every arc of G must be
contained in a strong component. Thus, we consider the problem of find­
ing vertex weights 7r x, x EX, for which every strong component of the
reweighted graph (X, U, J) is balanced. We show that the function fu is
uniquely determined on every strong component.

The principal subroutine used in our algorithm is a variant of Karp's [7]
algorithm for finding maximum-mean cycles in a weighted, directed graph
(see also [5,6]). Given au arbitrary graph G, our algorithm constructs a
sequence of graphs

where Hi+l is cOfLstructed from Hi by contracting a maximum-mean cycie
and deleting any resulting loops. The final term of this sequence is the
acyclic graph formed by contracting every strong component of G to a
point and deleting any resulting loops. At each iteration of the algorithm,
we generate a set of vertex weights (Ii for Hi corresponding to a ma..ximum­
mean cycle of Hi. At the conclusion of the algorithm, the sum of the
weights (Ii computed at each iteration is the desired set of vertex weights
which balances every strong component of G.

We show that the number of times the ma..x.imum-cycle mean subroutine
is used is bounded by 2n, where n is the number of vertices in G. Since the
running time for the minimum cycle-mean algorithm is O(nm), where m is
the number of arcs in G, the running time for our algorithm is O(n2m).

2

2 Notation and Definitions

"Vi! want to clarify some basic graph definitions used throughout the paper.
Let (X, U) be a (directed) graph with vertex set X and arc set U. \Ve allow
(X, U) to ha.ve loops and parallel arcs. \Ve will use the notation u = (x, y)
to refer to an arc u E U with initial vertex x and final vertex y. (There
ma,y be more than one such arc u.) A walk of length k is a sequence of arcs
(possibly empty) v = (ut, U2, U3, ••• , Uk) in which the terminal endpoint of
Uj is the initial endpoint of niH' That is, a walk is directed and may contain
repeated arcs (or vertices). A cycle is an wa.lk v = (Ul' U2, ••• ,Uk) with no
repeated vertices in which the initial endpoint of Ul is the final endpoint of
Uk. The number of arcs in a walk (or cycle) Jt is denoted by 'Il', and the
set of all cycles of (X, U) is denoted by <l?

\Ve follow the convention that the ma.-ximization over an empty set is
defined to be -00. Let S be a non-empty set and let as be an arbitrary
extended real-valued function on S (Le., the values of 00 and -00 are
permitted). The equation

min a" =-00
"ES

means that the value -00 is attained at some s E S. For any finite real T,

00 + T = 00 and -00 + T = -00. The operation of -00 + 00 is defined to be
00. This is a notational convenience, since it only appears in minimization
expressions, and when it O.ccurs there is always a term with value strictly
less than 00 . Operations involving 00 and -00 occur when we consider
maximum weight paths of a fixed length ending at a vertex x.

A weighted graph G = (X, U,g) is a graph (X, U) together with a real­
valued function 9 defined on U j gu is called the weight of u. For a walk v
in (X, U, g), the weight of v, gl/, is defined by

For a cycle J.L in G, the cycle mean of J.L is defined by

1
cycle mean of J.L = -I I L guo

J.L uEIS

A cycle J.L E ~ . is a maximum-mean cycle if

1 1
-, I L gu 2: -, L'I L: gu, for any J.L' E ~.

J.L uEIS J uEI"

3

Also,

..\(G) = max 1-,1, L:9U}
IlE~ l J.L uEIl

i~ called the maximum-cycle mean for G. \Ve will usually delete the depen­
dence on G. Note, A(G) = -00 if and only if G is acyclic (has rLO directed
cycle).

In our notation, the \'ertex set X is a partition of some underlying set X;
that is, a vertex x E X is identified with a subset of X. This notation allows
us to describe our main algorithm in which sets of vertices are successively
contracted. \Ve will refer to a partition X' as coarser than a partition X
(of the underlying set ... 1') if every element of X' is a union of elements of
X. Similarly, we refer to X as a finer pa.rtition than X'.

For a non-empty set A ~ X, the subgraph of G induced by A is the
graph with vertex set A and with all arcs of U with both endpoints in A ..
For the graph (X, U), the strong component of x E X is the union of all
y E X for which there is a walk (possibly empty) from x to y and y to x.
Note, the strong components of G determine a partition of .-1:', which we
denote by X*. We define the condensed graph of G, Condense(G), to be
the acyclic graph formed by contracting the strong components of G and
deleting all loops. (See Section (4.1) for the precise definition.) A graph G
is strongly-connected if there is a walk between every pair of vertices, namely,
if G has exactly one strong component.

Our definition of balanced depends critically on the notion of a cutset of
a graph.

Definition 1 A subset C C X is compatible with the partition X if for
every x E X either

1. C n x = x, or

2. Cnx = 0.

It is easy to see that C is compatible with X if and only if C is a union of
elements of X.

Definition 2 For C that is compatible with X, the cutset of G determined
by C, w {C; G}, is defined as

4

whel'e

w+(C;G)

w-(C;G)

{u=(x,Y)EUlx<;C, andy<;X-C},

{ u = (x, y) E U I x <; X - C, and y <; C} .

If there is no possibility of confusion, we will delete the dependence on G,

Definition 3 A weighted graph G = (X, U, g) is balanced at (a compatible
set) C iff

max gu = ma.x gu.
uew+(c) uew-(C)

Definition 4 A graph G = (X, U,g) is balanced iff it is balanced at every
compatible set C.

3 Problem Statement

\Ve first show that if a graph G is balanced, then every arc lies in a strong
component of G and, therefore, G is the union of the subgraphs induced
by the strong-components. Equivalently, every connected component of G
is strongly connected.

Lemma 1 A weighted directed graph G = (X, U, g) is balanced if and only
if

(i) For u = (x, y) E U, x and y a1'e contained in the same strong com­
ponent of G,

(ii) Every subgraph induced by a strong component is balanced.

Proof: (=» Let G = (X, U,g) be balanced, and let u = (x, y) E U be an
arc for which x and yare in different strong components. Define C C X
to be the the union of all vertices z for which there exists a walk from :: to
x, and consider w(C). It follows that w+ (C) ~ 0, but that w- (C) = 0.
The balance condition at C requires that

max gu = ma.x gu,
u=(x,y)ew+ (C) u=(x,y)e",-(c)

which cannot be satisfied since the ma.ximum over an empty set is defined
to be -00.

5

Part (ii) follows directly from Part (i), since if C is contained in a strong
component of G then w {C; G} and w {C; II} coincide, where II is the
subgraph induced by the strong component.

('¢::) The converse is obvious.

I

Lemma (1) implies that it is not possible to balance arbitrary g,Taphs.
Therefore, we describe an efficient algorithm for the following problem:

Problem 2 Given a weighted graph (X, U,g), find vertex weights 7rx ,X E
X, such that the subgraph indu.ced by every strong component of (X, U, J)
is balanced, where

fu = 7rx + gu -Tali' for u = (x,y) E U.

We call vertex weights Tax, X E X that solve Problem (2) balancing weights
for (X, U, g) and refer to the resulting arc-weight function fu, u E U as
balanced on strong components.

By taking logarithms, it is easy to see that the following problem is
equivalent to Problem (2):

Problem 3 Given a weighted graph (X, U,g) with gu > 0, find vertex
weights 7r;r; > 0, x EX, for which every strong component of (X, U, J) is
balanced, where

for every 'u = (x, y) E U.

The additive form of Problem (2) is more natural for describing the
algorithm.

4 Technical Operations

Our balancing algorithm is composed of a sequence alternating two basic
operations-contraction and reweighting. \Ve describe each of these.

6

4.1 The Operation of Contraction (and Marking)

The operation of contraction involves identifying vertices of G and deleting
loops of the resulting graph contained in a marked set of the vertices.

Definition 5 A weighted graph G = (X, U,g) together with a set AI ~ X
that is compatible with X is called a weighted marked graph and denoted
by (X,U,g;M).

Let G = (X, U, g; M) be a weighted marked graph, a.nd let X' be a
coarser partition of X than X. For x EX, let Ax be the element of
X' containing x. Let M' be compatible with X' and contain M. In the
operation of contraction we will refer to the sct of deleted arcs defined as

v = {u = (x, y) E U ! Ax = Ay ~ M'}

Definition 6 The contraction of G with respect to the pair (X', Af'), writ­
ten G/(X';M'), is the weighted marked graph (X',U',g'jM') satisfying the
following conditions:

(i) there is a 1-1 and onto mapping </>: U' - U - V s'lJch that 4>(Ax,Ay) =
(x,y), for u = (x,y) E U - V, and

(ii) g~ = g¢>(u).

Intuitively, in the contracted graph G /(X'j M') all vertices Of X con­
tained in a vertex of X' are identified; all loops at marked vertices of
the resulting graph are then deleted. Normally, we will identify an arc
in G/(X'jM') with its image under 4>(.) in G, so that the set of arcs in
the contracted graph can be viewed as a subset of the arcs of the origi­
nal graph. Thus we will use the notation: Let u = (Ax, Ay) be an arc
of G /(X'j M') corresponding to arc u = (x, y) of G. Alternatively, to
avoid double subscripts we may also write: Let u = (A, B) be an arc of
G/(X'j}.,!') corresponding to arc u = (x,y) of G (where A and B are the
vertices of G/(X'jU') containing x and y, respectively).

Note that the condensed groph of G is defined as

Condense (G) = G/ (X*; X)

where X* is the partition oLl' determined by the strong; components of G.
In our algorithm, we shall consider the important case in which the

partition is induced by a cycle fL of G, that is, when one element of X' is

-I

the union of the vertices of p and the others are the remaining elements of
X. The set of marked vertices,].JI, is the union of AI and the vertices of p.
In this case we denote the contracted graph by G/p. Thus, for a sequence
of graphs

G = HO __ HI __ n2 __ '" __ Hk,

where Hi+I is constructed from Hi by contraction, the vertex set of each
graph is a partition of the underlying set X and is a coarser than the
preceeding term.

4.2 The operation of reweighting

Each time a ma.x.imum-mean cycle is computed, a corresponding set of vertex
weights is computed and used to reweight the graph. This operation is called
reweighting G.

Definition 7 Let G = (X, U,g) be a weighted graph, and let 1rx , X E X be
a set of 'Vertex weights for G. The graph G-rr = (X, U, 1) where

fu = 1rx + gu -1ry , U = (x,y) E U,

is the reweighted graph of G (with respect to 1r).

5 U niq ueness

Before describing the algorithm for showing the existence of balancing weights,
we show that the weights are determined uniquely up to an additive constant
on every strong component.

Theorem 2 Let .G == (X, [J,g) be a strongly-connected weighted graph. If
1r and <7 are balancing weights for G, then 1rx - <7x = C for some constant
c, and, therefore, the arc-weight function f defined by

f u = 7r x + gu - 7r y, for u = (x, y) E U

is the unique arc-weight function for which (X, U,1) is balanced.

Proof: Let trx and <7x , x EX, be vertex weights for which G1r and GO'
are balanced. For u = (x, y) E U, define

fu = trr + gu - ny, and

hu - <7:;; + gu - <7y ,

8

Note t1).at

hu = Tx +Iu - Ty, u = (x,y) E U,

where

Define Z ~ X by

z = {z EX' Tz = ma~Tx}
xE}(

and define C ~ X by
C= U z

zEZ

(1)

Suppose C -:j; X and consider the cutset determined by C. The balance
conditions with respect to h and equation (1) imply

max {Tx + lu - Ty} = ma.x {Tx + lu - Ty},
u=(x,y)ew+(c) u=(x,y)ew-(C)

where w+ (C) ,w- (C) =I 0 since G is strongly-connected. But since Tx -
Ty > 0, for u = (x,y) E w+ (C), and Tx - Ty < 0, for (x,y) E w- (C), this
contradicts the balance condition for I. This contradiction implies that
C = X, namely that Tx is constant on X, and, therefore, lu = h .. , u E U.

I

It follows from Theorem (2) that for an arbitrary graph G, i.f 7rx , x E X
are vertex weights which balance every strong component of G, then <7x , x E
X, also balance every strong component if and only if 7r - <7 is constant on
strong components.

6 Computing Maximum-Mean cycles

For G = (X, U,g), let

A = max {_,1, Lgu}
I'E4> It uEI'

be the ma.ximum cycle-mean of (X, U,g). We describe a variant of Karp's
algorithm [7] for computing the ma.ximum-mean cycle of G.

9

Although our treatment of the subproblem for computing a maximum­
mean cycle is closely related to (7], there are hvo differences which are im­
portant for this paper. First, our treatment shows that Karp's algorith~n can
be extended to arbitrary graphs, whereas the original version required that
G be strongly-connected. Second, we compute vertex weights anx EX,
using the output from the max.imum-cycle mean algorithm \vhich are used
for solving Problem (2). There is also a trivial difference that we compute
maximum-mean cycles rather that minimum-mea.n cycles. (Karp's algo­
rithm also finds ma.ximum-mean cycles, by multiplying the weights by -1.)
Since \ve use the constructions introduced in the proof in later results, we
have included a modification of Karp's proof to show that our algorithm is
correct. Related modifications can be found in [5].

For each x EX, let Ik(x), k = 0,1,2, ... , n be the ll1'l...ximum weight
over the set of walks of length k that terminate at x. The Fk(v)'s can be
computed in time O(nm) using the recurrence

= 0, x E X

== ma.x {H(y) + gu},
u=(y,x)ew-(x) .

k = O,1,2, ... ,n - 1.

Define

1r~ = ma.x {H(x)}, for x EX.
O~k~n-l

(2)

Note that if G has no positive cycle, then 1l"~ is the ma.ximum of the
weights of all walks ending at x. In this case, we call a walk v that ends at
x and that has weight ii~ a maximal weight walk ending at x.

The first two parts of Lemma (3) are contained in (4]. Note that we do
not assume that G has a cycle in this Lemma.

Lemma 3 Let G = (X, U,g) be a weighted graph and suppose that all.cycle
weights of G are nonpositive. Let 1l"~ be given by (2) for x EX, and let

fu = r.~ + gu -1r~, for u = (x,y) Ell.

Then the following are true:

(i) fu:5 0, for all u E U i

(ii) If G has a cycle It of weight 0 and u is any arc of Jt, then f 11. = 0,.

10

o
1T" + S u.

Figure 1: fu = l!"~+gu -1!"~ ~ 0

(iii) Let J.L be a cycle of weight 0 and let x and y be vertices of J.L. Let 1]

be a maximal weight walk ending at x and let 1I be an extension of 1]

along J.L ending at y. Then 1I is a maximal weight u'olk ending at y
(see Fig. {2}.

Proof: (i) Since ;r~ and 1!"~ are the weights of maximal weight \valks ending
at x and y respectively, and since ii~ + g11., U = (x, y) is the weight of a walk
ending at y, we immediately deduce (i) (see, Fig. (1).

(ll) Let j.L be a cycle of weight o. Since the weight of any cycle is
unaffected by replacing 9u by fu, we have

I: fu = o.
uEI'

It follows that fu = 0 for U lyir:.g on j.L, since, by part (i), fu ::; O.

(iii) Let 1I be composed of 1] and the walk p from x to y along the cycle
J'- Let u = (x', yl) be an arc of j.L. Then from (ii) we have

and, therefore,

Therefore,

gil = 91'/ + 9p = 1!"~ + 1i~ - 1!"~ = 1!"~,
and (iii) is proved (see, Fig. (2)) I

11

Figure 2: Extension of maximal walk in cycle of weight O.

Figure 3: Fn(x) =!J1j + 91-"

Theorem 4 For every weighted graph G = (X, F,g) the maximum cycle­
mean). is given by:

). = max { min { Fn (x) - Fk (x) }} .
xEX O~k~n-l n - k

(3)

Proof: First, note that G contains no cycle if and only if Fn(x) = -00
for every x EX. Therefore, since Fo(3:) = 0, for every x EX, the theorem
is true if G is acyclic. (Recall, -00 - (-00) if defined to be 00.)

Now suppose that the ma:dmum cycle-mean). is O. Let x EX, and
let II be a walk of length n and weight Fn (x) ending at x. Then II must
contain some cycle Jl; let 11 be the walk ending at x formed by deleting Jl

from II (see, Fig. (3)). Since the length of rJ is less than n, there is some j,
o ~ j ~ n - 1, such that

12

It follows that

min {Fn(x) - Fk(x)} ~ 0, for every x EX.
Okn-l

(4)

Now let J-L be a cycle of weight 0 and let x be any vertex of J-L. Let j,
o ~ j ~ n - 1, be the length of the ma.ximal weight walk TJ ending at x.
Let II be the extension of this walk along J-L such that II has length n, and
suppose that II ends at y (see, Fig. (2»). Then, from Part (iii) of Lemma (3),
it follows that Fn(Y) = 7i~, and, therefore, by Part (ii)

(5)

The result follows from (4) and (5).
We now turn to the case of general finite ,\. Consider the graph with

arc weights gu - A. Then for all k, 0 ~ k ~ n - 1, and for all x EX

is decreased by A. But the ma.'cimum cycle-mean is now 0, and, therefore,
the result follows from the second part of the proof. I

As a corollary to Lemma (3), we haye the following important result (see
Theorem 7.5 of [4]).

Corollary 5 Let G = (X, U,g) be a weighted graph with maximum cycle­
mean A (possibly, -00).

(i) Then

A = inf { max {O'x + gu - O'y}} ,
D'ElR" u=(x,y)EU

(ii) In the case A > -00, define

Then

A= ma.-..: {1I"x+gu-7iy}'
u=(x,y)eU

If I' is any maximum-mean cycle for G, then

1r x + 9u - 11" Y = A, for u = (x, y) E I"

13

(6)

(7)

(8)

Proof: (i) First, suppose that G is acyclic (Le., .x = -00). For x EX,
let ax be the length (number of arcs) of the longest walk in G ending at x.
Let l\J be any po.si ti ve number and set cr x = Max. Since a y 2: a,£" + 1, for
u = (x, y) E U, we have

Since M is arbitrary, (i) follows in the acyclic case.

(ii) Now suppose that G has a cycle. Note that replacing the arc weights
by crx + 9u - cry, U = (x,y) E U, does not change the weight of any cycle.
Therefore, one of the altered weights must always be as large as .x. It follows
that

.x:::; i~! { rua.x {crr + 9u - cry}} .
O'Ein;n u=(x,y)EU

Let 1rx be definEd by (6). Since the 1r'S are the weights of maximum­
weight walks with respect to the arc weights 9u - .x, it follows that

7rx + (9u - .x) :::; 1f"y, for any u = (x, y) E U,

or, equivalently,

7rx + 9u -1ry :::;.x, for any u = (x,y) E U.

If u is any arc on a maximum-mean cycle It, then by Part (ii) of Lemma (3)

7rx + 9u - 1ry =.x, for any u = (x, y) E j.L,

and the result follows. I

The weights 7rXJ X E X defined by (6) are called optimal weights for G
and are essential for computing balancing weights for G.

Once the Fk(X)'S are computed, .x and the vertex weights trx can be
computed in time O(n2). Further, if x is any vertex at which the ma.ximum
in (3) is attained, then any cycle contained in a ma.ximal weight walk of
length n ending a.t x is a ma.ximum-mean cycle. Let v = (uo, Ull'" , un-d
where Ui = (Xi,Xi+d be a walk of length n ending at x. Then v has
ma.ximal weight if and only if

(9)

14

Starting with vertex xn = x, we can scan w- (x) and find a Un = (X n-l,Xn)
satisfying (9) with i = n - 1. We then scan w- (Xn-l) to find arc Un-l
satisfying (9) with i = n - 2. vVe continue in this fashion until we encounter
a repeated vertex, at which point we have found a maximum-mean cycle.
Since no vertex is scanned twice, each arc of G is examined at most once.
Therefore, the number of operations needed to find a ma:cimum-mean cycle
given the weights Fk(X) is bounded by Oem).

7 Some Technical Lelnmas

The next three lemmas are needed to prove that the balancing algori thm
described in Section (8) is correct.

Lemma 6 Let G = (X, U, g; .M) be a weighted marked graph. Let X' be
a partition of X that is coarser than X and finer than X* (the partition
determined by the strong components of G), and let 111 ~ AI' ~ X. Then
the strong components of G and Gj(X'; M') coincide.

Proof: (1) Let (Ul,U2, ..• ,Uk) be a walk between two vertices x and y
contained in the same component of G. If we delete from this walk every
arc whose endpoints are contained in the same vertex of X', then we are
left with a walk from Ax to Ay in G j(X'; M'). Therefore, the components
of G are contained in the components of Gj(X';1I1').

(2) Conversely, let A and B be vertices of Gj(X';M') belonging to
the same component. Then there is a walk (VI,V2, ..• ,Vk) in Gj(X';M')
from A to B. Let Vi = (Xi, yd be the corresponding arcs in G (under
the mapping </». Let x and y be any vertices of G contained in A. and B,
respectively. Define Yo = x and Xk+! = y. Then Yi and Xi+!, i = 0,1, ... k,
are contained in the same vertex of G j(X'; _~I') and, therefore, are contained
in the same component of G (since X' is finer than X*). Therefore there
exists a walk in G from Yi to Xi+l (which could be empty) and also a walk
from x to Y (see Fig. (4)). It follows that the components of G j(X'; AI')
are contained in the components of G. I

Lemma 7 Let G = (X, U,gj M) be a weighted marked graph and let G' =
(X', U',g'; AI') = Gj(X'; M') be the contraction of G with respect to (X', M').

15

Figure 4: Strong components of G and G I(X'; M') coincide.

If C is compatible with X', then w {C; G} = w { C; G'}. That is,

u = (x,y) E w+ (C;G)

u = (x,y) E w~ (C;G)

u = (Ax, Ay) E w+ (C; G'), and

u = (Ax, Ay) E w- (C; G') .

Proof: (1) Let u = (x,y) be an arc of w+ (C;G). Then x ~ C and
y ~ X - C. Since C is compatible with X', either Ax n C = Ax or
Ax n C = 0. But x ~ Ax and x n C =. x imply that Ax n C ::j:. 0. Therefore,
Ax n C = Ax. Similarly, y ~ X - C implies Ay n C :f; A y, and, therefore,
Ay n C = 0. It follows that (Ax,Ay) E U' and (Ax,Ay) E w+ (C;G')

(2) Conversely, let u = (Ax,Ay) E U' be an arc of w+ (C; G'). Then the
corresponding arc u = (x, y) of U clearly satisfies x ~ C and y ~ X - C
and, therefore, is in w+ (C; G).

Similarly, we can show that u = (x, y) E w- (C; G) if and only if u =
(Ax,Ay) E w- (C;G'). I

The following lemma is crucial for the inductive proof of the correctness
of the algorithm. It states that if the operations of reweightillg and con­
tracting are applied twice in succession, then the resulting weighted marked
graph can be generated directly by reweighting and contracting the original
graph.

Lemma 8 Let G = (X, U, g; 1\1) be a weighted marked graphi let G' ==
G1f /(X'jA!'), and let G" = G~II(X"jAJ"). Then G" = G1f"/(X";lU"),
where

1r: = 1r:c + 1rA' for x EX,

and A is the element of X' containing x.

16

Proof: Let G' = (X',U',g'jl\f') and Gil = (X",U",G"jM"). First,
we observe that X" is coarser than X' and that X' is coarser th~n X.
Therefore, X" is coarser than X. Also, M" is compatible with X" and
contains .M. Therefore, contraction of G with respect to (X", lU") is well­
defined.

Let V and V' be the sets of deleted arcs when G is contracted to G'
and G' is contracted to Gil, respectively. Also, let </>: U' -+ U - V and
</>': U" -+ U' - V' be the 1-1 and onto ma.ppings satisfying the conditions
in the definition of contraction. Let 'Ij; = 4> 0 <p'. \Ve claim that 'Ij; is the
mapping required to show that Gil = G1I:" / (X"; Mil). Clearly, 'Ij; is a 1-1
mapping from U" to U . Further, ¢/(U") = U' - V' and ¢l(U') = U - V.
Therefore,

'Ij;(U") = </>(U' - V'),

= </>(U') - </>(V') ,

= U - V - </>(V'),

= U - (V u V'),

since </>(V') and V' are identified. Thus, to show that 'Ij; maps onto U - V"
it suffices to show that V" = ,,; U V', where V" is the set of deleted arcs in
the contraction G 11:" / (X"; AI"). For x EX, let Ax and Ax be the elements
of X' and X", respectively, containing x.

(I)V"~VUV'.
Suppose u = (x, Y) E V". Then Ax = Ay ~ }'l". If Ax i- A y , then

u E V'. If Ax = Ay , then u E V if Ax ~ M'j otherwise u E V'.

(2) V u V' ~ V".
Let u = (x, y) E V; then Ax = Ay and, therefore, Ax = Ay. Also, Ax ~

M', which implies that Ax n Mil i- 0, since }'I ~ }.i' ~ Mil. Therefore,
the compatibility of AI" with X" implies that Ax ~ M". It follows that
u E V".

Let u = (A~, Ay), and let A ~ Mil be the element of X" containing Ax
a.nd Ay • Then Ax = Ay = A, and, therefore, u E V".

Finally, to see that the weights are correct, let u = (A, iJ) be an arc of
Gil, and assume that

<p'(A, iJ)

</>(A, B)

= (A, B),

= (x, y).

17

and

Then

gu" , ,...' +' ,...' = . "A gu- II B'
1 . , = "A + "x + gu - "y - "lh

= ,,~+ gt. - ,,;.

This completes the proof of the lemma. I

8 The Balancing Algorithm

We are now ready to state our balancing algorithm.

The Balancing Algorithm

Input: A weighted marked graph G = (X, U,g; U), with AI = 0.

Output: (i) Vertex weights "x, x EX, such that every subgraph induced
by a strong component of the reweighted graph G1r is balanced,

(ii) The acyclic graph H = Condense (G1r).

(Recall, the weight of u = (x,y) in G1r is "x + gu -"Y.)

0: (Initialization) Let Gi = (X,U,gi;Jl i), and Hi = (Xi,Ui :hi;Mi). Set
i = 0, "x = 0, CO = HO = G . (Note, UO = 0.)

1: (Termination) If Hi is acyclic, set" ::. "i, H = IIi and STOP.

2: (Compute Optimal Cycle) Find a ma..'C..imum-mean cycle ,i and optimal
weights (7i for H i . Set X i+1 equal to the partition induced by JLi ,

and set Ali+! equal to the union of the vertices of JLi and Ali (see
Section (4.1)).

3: (Reweight and Contract Hi) Form fl = Hi i (the reweighting of Hi \vith
. q . -.

respect to the vertex weights (71) and contract to form III+! = H / JLI.
That is, for arc u = (A,B) E Ui+1 corresponding to arc 1L = (A,B) E
Ui (see Fig. (5)),

18

,
("'"

'0. - e A h'
t4

• •
hi .. ,

..
h' ~ .. ~ . .,. : S u. If C6

Figure 5: Arc weight in the Contracted Graph

4: (Reweight G) Let Gi+l = (X,U,gi+l;Mi+l) be the weighted, marked
graph defined by

= 1r~ + (1~.b x E X, x ~ A E Xi

= i+l +g _ .".i+1 U (x) E lJT "z: U "y' = ,Y .

5: (Increment) Set i = i + 1 and return to Step (1).

Notice that we do not make any assumptions about the connectivity of
the input graph. Vertex weights 1r for which every strong component of G1r

is balanced could also be computed by first finding the strongly connected
components of G and then balancing each component separately. \Ve prefer,
however, to present the algorithm in the more general context of arbitrary
graph. See, for example, [1] for a discussion of algorithms for computing the
strong components of a graph.

The next three lemmas establish important properties of the balancing
algorithm which are need to verify that the algorithm is correct. First,
we define a descent function for the algorithm. For an arbitrary graph
G = (X, U), define 0(G) by

0(G) = IXI + the number of vertices of X containing a loop.

Lemma 9 The following are true:

(i) At each iteration of the balancing algorithm,

(ii) The algorithm terminates with 1l = Condense (G1r) after, at most, 2n
contraction-reweighting operations.

19

Proof: (i) The new vertex of Xi+! formed by Jti is always loopless, and
new loops are never created at the remaining vertices of Xi+!. Therefore,
a. contraction-reweighting in the balancing algorithm cannot increase the
number of vertices with a loop. If !XiH I = lXii, then Jti must be a loop and
the corresponding vertex of X i+1 m'.lst be 100pJ.ess. Therefore, a contraction­
reweighting operation ei ther reduces the number of vertices contailli ng a loop
or contracts two vertices.

(li) Termination of the balancing algorithm in at most 2n iterations follows
immediately from Part (i), and, therefore, the algorithm must terminate
with an acyclic graph H. It follows by induction using Lemma (6) that
the components of II coincide with the components of G. But since II is
acyclic these must be the vertices 01 H. I

Lemma 10 Sup]XJse the balancing algorithm terminates after k contraction­
reweighting operations; let Ai be the mean. weight of the maximum-mean
cycle J.ti computed at the i th iteration. Then

1. h~+l ::; Ai, for u E Ui+!, and

2. AO ~ Al ~ A2 ~ '" ~ Ak.

Proof: Claim (1) follows directly from Corollary (5); claim (2) is an im­
mediate consequence of claim (1) and the definition of Ai. I

In the next lemma, we describe the relationship between the graphs Gi

and Hi, which are defined in the balancing algorithm. "Ve will use these
properties to prove that the graph G-rr is balanced at strong components.

Lemma 11 The following are true:

(i) At iteration i of the balancing algorithm,

(ii) Let u = (A, B) E Ui be an arc of Hi corresponding to arc u = (x, y) E
!J of G. For gi+l defined in Step (4) of the balancing algorithm

= i + hi i
(j A u - erB, (10)

20

(iii) Let u E U - Ui , the set of arcs deleted up to and including the i th
c~ntraction-reweighting opemtion. Then

Proof: (i) Using the definitions of Xi+l, Mi+l and (7i in Step (2) of the
balancing algori thm, it follows that

Since HO = GO = G, the result follows by induction from Lemma (8).

(ii) The result is clearly true for i = 0, since 1r; = (7~. Using the definitions
of gi+l and 1ri+l in Step (4), induction, and the definition of hi, it follows
that for i > 0

=

=

=
=
=

(iii) If arc u = (x, y) is in U - Ui , then x and yare in the same element of
the partition Xi; that is, x, y ~ A E Xi+l for some vertex A of Hi. Using
the definition of 1r i+l in Step (4), if k = i + 1 then

=

=

=

The result now follows by induction. I

Note that in Lemma (11) Part (ii) we are claiming more than gi+l =
hi+l, since u is only required to be in Ui , whereas hi+l is defined only for
u E Ui+l. \Ve are claiming that yi+l agrees with the arc weights in the
reweighting ofJIi by (7i prior to the contraction step in which the arcs in
Ui - Ui+l are deleted.

'rVe are now ready to prove the ,main theorem of the paper.

21

Theor~m 12 Let G be a arbitrary weighted graph and let 1r be the weights
from the balancing algorithm. Then every strong component of G1r is bal-
anced. ...

Proof: Let II be the subgraph of G induced by a strong component Xi.
Let C be a subset of Xi that is compatible with X, and let u.' {C; II} be
the corresponding eli tset of II determined by C. \Ve must show that

max {1rx + gu - 1ry} =
u=(x,y)ew+ (C;R)

max _ {1rx + gu - 1ry}
u=(x,y)ew-(C;H)

(11)

We can assume that 0 C C c Xi, since otherwise this equCllity is vacuously
satisfied.

Consider the sequence of partitions,

X = XO _ Xl _ ... _ Xk = X*,

generated by the balancing algorithm .. There is a j, 0 < j < k, for which
C is not compatible with Xi, since C is compatible with X but is not
compatible with X*. Let j be the smallest such index.

Because Xi is formed from Xi-I by identifying the vertices of j..Li- l ,
the cycle j..Li- 1 must intersect both w+ (Cj IIi-I) and w- (Cj Hi-I). Also
Corollary (5) implies that in the reweightillg of Hi- l by (Ji- l

, the rna."Ximum
weight occurs at ea.ch arc of j..Li- 1 and equals >.i-I. That is,

ai-I + hi-l i-I _ 'i-1 A u - CTB - A , for u = (A,B) E j..Li- l .

Therefore, the reweighted graph of 11i - 1 must be balanced at C. That is,

{ ..i-I hi-I i-I} max . CT"A + u - (J B =
u=(A,B)ew+ (C;H;-t)

{ i-I + hi-I ..i-I} max . (J A u - CT"B ,
u=(A,B)ew-(C;1l1-1)

and both ma."Xima must be attai~ed at some arc of j..Lj-l.
It follows from Lemma (7) that w {Cj G} and w {Cj Hj-I} coincide.

Combined with Lemma (11) part (ii), it follows that for i = j

ma.x g~
UEw+(C;G)

22

(12)

The arcs of j.Li- 1 are contained in the set of arcs deleted by the (j - l)st
contraction operation. Therefore, Lemma (11) Part (iii) implies that

g! = gt, for U E j.Li- l •

Further, since w {Cj G} and w {Cj lIi - 1 } coincide, Lemma (10) implies that

g! :5 ..\i-1

for any u in the cutset w{CjG}. Therefore (12) holds for i = k.
Since the cycle j.Li- 1 must lie entirely in the subgraph fI, both ma:cima

in (12) must occur at an arc of w+ (C; JI) and w- (Cj JI) , respectively, when
i = k. Now we can apply the definition of g~ = 1i~ + gu - 1it, u = (x, y) E U
and 1i:r = 1i: to obtain (11). This proves the theorem. I

The proof of Theorem (12) actually shows a slightly stronger result.
Consider the output of the balancing algorithm- Condense (G7r) , the acyclic
graph formed by contracting the strong components of G-;r. By Lemma (10)
every arc of Condense (G7r) has weight no greater than the minimum of
the ..\i,s computed by the algorithm. Therefore, G7r is balanced at every
compatible set C which in not a union of strong components. Equivalently,
if some strong component is separated by the cutset determined by C, then
the balance conditions for the components imply that G7r is also balanced
at C.

The acyclic graph G7r can, in the following sense, also be balanced. For
an arbitrary graph G = (X, U), a vertex x is an boundary vertex of G if
either w+ (x) or w- (x) is empty (i.e., if either there are no arcs directed
into x or there are no arcs directed out of x). Otherwise a vertex is an
interior vertex. Let aG denote the union of the boundary vertices of G. It
is easy to see that the graph formed by contracting the boundary is strongly­
connected.

Consider 1I = Condense (G7r) the acyclic graph generated by the bal­
ancing algorithm. Let X' be the partition of X where one element is all
and the others are the remaining clements of X·. Then the bala.ncing al­
gorithm can be applied to the strongly-connected graph 1I / (X'; all). Let
the resulting weights (defined on the vertices of X') be 1i' and define

(1:r = 7r:r + 7r~, where x S;;; A E X', and x E X.

Then the original graph G reweighted by (1 is balanced at strong compo­
nents and further 1I is also balanced.

23

To conclude, we want to combine our results from Theorems (2) and (12)
for the case of strongly-connected graphs.

Corollary 13 Let G = (X, U,g) be a strongly-connected, weighted graph.
Then there exists vertex-weights 'Trx, X EX, unique up to an additive con­
stant, such that the reweighted graph G-rr -is balanced. Thus there exists a
unique balanced graph obtainable from G by reweighting.

Finally, we mention the multiplicative interpretation of Corollary (13)
(see Problem (3) in Section (3)). Let A. be an n X n matrix. \Ve can
associate a graph (X, U,g) to A by:

X = {1,2,3, ... ,n},

U = {(i,j) I aij ~ a}, and

gij =

Let I be any subset of {l, 2, 3, ... , n} and let I' be the complement of I.
A matrix A is irreducible if and only if its associated graph is strongly­

connected. Thus, by Corollary (13), if A 2: a is irreducible, there exists a
diagonal matrix D with positive diagonal elements, unique up to a multi­
plicative constant, such that B = DAD-1 satisfies

max {bij liE I,j E I'} = ma.x {bij liE I',j E I}

for every Ie {1,2, 3, ... , n}.
This result is analogous in the loo-norm to Theorem (2) of [2], and thus

provides another canonical form for diagonal similarity in the case of irre­
ducible nonnegative matrices. For some definitions and a different canonical
form for diagonal similarity without the restrictions of nonnegativity a.nd
irreducibility see [3].

24

9 Numerical Example

Consider the weighted directed graph G given by:

7

[§J Gi 71 Q
The Gra h HO = G

At iteration ij a maximum-mean cycle p.i with mean ,\i is computed for
Hi using the weights Fi(Z) and the formula described in Theorem (4). The
corresponding optimal weights are computed using line (6) in Corollary (5).
In the example, we will not present the calculations needed to find p.i and
Ai. Rather, we observe that it follows from line (6) that the optimal weights
corresponding to a maximum-mean cycle can be computed by first shifting
every arc weight of Hi by ,\i and then computing the weights of maximal
weight walks ending at each vertex'. We call the graph formed from Hi by
shifting arc weights .by ,\i the auxiliary graph for Hi.

First Iteration

A maximum-mean cycle for HO with corresponding cycle mean ,\0 is given
by:

• pO: 4 _ 6 _ 7 - 5 - 4,

• AO = 4.

Shifting the arc weights by ,\0 = 4 produces:

25

I
I
i

CEJ. fEJ,
The Auxiii '---.'

31
J
I

h fur HO

i

/
1

The weights of maximal wei"ght walks with a specified terminal vertex
are shown in the boxes adjaCE::"lt to the vertices. Thus the vector of optimal
weight s 0'0 is:

• 0'0 = (0,4,0,6,4,3,1,0),

and the set of marked vertices is

• Ml = {4,5,5, 7}.

The new graph HI is formed by computing H~o (the reweighting of
HO with respect to 0'0) and contracting the cycle p'0 to-a point. Since the
reweighting is applied to HO, the weights 0'0 are also shown on the graph
of HO.

3

26

Th~ new graph H1 is:

ill .,

The a h HI

Note, that only loops at marked vertices are deleted in the contraction
operation.

The vector of weights 1\""1 is

• 1\""1 = (0,2,0,6,4,3,1,0)'

and G1 the reweighting of G with respect to .".1 is

--.,

The a h G1 = G I

Second Iteration

A maximum-mean cycle for H1 with corresponding cycle mean >.1 is:

• p1:2-+2,

2,

• .:\1 = 3.

The auxiliary graph with arc weights of H1 shifted by 3 is:

The Auxiliar

where the weights of maximal weight walks are shown in the boxes ad­
jacent to the vertices.

The corresponding vector of weigh~s 0'1 is

• 0'1 = (0,1,0,1,0),

and the set of marked vertices 13

• M2 = {2,4,5,6, 7} .

The graph H2 is computed by reweighting HI with respect to 0'1 and
contracting pl to a point.

28

The new graph 9 2 is

The a h H2

The vector of weights 1'l"2 is

• 1'l"2 = (0,4,0,6,4,3,1,0)+ (0,1,0,1,1:1,1,0) = (0,5,0,7,5,4,2,0),

and G2 the reweighting of G with respect to 1'l"2 is

The a h G2 = G 2.

Third Iteration

A maximum-mean cycle for H2 with corresponding cycle mean ,.\2 is

e p,2: {4,5,6,7}-+8-{4,5,S,7},

~ ,.\2 = 2.

29

!
"

The auxiliary graph with arc weights of H2 shifted by 2 together with the
weights of maximal paths is

The Auxiliar

The corresponding vector of weights (7"2 is

• u2 = (0,1,0,1,0),

"and the set of marked vertices is

• };f3 = {2, 4, 5, 6, i, 8}.

"" !"""'

{§]

The graph H3 is computed by reweighting H2 with respect to q2 and
contracting ",2 to a point.

The new graph H3 is

30

The a h H3

The vector of weights 1r3 is

• 1r
3 = (0, 5, 0, 7, 5, 4, 2, 0) + (0, 1, 0, 1, 1, 1, 1, 0) = (0, 6, 0, 8, 6, 5, 3, 0) ,

and G3 the reweighting of G with respect to'1r3 is

The

Fourth Iteration

A maximum-mean cycle for H3 with corresponding cycle mean ,\3 is

• p.3: {4,5,6, 7} _ 8 _ {4,5,6, 7},

•).3 = 1.

31

The auxiliary graph with arc weights of H3 shifted by 1 together with the
weights of maximal weight path is

The A uxiliarv Graph for H3

The corresponding vector of weights (1'2 is

• q3 = (0,1,0,0),

and the set of marked vertices is

• M4 = {2, 3, 4, 5, 6, 7, 8}.

i
i

/
[
I ,

The graph H4 is computed by reweighting H3 with respect to q3 and
contracting 1'3 to a point.

The new graph H4 is

32

f,,..--------------------------,

The a h H4

The vector of weights 1\"4 is

• 1\"4 = (0,6,0,8,6,5,3,0)+ (0,1,0,0,0,0,0,0) = (0,7,0,8,6,5,3,0)'

and G4 the reweighting of G with respect to 1\"4 is

,

The a h G4 = G •.

Since H4 is acyclic, the algorithm terminates, and 1\" = 1\"4. Note that
the strong components of the resulting graph G." = G4 are balanced.

References

[1] Alfred V. Aha, Jolm E. Hopcroit, and Jeffrey D. Ullman. The De­
!ign and Analysis of Computer Algorithms. Addison-Wesle Publishing
Company, 1974.

33

[2] B. Curtis Eaves, Alan J. Hoffman, Uri G. Rothblum, and Hans SclUlei­
de·~. Lille-sum-synunetric seatings of square nOlUlegative matrices.
Mathematical Programming Studies, 25:124-141, 1985.

[3] Gernot 1 ... 1. Engel and Hans Sclmeider. Algorithms for testing the di­
agonal similarity of matrices and related problems. SIAM Journal of
Algebraic and Discrete lUethods, 3(4):429-438, 1982.

[4] Gernot M. Engel and Hans Schneider. Diagonal similarity and equiv­
alence for matrices over groups with O. Czechoslovak },{athematical
Journal, 25:389-403, 1975.

[5] M.v. Golitschek. Optimal cycles in doubly weighted graphs and .approx­
imation of bivariate functions by univariate ones. Nu.merische Mathe­
matik, 39:65-84, 1982.

[6] M.v. Golitschek and Hans Sclmeider. Applications of shortest path
algoritlmls to matrix scalillgs. Numerische Mathematik, 44:111-126,
1984.

[7] Richard M. Karp. A characteriza.tion of the minimum cycle mean in a
digraph. Discrete Mathematics, 23:309-311, 1978.

[8] E.E. Osborne. On pre-conditol1.ing of matrices. Journal of the Associ­
ation of Computing Machinery, 7:338-345, 1960.

[9] Hans Sclmeider and Michael H. Schneider. A simple iterative algo­
rithm for balancing matrices. Technical Report, Priuceton University,
Department of Civil Engineering, 1987.

[10] Michael H. Sclmeider and Stavros Zenios. A comparative study of al­
gorithm for matrix balancing. Technical Report 86-10-4, University of
Pe11llsylvania, Department of Decision Sciences, The Wharton School,
January 1987.

