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ABSTRACT 

A ZME-matrix is a matrix A all of whose positive integer powers are Z-matrices, 
and whose odd powers are irreducible. We find a combinatorial partial order on the 
spectral idempotents of a ZME-matrix A which determines the allowable spectral 
perturbations B for which B is again a ZME-matrix. We apply this result to show that 
under certain restrictions, the product of two ZME-matrices is a ZME-matrix. 

1. INTRODUCTION 

In two recent papers [2, 4], Friedland, Hershkowitz, and Schneider 
characterized certain classes of Z- and M-matrices all of whose positive­
integer powers are again Z- or M-matrices. In this paper, we further examine 
the structure of these matrices. In particular, we find a combinatorial 
structure for the eigenspace projections of such matrices, and we use this 
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ordering to detennine the allowable spectral perturbations which preserve 
class membership. Further, we show that under certain restrictions, class 
membership is preserved under multiplication of commuting matrices within 
the class. Additionally, we state a conjecture and an open question. 

A Z-matrix is a real, square matrix with all of its off-diagonal entries 
nonpositive. An M-matrix is a Z-matrix for which all of the eigenvalues have 
nonnegative real parts. The matrix A is a ZM-matrix (MM-matrix) if all of its 
positive powers are Z-matrices (M-matrices). The matrix A is a ZMA-matrix 
(MMA-matrix) if A is a ZM-matrix (MM-matrix) and all positive powers of A 
are irreducible. The matrix A is a ZMO-matrix if A is a ZM-matrix, all of the 
odd positive powers of A are irreducible, and all of the even positive powers 
of A are completely reducible but not irreducible. The matrix A is a 
ZME-matrix if it is either a ZMA-matrix or a ZMO-matrix. It is apparent that 
the classes of MMA-, ZMA-, and ZMO-matrices are contained in the class of 
ZME-matrices. 

In their paper [2], Friedland, Hershkowitz, and Schneider present a 
characterization for the class of ZME-matrices and its subclasses in tenns of 
an operation which they call iinflation. They show that an n X n ZME-matrix 
A has a special type of spectral decomposition: 

(1.1) 
k 

A = L cxjEj , 
j=l 

where the spectrum of A is real and satisfies cx 1 < cx 2 < . " < CXk ' and where 
E 1, E 2 , ••• , Ek are the spectral projectors. Further, they show that the se­
quence E l' ... , E k corresponds to an "inflation sequence." We will use the 
inflation sequences of a ZME-matrix to study the structure of the spectral 
projectors, and to deduce certain results on spectral perturbation. 

What follows is a section-by-section summary of the principal results. 
The subsections of Section 2 contain the definitions and results from the 

paper [2J by Friedland, Hershkowitz, and Schneider which will be needed in 
the subsequent chapters. Most notable among these are the operation of 
inflation, the inflation theorem (Theorem 2.6.3) and its corollary (which is a 
spectral decomposition theorem for ZME-matrices), and an allowable spectral 
perturbation theorem which is here called the Original slide-around theorem 
(Theorem 2.9.1). 

Beginning with Section 3, we focus on the set Iff of spectral projectors for 
a fixed ZME-matrix. In this section, we derive a simple combinatorial partial 
order ~. on the elements of Iff, and we relate it to the operation of inflation. 
In particular, we show that if E and F are in Iff, and if E -<. F in Iff, then E 
precedes F for every possible inflation sequence for the set of projectors Iff 
(Lemma 3.4). We also investigate the structure of Iff under -<'. 
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There is a natural correspondence between the partially ordered set 
(If, ~.) and its directed comparability graph !l'( g). In Section 4, we present 
the graph-theoretic results which will be needed in the remainder of the 
paper. The basic properties of !l'( g) are derived, and a special subgraph, the 
covering graph ~(g) of !l'( g) is introduced. This sparser subgraph is shown 
to have a "tap-rooted" structure (Theorem 4.8). 

In Sections 5 through 8, we apply the results of Sections 2 through 4. 
In Section 5, we prove the alternative inflation-sequences theorem (Theo­

rem 5.6), which states that every ordering of the nodes of !l'( g) which is 
consistent with the ordering on !l'( g) gives rise to an inflation sequence 
for g. 

In Section 6, we relate the partial order -<. in % (a complete set of 
inflation-generated projectors) to the partial order -<. in g (an inflation-gen­
erated, rank-one refinement of %) (Theorem 6.3). It is then shown which 
complete sets of projectors possessing g as a refinement can be inflation-gen­
erated (Theorem 6.5). 

In Section 7, the results of the preceding sections are used to prove two 
generalizations of the original slide-around theorem in [2], our Theorem 2.9.l. 
These generalizations are our allowable spectral perturbation theorems, 
hereafter calledslide-around theorems. The strict-inequality slide-around 
theorem (Theorem 7.1) determines all a; such that the matrix A given by 
(1.1) is a ZME-matrix, under the assumption that the a; are pairwise distinct. 
The weak-inequality slide-around theorem (Theorem 6.2) addresses the case 
when the a; are permitted to coincide. 

In Section 8, we show that the product of two commuting ZME-matrices 
is again a ZME-matrix, provided that at least one of the matrices is a 
ZMA-matrix and prOvided that they have a common complete set of projec­
tors possessing an inflation-generated refinement. In particular, this latter 
condition holds if one of the matrices has distinct eigenvalues. The question 
of whether two commuting ZME-matrices must be a ZME-matrix is left 
open. 

The reader who is interested in further papers on the properties of ZM­
and MM-matrices should consult the papers by one of the authors [2, 4], or 
the other [6-13], or by M. Fiedler [14]. 

2. PRELIMINARIES 

Throughout this paper, J{ m n(%) will be the set of all m X n matrices 
over the set %. Although many' of the results presented can be extended to 
other algebraic structures, in this paper % will always be either C or IR. If 
m = n, then vi! n.n(%) will be denoted by J{ n(%)' If A is in J{ n(%), then 
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A is said to have order n. The set of 1 X n matrices over ff;" will be denoted 
as ff;"n, and the tenn vector will always mean row vector. A strictly nonzero 
matrix (strictly nonzero vector) will be a matrix (vector) each of whose 
entries is nonzero. A strictly positive matrix (strictly positive vector) will be 
a real matrix (vector) each of whose entries is positive. Matrices will always 
be denoted with capital letters; and if A is a matrix, then its i, j entry may 
be denoted by either Aij or air A power of a square matrix will always mean 
an integer power of that matrix. If A is in .A n(ff;") for some field ff;", then 
AO = In' the n X n identity. 

Let A be in .A n(C), The matrix A is reducible if there is an n X n 
pennutation matrix P such that 

where the matrices Bl and B3 are square matrices. If no such pennutation 
matrix P exists, then A is irreducible. If A is either irreducible or pennuta­
tion-similar to a direct sum of irreducible matrices, then A is completely 
reducible. There is a well-known graph-theoretic characterization of these 
properties (see [1] for example). 

2.1. Inflation 
In this subsection, the concept of inflation, which was introduced in [2], is 

discussed. 
Let m and n be positive integers with m ~ n. An m-partition of n is a 

partition of the set {l,2, ... , n} into an ordered collection of m nonempty, 
disjoint sets such that the elements within each set are arranged in ascending 
order. When there is no confusion as to which m-partiton of n is being used, 
the partition will be denoted by Pm n' 

Throughout Section 2, the follo~ng conventions are assumed: 

(1) The letters m, m, n, and n are positive integers with m ~ nand 
m~ n. 

(2) The set II is an m-partition of n given by B1, B2,···., Bm. 
(3) The set IT is an m-partition of n given by 81,82"", 8m, 

Let U be in .A n.,,(C). The partition pair (II, IT) induces a block 
partitioning of the matrix U as follows: For 1 ~ i ~ m and 1 ~ j ~ m, the i, j 
block of U consists of all entries Uap such that a is in Bi and f3 is in 8r 
Denote the i, j block of U by U(i.j)' If m = 1, then II = {{ I}}, and the 1, j 
block of U will be denoted by UW ' 
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The partition pair (II, II) induces a symmetric partitioning for each 
matrix in .4t n, n(.%) which is called the block partition induced by II. The 
integer m is called the block order of the partition II, or simply the block 
order when there is no confusion as to the partition. If A is in .A n( ff) and is 
partitioned by II, then A is said to have block order m. If A ( j,j) = 0 for 
i =1= j, then A is a block-diagonal matrix. The partition block Bj X Bj and the 
matrix block A ( j,i) are each called a trivial block if IBd = 1. If m = n, then 
the block partition induced by II is called a trivial block partition. 

Throughout this paper, the following convention will be employed: When 
block-partitioned matrices and vectors are displayed, they will be displayed 
for convenience as if the partition sets consisted of consecutive integers. 

Suppose that A is in .An neff), and that A has been symmetrically 
partitioned into blocks. Then th~ corresponding partition II of {I, 2, ... , n} is 
unique. If only the block structure of the partition is given, then II is 
determined up to a permutation of the partition sets. Thus if A is the matrix 
whose block structure is given by 

* 
* 
* 

then there are two choices for II: B1 = {I} and B2 = {2,3}, and B1 = {2,3} 
and B2 = {I}. 

Let A be in .4t m "'(C). Let U be in .4t n n(C)' The inflation matrix of A 
by U with respect to' the partition pair (II, IT) is the n X fl matrix denoted 
by A XX U which is defined as follows: For each a in {I, 2, ... , n} and each P 
in {l, 2, .. . , fl }, there exist unique indices rand s such that a E Br and 
P E Bs; let (A XX U)a/3 = ar,..Paf3' Equivalently, in the block partition induced 
by the partition pair (II, II), (A XX U) ( r,s ) = arP(r,s ) for each rand s. 
When the partitions are clear, A XX U will be called A inflated by U. The 
operation denoted by xx is called inflation. 

If m = m, n = fl, and II = fr, then this definition reduces to the defini­
tion of inflation given in [2, Definition 4.1] and A XX U is called the 
inflation matrix of A by U with respect to the partition II. 

If m = n = 1, then II = {{I}}, and A xx U is called the inflation vector 
of A by U with respect to the partition fro 

The next lemma follows immediately from the definition of inflation. 

LEMMA 2.1.1. Let A and B be in.4t m ",(C). Let U be in.A n n(C)' Let s 
be in C. Then with respect to the partiti~ pair (II, fr) , 

(i) (A+B)xxU=(AxxU)+(BxxU), 
(ii) (sA)xxU=s(AxxU). 
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THEOREM 2.1.2 (Associativity of inflation). Let p and p be positive 
integers such that n ~ p and n ~ p. Let ~ be an n-partition of p given by the 
ordered collection of sets C1, C2, .•• , Cn' Let Q be an n-partition of p given by 
C1, C2 , ••• , Cn' Let A be in J( m "'(C). Let U be in J( n ;;(C). Let V be in 
J( p,P(C). Then there exist an m~rtition r ofp and an 'm,-partition r ofp 
such that 

(A xx U)XX V= A XX(U XXV). 

Further, r is given by the ordered collection of sets D1, D2 , ... , Dm where 

Di= U Cj ; 

JEB, 

and r is given by the ordered collection of sets i\, D2, • .• , Dm where 

Proof. See [6, Theorem 2.3]. • 
2.2. InfLators 

Suppose that n ~ 2. Let U be in J( n n(lR). The matrix U is called an 
inflator (with respect to IT) if there exist ~ectors u and U in IR n which are 
partitioned by IT such that the following conditions hold: 

(i) u and U are strictly positive vectors, 
(ii) For l~i,j~m, U ( i,j ) = [U( i)]t[U(j)]' 

(iii) For 1 ~ i ~ m, U(i ) [U( i)]t = 1. 

The pair of vectors u and U is called a generating pair for the infLator U. The 
matrix U is called a normalized infLator if u and U can be chosen so that 
they also satisfy a fourth condition: 

(iv) For 1 ~ i ~ m, U( i) [U(i)] t = U( i ) [ U ( iY' 

Observe that U = u t [u]. (These conditions are Definition 4.3 of [2].) 
The 1 X 1 matrix U = [0] is called the infLator associated with the unique 

I-partition 1. 

LEMMA 2.2.1. Let m ~ n be positive integers with n ~ 2. Let IT be an 
mrpartition of n. Let U be an infLator associated with IT. Suppose that U is 
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symmetric. Then U is normalized. Further, there is a strictly positive, 
partitioned vector U such that U = utu and such that UiU~ = 1 for 1 ~ i ~ m. 

Proof. Since U is an inflator, U has a generating pair of vectors: 
U = utv. Since U is symmetric, U(i. j ) = [U(j. i)] t for all i and j. Thus 

, U~Vj = v~uj' Fix i and j with i 1= j . Let A = ujuj. Then A > O. By condition 
(iii), ujvj = 1. Thus AVj = (ujuj)Vj = u/ ujvj) = u/ vjuj) = (ujvj)U j = (l)uj' 
Similarly, if a = uiu:, then aVi = ui. So (aviYvj = V!(AVj ). By the positivity of 
v, a = A. Thus u = AV, and A = ujuj is independent of the choice of j. Let 
a = (-./f)-lU. Let V = (-./f)v. Then a:vj=u!Vj=U(i.j) for each i and j. 
Also, aiv: = uiv! = 1 for each i . Thus a and v are strictly positive, parti­
tioned vectors which satisfy conditions (ii) and (iii) of the definition of an 
inflator. Finally, a = (-./f)-lU = (-./f) - lAV = (-./f) V = V. Thus U is a normal­
ized, symmetric inflator. Relabel a as u . • 

LEMMA 2.2.2. Let n ~ m be positive integers with n ~ 2. Let II be an 
m-partition of n given by B1, B2 , • • • , Bm' Let U be an inflator for II. Then U 
is strictly positive. Further, 

(i) If IBil = 1, then U(i.i) = [1]. 
(ii) If IBil > 1, then 0 < [U(i.i )]jj < 1 for 1 ~ j ~ IBtl. 
(iii) For 1 ~ i, j, k ~ m, U(i. jP(j,k) = U(t,k)' 
(iv) For l~i~m, U(i.t ) is an irreducible, idempotent matrix of rank 

one. 
(v) For all matrices A and B in vi{ m(C), (A xx U)(B xx U) = 

(AB)XX U. 
(vi) For each matrix A in vi{ m(C), rank(A xx U) = rank A. 
(vii) (B xx U) (i,j ) = 0 for some i and j implies bij = O. 

Proof. Results (i) and (ii) are clear from the definition of an inflator. For 
(iii)-(vi), see [2, Section 4]. To prove (vii) note that U» O. • 

THEOREM 2.2.3. Let p be a positive integer with n ~ p. Let n be an 
n-partition of p given as in the statement of Theorem 2.1.2. Let r be the 
m-partition of p derived from II and n as given in Theorem 2.1.2. Let U in 
vi{ n n(C) be an inflator associated with II, and let u and a be a generating 
pai; for U. Let V in vi{ p , iC) be an inflator associated with n, and let v and 
v be a generating pair for V. Let W = U xx V with respect to n. Then W is 
an inflator associated with r , and W has generating pair u xx v and 
aXXv. 
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Proof. See [6, Theorem 3.2]. • 

It should be noted that it has not been shown that U xx V is a 
normalized inflator if U and V are normalized inflators, and indeed, the 
normality of U and V is not always sufficient to imply W is normal. 

2.3. The Matrix G(U) 
Let U be an inflator associated with the m-partition II of n. For n > 1, 

define the matrix G(U) by G(U) = In - (1m xx U). For n = 1, define G(U) 
to be the 1 X 1 identity matrix. Suppose that G(U) is rank k. Then U is called 
a rank-k inflator. 

CONVENTION (Direct sums and block-diagonal matrices). Suppose that A 
is in At n( ff) for some field ff. Suppose that A is a block-diagonal matrix for 
II . For 1::s;; i::s;; m, let bi = IBJ Then there is an n X n permutation matrix P 
such that 

m 

where each V; is bi X bi' For each i, let 

U; = ffi O·Ib $V;$ ffi O·Ib . 
[

i-l ] [m ] 
j=l] j = l +l] 

Then PAp! is the internal direct sum of the matrices Vi' That is, PAP I = 

L;"=lU;, So A = L;"~ lPIU;P. Since membership in the classes of Z- and 
M-matrices as well as irreducibility is preserved by permutation similarities, 
and since the internal direct-sum representation is very unwieldy, A will be 
written as A = €a ik= IV; with the understanding that a permutation similarity 
may be implied, and with the understanding from the context that operations 
on V; may actually be operations on P!U;P. This convention will be in effect 
throughout this paper. 

EXAMPLE. Let A be the matrix 

A~ [~ 
0 2 0 

~l 5 0 4 
0 1 0 
4 0 5 
0 2 0 
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Then A can be written according to the preceding convention as 

2 
1 
2 

71 

REMARK. In light of the preceding convention, G(U) defined above can 
be written as 

m m 

(2.3.1) G(U) = In - EB U(i,i ) = EB [Ib; - U(i ,i ) ]' 
i=1 i=1 

That is, G(U) is (pennutation similar to) a block-diagonal matrix with G ( i. i ) 

equal to Ib; - U(i. ) for each i. 

LEMMA 2.3.2. Let n ;;;. m be positive integers with n ;;;. 2. Let II be an 
m-partition of n given by B1, B2 , .•• , Bm' Let U be an inflator associated with 
II. Then the following properties hold: 

(i) If IBil = 1, then G(U)(i.i ) = [0]. 
(ii) If IBd > 1, then G(U)(i.i ) has a strictly positive diagonal, and each 

off-diagonal entry of G(U)(i. i ) is negative. 
(iii) G(U) is an idempotent M-matrix which is completely reducible with 

index of reducibility m. 
(iv) The rank of G(U) is n - m. 
(v) For each i, G(U)(i.i) is an idempotent, singular, irreducible M-matrix 

for which zero is a simple eigenvalue. 
(vi) G(U) is diagonalizable. 
(vii) There is a unique normalized inflator U associated with II such that 

G(U) = G(U). 
(viii) Suppose that G(U) = G(V), where V is an inflator associated with 

some m'-partition II' of n'. Then II' = II. 
(ix) Suppose that N is in .;({ n(C)' Then NG(U) = G(U)N = 0 if and only 

if N = A xx U for some A in .;({ ".(C). 

Proof. Properties (i) and (ii) follow immediately from Lemma 2.2.2. 
Properties (iii)-(v) are in Lemma 5.5 of [2]. Since G(U) is idempotent, its 
minimal polynomial has linear factors . Thus G(U) is similar to a diagonal 
matrix; hence (vi) holds. Properties (vii) and (viii) are Lemma 4.16 of [2]. 
Property (ix) is Lemma 4.23 of [2]. • 
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REMARK. If n = 1, then G(U) = [1], which is an idempotent, irreducible, 
nonsingular M-martix. 

LEMMA 2.3.3. Let G be in Jt n(~)' Suppose that G = (fJ i':IGi' where 
the submatrices Gi are idempotent, singular, irreducible M-matrices. Then 
there exists an m-partition II of n which is unique up to a permutation of the 
partition set labels, and there exists a unique, normalized inflator U associ­
ated with II such that G = G(U) and such that G i = G(U)(i.i ) for 1 ~ i ~ m. 

Proof. See [2, Lemma 5.5]. • 
2.4. Inflation Sequences and Complete Sets of Projectors 

It will be necessary to distinguish between sets of matrices and sequences 
of matrices. Consequently the follOwing notation is adopted: 

NOTATION. The script letters Iff and Y; will always be sets of matrices, 
usually sets of projectors. If Iff has k elements, then they will be routinely 
labeled as Ei for 1 ~ i ~ k. The notation {UJ:=I will always denote a 
sequence of matrices, usually inflators. By convention, every set of k matrices 
will have k pairwise distinct elements. 

Let no, n I, n2 ,···, nk be a sequence of integers such that no = 0 and 
1 = n i < n2 < ... < n k = n. For 1 < i ~ k, let Pi-I,i be an ni_I-partition of 
n i• Let UI = [0], the 1 X 1 zero matrix. For 1 < i ~ k , let Ui be an inflator 
associated with Pi-I,i' The sequence {Ui}:=1 is called an inflation sequence. 
If each of the inflators Ui is normalized for 1 < i ~ k, then the sequence is 
called a normalized inflation sequence. 

LEMMA 2.4.1. Let {UJ: - 1 be an inflation sequence. For h with 1 ~ 
h~k, let Wh=UhXX .. · XX Uk' and let Th=G(Uh)XXUh+IXX'" xx 
Uk' Then W h is a strictly positive matrix for h ~ 2, and the diagonal entries 
of T h are nonnegative for each h. Further, for h < k, the matrix Th has 
nonnegative diagonal blocks when given the partition of Wh + l' hence also 
when given the partition of Uk' since the partition of Uk subdivides that of 
Wh + I · 

Proof. Since ll; is strictly positive for i ~ 2, Wh is strictly positive for 
h ~ 2. By Lemma 2.3.2, G(Uh ) has a nonnegative diagonal for each h. If 
h = k, then the result for Th is clear. If h < k, then Th = G(Uh)xx Wh+l' 
Since the diagonal entries of G(Uh ) are nonnegative, and since W h + 1 is 
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strictly positive, Th has nonnegative diagonal blocks in the block partition of 
Wh + 1• Clearly, Th has a nonnegative diagonal. • 

Let Iff be a set of k pairwise distinct matrices in vi! n(C), where n:;,. k. 
Label the elements of Iff as Ej for 1 ~ i ~ k. The set Iff is a set of projectors if 

(i) E j *- 0 for 1 ~ i ~ k, 
(ii) EjE j = 8jjE j for 1 ~ i, j ~ k. 

If Iff is a set of projectors, each matrix E j is a projector. The set Iff is a 
complete set of projectors if in addition to satisfying conditions (i) and (ii), 

If E is a projector, then fix(E) will denote the range of E. That is, fix(E) 
is the subspace upon which E acts as the identity. 

LEMMA 2.4.2. Let A be in vi! n(C). Suppose that A is diagonalizable and 
that the distinct eigenvalues of A are AI' A2 , ••• , Ak. Then there is a complete 
set of projectors Iff = {Ej: 1 ~ i ~ k} such that A has spectral decomposition 
given by (1.1). Conversely, if A can be expressed as in (1.1) where the Aj are 
distinct complex numbers and where {Ej: 1 ~ i ~ k} is a complete set of 
projectors, then A is diagonalizable and the eigenvalues of A are precisely 
the Aj • 

Proof. This is a standard result. See [3, Vol. I, p. 41]. • 
NOTATION. If {(1;}~- 1 is an inflation sequence, we will adopt the 

convention that G«(1;) XX (1;+1 XX ... XX Uk = G(Uk) when i = k. For 
1 ~ i ~ k, let E j = G«(1;) xx (1;+1 XX ... XX Uk. Let Iff denote the set Iff = 

{Ej:1 ~ i ~ k}. 

LEMMA 2.4.3. Let {(1;}~=1 be an inflation sequence. For 1 ~ i ~ k, the 
n X n matrix E j in Iff is an idempotent matrix of rank nj - n j - l . Further, 
E j E j = 0 whenever i *- j. Consequently Iff is a complete set of projectors. 

Proof. Since inflation is associative by Theorem 2.1.2, and since the 
inflation product of inflators is an inflator by Theorem 2.2.3, it follows that 
E j = G«(1;) xx [(1;+1 XX ... XX Uk] is an idempotent matrix with the given 
rank by Lemmas 2.2.2(iv) and 2.3.2(iv). 
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Without loss of generality suppose that i < j. Let F; = C(U;) XX 

ll;+lXX ... XXUj _1. If j<k, let W=Uj + 1 xx ... xx Uk' Then E;= 
F; xx Uj xx W, and E j = C(Uj)XX W. If j = k, then suppress the symbols 
" xx W" in the following arguments. By Theorem 2.2.3, W is an inflator; 
hence by Lemma 2.2.2(ii), E;Ej = [(F; xx Uj)C(Uj )] xx W. By Lemma 
2.3.2(ix), (F; xx Uj)C(Uj ) = O. Consequently, E;E j = O. A similar argument 
shows that E jE; = O. Since the elements of C are pairwise orthogonal 
idempotents, the rank of their sum is the sum of their ranks. Since the 
sequence of ranks is a telescoping sequence, the rank of the sum is nk - no = 

n. Since the sum of pairwise orthogonal idempotents is an idempotent, the 
sum in the statement of the corollary is an n X n idempotent of rank n. 
There is only one such matrix: In' • 

A complete set of projectors C is called a complete set of inflation-gener­
ated projectors if there exists an inflation sequence {Up}; = 1 such that 
C = {C(Up ) xx Up + 1 xx ... xx Uk: 1 ~ P ~ k}. Note that if the elements of 
C are labeled a priori as E; for 1 ~ i ~ k, this does not imply E; = C(ll;) xx 
ll; + 1 XX ... XX Uk for any value of i. Rather, it implies that there exists a 
permutation a on the set {I, 2, ... , k} such that Eo(;) = C(ll;) xx ... xx Uk 
for all i. 

THEOREM 2.4.4. Let C be a complete set of inflation-generated projec­
tors. Then there is a normalized inflation sequence for c. 

Proof The principal steps in the proof consist of iteratively constructing 
a normalized inflation sequence from the original inflation sequence, and 
then verifying that the normalized inflation sequence generates the same set 
of projectors as the original sequence does. The verification that the sets of 
projectors are the same is straightforward, and the full details of the proof are 
in [7]. 

Suppose that u is an inflator with respect to a partition II with 
generating pair u and U. Since u and u are strictly nonzero vectors, there 
exist m unique, positive numbers A; which satisfy 

for 1 ~ i ~ m. Let D(U) be the nonsingular, m X m diagonal matrix 
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D( U) is called the normalizer of U. Let V be the matrix defined by 

V is called the normalization of U. It is a straightfolWard computation to 
verify that V is an inflator such that G(V) = G(U); and that ifAxx U is 
defined, then A xx U= [D(U)]A[D(U)]-I XX V. 

Suppose that {U;} 7-1 is an inflation sequence which is not a normalized 
inflation sequence. The following algorithm constructs the desired normalized 
inflation sequence {V; }7-1: 

(1) Let D(kl be the normalizer of Uk' 
(2) Let Vk be the normalization of Uk' 
(3) For i = k - 1, k - 2, ... ,2, let DOl be the normalizer of the matrix 

D(i+llU;[ D(i+ll] -1. 

(4) For i = k - 1, k - 2, ... ,2, let V; be the normalization of the matrix 
D(i+IlU;[DO+Il] -1. 

(5) Let VI = U1, the 1 X 1 zero matrix. • 

LEMMA 2.4.5. Let <ff be a complete set of n X n inflation-generated 
projectors. Let {U;} 7= 1 be an inflation sequence for <ff. Let a and f3 be 
fixed indices with 1 ~ a, f3 ~ n. Then there exists a unique sequence 
of entries {u j } 7 ~ 1 with U j from U; for each i such that for every E in 
<ff, Ea/3 can be expressed in terms of the u j • In particular, if E = G(Uh ) xx 
Uh + 1 xx ... xx Uk' then 

if Ea/3 > 0, 

if Ea/3 = 0, 

if Ea/3 < O. 

Proof. The existence and uniqueness of the sequence {u;} 7 ~ 1 is a 
consequence of the definition of inflation and of the construction of <ff from 
{U; }7~I' Since Uh xx ... xx Uk is strictly positive, and since the structure of 
G(Uh ) is given by Lemma 2.3.2, the structure of Ea/3 is as specified. • 

2.5. The Compression Theorem 
A natural operation on a set of projectors is that of compression, the 

summation of several projectors into a single, higher-rank projector. 
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LEMMA 2.5.1. Let p be a positive integer with n ~ p. Let Q be an 
n-partition of p given as in the statement of Theorem 2.1.2. Let r be the 
m-partition of p derived from II and Q as given in Theorem 2.1.2. Let U in 
JI{ n, n(C) be an inflator associated with II. Let V in JI{ p, p(C) be an inflator 
associated with Q. Let W = U xx V with respect to Q. Then the inflator W 
satisfies: 

(i) G(W) = G(U)XX V + G(V), 
(ii) rank[G(W)] = rank[G(U)] +rank[G(V)]. 

Proof of (ii). From Theorem 2.2.3, W is an inflator associated with an 
m-partition of p. By Lemma 2.3.2, rank[G(W)] = p - m, rank[G(U)] = 

n - m, and rank[G(V)] = p - n . • 

Proof of (i). Throughout, the notation from Theorem 2.2.3 will be 
adopted. Thus the partition II for U is expressed in terms of sets Bi , the 
partition r for V is expressed in terms of sets Ci , and the partition Q for W 
is expressed in terms of sets Di (with d i = ID;/ for each i). Blocks with respect 
to Q will be denoted by < , ), while blocks with respect to r will be denoted 
by < ' ) *. Let u and 12 be a generating pair for U; v and t3 for V; and w 
and w for W. ObseIVe that 

[G(W)](i'i ) ={~ -W 
d; (i, i ) 

if iofoj, 
if i = j , 

Since the block partitioning of V subpartitions the block partitioning of W, 
and since [G(V)](i.i)* = 0 if i ofo j, 

(2.5,2) 
if iofoj, 

if i = j. 

Additionally, [G(U) xx Vj ( i. i ) subpartitions into blocks of the form 

for each a in Bi and each f3 in Bj' Since G(U)aP = 0 unless i = j, 

[G(U) xx V] (i,i ) = 0 
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Thus, in proving (i), it suffices to show that for 1 ~ i ~ m, 

[G(W)] ( i.i ) = [G(U) xx V] ( i.i ) + [G(V)] ( i . i )' 

Fix i. Subpartition the ( i, i ) block into ( r, s) * blocks where 1 ~ r , s ~ I BJ It 
suffices to prove that for each rand s, 

(2.5.3) [G(W)] (r. s)" = [G(U) xx V] (r, s)" + [G(V)] (r , s)*' 

First, suppose that r = s. Since W = WI [ tV l, Equation (2.5.2) becomes 

Thus 

The (r, r)* subblock of [G(U) xx Vl is 

Finally, the (r, r ) * subblock of G( V) is 

[G(V)] (r,r)" = lb, - V(r,r)"' 

Clearly, (2.5.3) holds when r = s. 
Suppose that r =1= s. Note that G(V)(r,s)" = 0 is immediate from the 

definition of G(V). Since r =1= s, the ( r, s)* subblock is an off-cliagonal 
subblock. Thus 

The (r, s)* subblock of G(U) XX V is 

Thus (2.5.3) holds when r =1= s. • 
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THEOREM 2.5.4 (The compression theorem). Let ~ be a complete set of 
inflation-generated projectors with k = I~I > 3. Let {O; }7=1 be an inflation 
sequence for ~. Label the elements of ~ so that Ei = G(O;) xx ... xx Uk 
for each i. Suppose that j satisfies 2 < j < k -1. Let ~'= (~" {Ej' Ej+d) 
U{Ej+Ej+d. Then~' is a complete set of inflation-generated projectors 
with inflation sequence {V;} 7': t, where 

r if i < j, 

V;= ~XXUj+1 if i = j, 

0;+1 if i> j. 

Finally, 

Proof. Clearly Iff' is a complete set of projectors. By Lemma 2.5.1, Vj is 
an inflator associated with a k-partition of m, where k is the block order of 
Uj and m is the order of Uj +1. Since Vj_1 = Uj_1, the order of Vj- 1 is k. 
Since Vj + 1 = Uj + 2' the block order of Vj + 1 is m. Thus {V;} 7': t is an inflation 
sequence. By the associativity of XX, Ei = G(V;) xx V;+ 1 XX ... XX Vk- 1 
for i<j, and E;+l=G(V;)XXV;+lXX'" XXVk_1 for i>j. Finally, by 
Lemma 2.5.1, 

The rank statement is a consequence of the pairwise orthogonality of the Ei 
fu~ • 

2.6. Inflation-Generated Matrices 
The matrix A in .4t n n(C) is called an inflation-generated matrix if A can 

be expressed as in (1.1) 'such that the set {Ei: 1 < i < k} is inflation-gener­
ated. 

THEOREM 2.6.1. Let A be an n X n ZME-matrix with distinct eigenval­
ues a1' a 2 ,.·., ak' Then the eigenvalues of A are real, and without loss of 
generality, a1 < a 2 < ... < ak' The eigenvalue a1 is simple with la11 < a2• 

Further, 

(i) a1 = - a2 if and only if A is a ZMO-matrix, 
(ii) a1> - a2 if and only if A is a ZMA-matrix, 
(iii) 0 < a1 if and only if A is an MMA-matrix . 
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Proof. See [2, Lemma 3.1; Theorems 3.6., 3.7, 3.9.]. • 
THEOREM 2.6.2. Let A be a ZM-matrix. If some positive power of A is 

irreducible, and some other positive power is reducible, then A is a ZMO­
matrix. If some positive, even power of A is irreducible, then A is a ZMA­
matrix . If some positive, odd power of A is an M-matrix, and if some positive 
power of A is irreducible, then A is an MMA-matrix. 

Proof. See [2, Theorems 3.6,3.7,3.9]. • 
THEOREM 2.6.3 (The inflation theorem). Let k ~ n be positive integers 

with n ~ 2. Let A be in vii n(ll~). Let Ap be in IR for 1 ~ p ~ k such that 
Al < A 2 < . .. < A k and I A 11 ~ A 2' Then the following are equivalent: 

(i) A is a ZME-matrix with distinct eigenvalues AI' A2"'" Ak; 
(ii) there exist uniquely: a sequence of integers np for 1 ~ p ~ k such 

that 1 = n 1 < ... < nk = n, a sequence of np_rpartitions Pnp _ l.np of np for 
2 ~ p ~ k, and a sequence of normalized inflators Up associated with Pnp _1,n

p 

for 2 ~ p ~ k, such that A can be expressed as in (1.1), where Ei = G(U;) xx 
0;+1 XX , .. XX Uk for 1 ~ i ~ k. 

Proof. See [2, Theorem 6.18, Corollary 6.25]. • 
COROLLARY 2.6.4. Suppose that condition (ii) of Theorem 2.6.3 holds. 

Let If be the set {Ep: 1 ~ p ~ k} whose elements are defined as in Theorem 
2.6.3. Then If is a complete set of projectors, and (1.1) is the spectral 
decomposition for A, 

Proof. See [2, Corollary 6.25]. • 
If the sequence {Up };_2 is associated with a ZME-matrix A through 

Theorem 2,6.3, then {Up };-l is called an inflation sequence for A. Note that 
by Theorem 2.6.3, every ZME-matrix has a nonnalized inflation sequence. 

LEMMA 2.6.5. Let c be a fixed, positive, real number. For each real 
number £ with c>£>O, let {a 1(£),a 2(£)" .. ,ak(£)} be a set ofk distinct 
real numbers such that la1(£)1 ~ ai(£) for i ~ 2. For each £, define the matrix 
A(£) by 

k 

A(£) = L ai(£)E j • 

i -1 
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Suppose that lim (~o. 0:;(£) = 0:; for each i, and that 0:1 < 0:; for i ~ 2. Let 
A = L:7_ 10:;E;. If A(£) is a ZME-matrix for all £ with c> £ > 0, then A is a 
ZME-matrix. 

Proof. Since A = lim(~o' A(£), it follows that An = lim(~o' [A(£W for 
all positive intengers n. Since the limit of a sequence of Z-matrices is a 
Z-matrix, it follows that An is a Z-matrix for all positive integers n. Thus A is 
a ZM-matrix. For each £ with c > £ > 0, the ZME-matrix A( £) has simple, 
minimal eigenvalue 0:1(£), Consequently, El must be the unique strictly 
positive element of t! and El is of rank one. Thus E 1, and hence A, has 
strictly positive row and column eigenvectors. Noting that the Z-matrix A 
can be expressed as sI - B for some real number s and some nonnegative 
matrix B, it follows that B has strictly positive row and column eigenvectors. 
Since 0:1 = s - p(B), where p(B) is the spectral radius of B, the simplicity of 
0:1 implies the simplicity of p(B) in the spectrum of B. By Corollary 3.3.15 of 
[1, p. 42], B is irreducible. Thus A is an irreducible ZM-matrix. Now apply 
Theorem 2.6.2. • 

2.7. An Example 
The following is an example of an inflation sequence and a complete set 

of inflation-generated projectors for a ZME-matrix. 
Let II 2 = {{1,2}}. Let II3= {{1,2},{3}}. Let II4= {{1},{2},{3,4}}. 

Let {Up}: = 1 be the follOwing normalized inflation sequence corresponding to 
this sequence of partitions: 

U1 = [0], 

1 [ 2 
U2 = 3" 12 ~l 

u ~~r : 1 

121 1 ~' 3 2 
12 12 

2 2 12 12 
1 .2 2 12 12 U4 =-
2 12 12 1 1 

12 12 1 1 
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The corresponding projectors are 

r 2 

2 /2 

~1 1 2 2 /2 /2 
El = G(Ul ) XX U2 XX U3 XX U4 = 6" /2 

/2 1 1 ' 

/2 /2 1 1 

r 1 

1 -/2 -~1 1 1 1 -/2 -/2 
E2 = G(U2) XX U3 XX U4 = - . /2 

6 - 2 -/2 2 2 ' 

-/2 -/2 2 2 

[ 1 
-1 0 n 1 -1 1 ° E 3 =G(U3 )XXU4 =2" g 0 0 

0 ° 
[0 

0 ° -H 1 0 0 0 E =G(U) =-
4 4 2 0 0 1 

0 0 -1 

The set {E p : 1 ~ p ~ 4} is a complete set of inflation-generated projectors. 
Let aI' a2, a 3 , and a 4 be distinct real numbers with a l < a2 < a3 < a 4 and 
lall ~ a2· Then A = L!~lapEp is a ZME-matrix. As a particular example, 

r 

7 
1 -5 

A = OE I +3E2 +6E3 +8E4 = - In 
2 -y2 

-/2 

-5 
7 

-/2 
-/2 

is a singular MMA-matrix with spectrum {O,3,6,8}. 

2.8. Decomposition 

-/2 
-/2 

lO 

-6 

-/21 -/2 
-6 

lO 

• 

In this section, it is shown that a complete set of inflation-generated 
projectors has an inflation-generated refinement consisting of rank-one pro­
jectors. 
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LEMMA 2.8.1. Suppose that {U;}7=I is an inflation sequence with 
corresponding complete set of inflation-generated projectors y;. Suppose that 
for some j, G(Vj ) has rank r with r ~ 2. Then there exist inflators VI' V2 ,···, Vr 
such that Vj = VI XX V2 XX ... XX Vr, and such that G(V;) is rank one for 
each i. Let {W; }7:r- I be the sequence such that 

if 1 ~ i < j, 

if j ~ i < j + r, 
if j + r ~ i ~ k + r - 1. 

Then {W}7.:r- I is an inflation sequence. Further, the corresponding com­
plete set· of inflation-generated projectors is 

Proof. This follows from Theorem 5.2 of [8] once it has been shown that 
the V; are strictly positive. Since Vj is strictly positive, it follows that Vj has a 
generating pair of strictly positive vectors. By examining the proof of 
Theorem 4.1 of [8], it follows that the inflators VI' V2 , ••• , Vr are strictly 
positive. • 

Let y; be a complete set of projectors with IY;I = m. Let tf be a 
complete set of projectors with Itfl = n. Suppose that 

Y; = { . L Ei : 1 ~ i ~ m} , 
'EBj 

where the elements of tf are labeled as E I , E2, ... , En and where the sets 
BI , B2 , ... , Bm form an m-partition of n. Then tf is called a refinement of Y;. 
Further, if each element of tf is a rank-one projector, then tf is called a 
rank-one refinement of Y;. 

THEOREM 2.8.2 (The decomposition theorem). Let Y; be a complete set 
of n X n inflation-generated projectors with Iffl = m. Then there exists a 
complete set of inflation-generated projectors tf which is a rank-one refine­
ment ofY;. 

Proof. If n = m, let tf = Y;. If m < n, then this follows from repeated 
applications of Lemma 2.8.1 to the set Y;. • 
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2.9. The Original Slide-Around Theorem 
The following theorme is the first of several theorems which discuss how 

perturbation of the eigenvalues of a ZME-matrix affects the property of being 
aZME-matrix. 

THEOREM 2.9.1 (The original slide-around theorem). Let A be in vi{ n{lR). 
Suppose that A is a ZME-matrix with distinct eigenvalues aI' a2, ... , ak such 
that a 1 < a2 < ... < ak and la11,:;; a2. Suppose that A has spectral decom­
position given by (1.1). Let /31,/32, ... ,/3k be real numbers satisfying /3 1 < 
/32 < ... < /3k and 1/311':;; /32' Let B = r,;= l/3pEp. Then: 

(i) B is a ZM().matrix if and only if /31 = - /32; 
(ii) B is a ZMA-matrix if and only if 1/311 < /32; 
(iii) B is an MMA-matrix if and only if 0,:;; /31' 

Proof. See [2, Corollary 6.28]. • 
It is important to observe that Theorems 2.6.3 and 2.9.1 do not rule out 

the possibility that there exist real numbers Y1' Y2"'" Yk which do not satisfy 
Y1 < Y2 < ... < Yk' but for which C = r,;_lYpEp is a ZME-matrix. Indeed, in 
the example of the preceding subsection, A is still a ZME-matrix when 
a2 ':;; a 4 ':;; a 3 • 

3. THE COMBINATORIAL PARTIAL ORDER ~. 

Let E and F be in vi{ n{lR). Denote the entries of E by epq and the 
entries of F by ~q' The matrices E and F are comparable (with respect 
to -<), denoted by E -< F, if there exist indices i and j such that eij > 0 and 
hj < O. Define E and F to be noncomparable (with respect to -<), denoted 
E and F -<-NC, if eijhj ~ 0 for all i and j . Clearly E and Fare -<-NC if 
and only if neither of E -< F and F -< E hold. Finally, E ~ F means one of 
E = F and E -<F holds. 

EXAMPLE. Let 

E=[~ -n and 

Then E -< F and F -< E both hold. 
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Let a be in IR. Define sign a by 

signa = { ~ 
-1 

if a> 0, 
if a = 0, 
if a < O. 

If A is in .A n(lR) and sign a ij = sign a u for 1 ~ i, j ~ n, then define sign A 
to be sign au' 

LEMMA 3.1. Let E and F be in .A m(IR). Let U be an inflator associated 
with an m-partition Pm, n of n for some n ~ m with n ~ 2. Then: 

(i) E -< F if and only if (E xx U) -< (F xx U), and 
(ii) E arul Fare -<-NC if and only if (E xx U) arul (F xx U) are 

-<-NC. 

Proof of (i). Since U is an inflator with n ~ 2, U is strictly positive. Thus 
for each i and j, signU(i, j ) = 1. Then for each a in IR, sign(aU(i,j» = signa. 
In particular, eij > 0 if and only if sign(eip(i, j» = 1, and J;j < 0 if and only 
if signUp(i, j» = ..:..1. Clearly E -< F implies E xx U -< F xx U. Conversely 
E x x U -< F xx U. implies there are indices rand s such that (E xx U)rs > 0 
and (F xx U)rs < O. Then there are indices i and j such that the rs entry is 
in the i , j block of the partition induced by Pm, n' Thus sign( eip(i, j) = 
sign«E xx U)rs) = 1. Similarly, sign(J;p(i,j» = -1. Thus E -< F. • 

Proof of (U). This is a consequence of (i): The matrices E and Fare 
-< -NC precisely when neither E -< F nor F -< E holds. The matrices E xx U 
and F xx U are -<-NC precisely when neither E xx U -< F x x U nor F xx 
U -< E xx U holds. Now use (i). • 

Let Iff be a complete set of inflation-generated projectors with Ilffl = k. 
Let {£.O ~ -1 be an inflation sequence for Iff. Suppose that E = 

G(Ur)XX ... x x Uk and that F = G(Us) X X .. . xx Uk' If r < s, then E 
arises before F (for the given inflation sequence). If E arises before F for 
every inflation sequence for Iff, then E precedes F. 

Let A be in .A n(IR), and denote the entries of A by air The support of 
A, denoted supp( A), is the subset of indices supp( A) = {( i, j) : a i j =1= O}. The 
positive support of A, denoted possupp(A), is the subset {(i, j): a ij > O}. 
The negative support of A, denoted negsupp(A), is the subset {(i, j): 
a ij < O}. Two matrices A and B in .A n(lR) have nonoverlapping supports if 
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supp(A)nsupp(B) =0. Equivalently, A and B have nonoverlapping sup­
ports if and only if aijbij = 0 for all i and j. 

Let ge be a binary relation on a nonempty set S. The relation R is 
weakly transitive on S if, for all x, y, and z in S, xRy and yRz together 
imply either xRz or else x and z are noncom parable with respect to R. 

THEOREM 3.2. Let g be a complete set of inflation-generated projectors. 
Let E and F be in g. Then the following hold: 

(i) E -< F implies E precedes F, 
(ii) -< is an antisymmetric and weakly transitive relation on g, 
(iji) E and Fare -< -NC if and only if E and F have nonoverlapping 

supports. 

Proof of (i). Suppose E -< F. Assume that E does not precede F. Since 
clearly E * F, there is an inflation sequence for g for which F arises before 
E. Let {U; } ~ ~ 1 be such a sequence. Then there exist rand s with 1 ~ s < r ~ k 
such that E = G(Ur)xx ... xx Uk and F = G(U.)xx ... xx Uk' Since 
E -< F, there are indices i and j such that eij > 0 and hj < O. By Lemma 
2.4.1, hj cannot be a diagonal entry of F, hence i * j. Since eij > 0 and 
i * j, E cannot be an M-matrix. Since G(Uk ) is an M-matrix by Lemma 
2.3.2, r * k. So s < r < k. Let W = Ur+1 xx ... xx Uk' Then E = G(Ur) xx 
W and F = G(U.) xx ... xx Ur xx W. By Lemma 3.1, E -< F implies 
G(Ur) -< G(U.) xx ... xx Ur. Then there exist indices p and q such that 
[G(Ur)lpq> 0 and [G(U.)xx ... xx Url pq < O. Since G(Ur) is an M-matrix 
by Lemma 2.3.2, p=q. Then [G(U.)xx .. · XXUrlpp<O, contradicting 
Lemma 2.4.1. • 

Proof of (ii). Suppose that E and F are in g and that E -< F. By (i), E 
must precede F. Assume that F -< E also holds. Then by (i), F must precede 
E, a contradiction. Thus -< is antisymmetric. 

Suppose that E, F, and H are in g and that both E -< F and F -< H 
hold. By (i), E precedes F, and F precedes H, so E precedes H. By (i), 
H -< E cannot hold. Thus either E -< H or else E and Hare -< -NC. • 

Proof of (iii). Suppose that E * F. Clearly, if E and F have nonoverlap­
ping supports, then E and F are -<-NC. Conversely, suppose that E and 
F have overlapping supports. Choose an inflation sequence for g. Then 
there are indices r and s such that E = G(U,) xx .. . xx Uk and F = 
G(U.) xx ... X Uk' Since E * F, r * s. Without loss of generality, r < s. Let 
W=U.+1XX ... XX Uk' let E=G(Ur)XX ... xxU., and let F=G(U.). 
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Then E = E xx Wand F = F xx W. (Delete W if s = k.) Assume that E 
and Fare -<-NC. Then E and F are -<-NC by Lemma 3.l. Let i and j be 
i!1dices such that eijij =1= O. Then eijij > O. Since the nonzero entries of 
F = G(Us) must be in the nontrivial diagonal blocks, there is a partition 
subset Ba belonging to the natural partition of Us such that Ba contains at 
least two elements ~d such that i j is in F(a,a)' Let J.L and v be in Ba such 
~at J.L =1= v. Then 1;.v < 0 by Lemma 2.3.2. Since eij and el'v are entries of 
E(a,a) = [G(UT)XX ... xx Us-daa[U.l(a,a) and since eij > 0, it follows that 
el'v> O. Thus el'v£v < 0, so E -< F, a contradiction. • 

There exist complete sets of inflation-generated projectors on which -< is 
not transitive; thus conclusion (ii) of the preceding theorem cannot be 
strengthened without further hypotheses. The following example of such a set 
is minimal both with respect to the order of the projectors and to the 
cardinality of set. 

EXAMPLE 3.3 (Nontransitivity of -<). Let {U;}~_l be the normalized 
inflation sequence 

1 
U =-

4 2 

1 
Us=-

2 

1 

1 

12 
1 

1 

2 

2 

2 

2 

12 
12 

1 12 
1 12 

12 2 

1 12 
1 12 

2 2 

2 2 

2 2 

2 2 

12 12 
12 12 

1 1 

1 1 

12 12 
1 1 

1 1 

2 12 
2 12 
2 12 
2 12 

12 1 

12 1 

1 

1 

12 

12 
12 
12 
12 
1 
1 

Let Iff = {Ei: 1 ~ i ~ 5} be the complete set of projectors generated by the 
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inflators such that Ei corresponds to V; for each i. Then 

1 1 /2 /2 1 1 

1 1 /2 /2 1 1 
1 /2 /2 2 2 /2 /2 

E1 =8 /2 /2 2 2 /2 /2' 
1 1 /2 /2 1 1 

1 1 /2 /2 1 1 

1 1 /2 -/2 -1 -1 

1 1 /2 -/2 -1 -1 
1 /2 /2 2 -2 -/2 -/2 

E2=-
8 -/2 -/2 -2 2 /2 /2 

-1 -1 -/2 -/2 1 1 

-1 -1 -/2 /2 1 1 

E,~ ± [ : 1 ~J21 [0 0 n 1 -~ ffi ~ 0 

-/2 -/2 0 

E. ~ ~[ ~~ -2 gH~~ -/2 ~J21 2 1 1 , 
4 0 0 o -/2 1 1 

E,~ ~l g 0 

~H~ 
0 ~n 0 1 

2 0 0 -1 

Notice that E1 -< E2 -< E4 -< E5 and El -< E2 -< E3 -< E4, but that E3 -< E5 
fails to hold. 

By Theorem 3.2, ~ is a weakly transitive partial order on complete sets 
of inflation-generated projectors. It remains to produce a true partial order on 
complete sets of inflation-generated projectors. This will be done by taking 
the transitive closure of ~. 

Let g be a complete set of inflation-generated projectors. Define -<. on g 
as follows: For each E and F in g, E -<. F in g if at least one of the 
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following holds: 

(I) E-< F, or 
(2) There is a positive integer r and elements HI' H2 , .•• , Hr in C such 

that E-<HI' Hl-<H2, ... ,Hr_I-<Hr, and Hr-<F. 

Define E~· F in C to mean that one of E = F and E -<. F in C holds. 

LEMMA 3.4. Let C be a camplete set of inflation-generated projectors. 
Then for all E and F in C: 

(i) E -<. F implies E precedes F; 
(ii) ~. is the transitive closure of ~ on C; 
(iii) ~. is a partial order on C. 

Proof. The proof of (i) is immediate from the definition of -<. and 
Theorem 3.2. The proof of (ii) is immediate from the fact that condition (2) 
of the preceding definition says that -<. is the transitive closure of -<. To 
prove (iii), it is sufficient to show that ~. is transitive, reflexive, and 
antisymmetric on C. Transitivity and reflexivity on C are clear. Suppose that 
E~· F and F~· E hold for some E and F in C. Assume that E oF F. By (ii), 
E precedes F, and F precedes E. This is clearly a contradiction. Thus ~. is 
antisymmetric on C. • 

LEMMA 3.5. Let {U;} 7-1 be an inflation sequence with k ~ 2. Let C be 
the camplete set of inflation-generated projectors given by C = {Ei: Ei = 
G(U;)XX ... xx Uk for I ~ i ~ k}. Suppose that for same t ~ 2, Ut has a 
unique, nontrivial, diagonal block. Then Ei -< Et implies supp(Et) is con­
tained in possupp(E;). 

Proof. Since E; -< Ep it follows from Theorem 3.2 that i < t. Let 
F = G(Ui) xx ... xx Ut and let F' = G(~). If t < k, let W = 
~+ 1 XX ... XX Uk' Then by Lemma 3.2, F -< F'. Let a be the index of the 
unique nontrivial block of F'. Then F' is the direct sum of the strictly 
nonzero matrix I - (~) (a,a) and as many I X I zero matrices as are necessary 
for the sum to be of the order of F'. Since F -< F', it follows that F(a,a ) must 
contain a positive entry. Since F(a,a) = [G(lJ;) xx ... xXUt+llaa(~)(a,a)' 
and since ~ is strictly positive, it follows that F(a,a) is strictly positive. Thus 
the support of F' is contained in the positive support of F. Since W is strictly 
positive, the desired result holds. • 

The following result provides sufficient conditions for when -< is itself 
transitive. 
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THEOREM 3.6. Let {U;} ~ = I be an inflation sequence with k > 2. Let if 
be the complete set of inflation-generated projectors given by if = {Ej: E j = 
G(U;) xx ... xx Uk for 1 ~ i ~ k}. Suppose that U; has a unique, rwntriv­
wI, diagonal block for each i with 2 ~ i ~ k. Then for all a and {3, Ea -< Ep 
if and only if Ea -<. Ep in if. 

Proof. Suppose that a * {3. Clearly Ea -< Ep implies Ea -<. Ep. Suppose 
that Ea -<. Ep. Assume that Ea -< Ep does not hold. Since EI is strictly 
positive, and hence EI -< E j for each i > 2, it follows that a> 2. Since Ea and 
Ep are -<-NC but Ea -<. Ep, there exist integers io = a, i l , .. ·, in-I' iN = {3 
such that Ea -< E

j1 
-< ... -< E

jn
_

1 
-< Ep. By Theorem 3.2, a < i l < ... < 

in < {3. Since io = a):. 2, U; has a unique nontrivial diagonal block for each j 
with 0 ~ j ~ n. Applying Lemma 3.5 to each pair in the sequence, 
supp(E

jJ
+) ~ supp(Ej ) for 0 ~ j < n. Since set containment is transitive, the 

support of Ea contains the support of Ep. This contradicts Theorem 3.2. 
Thus Ea -< Ep. • 

THEOREM 3.7. Let k ):. 2. Let if be a complete set of inflation-generated 
projectors with lifl = k. Then if has two distinguished elements EI and E2 
such that: 

(i) E 1 is the unique strictly positive element of if, 
(ii) E2 is the unique element of if" {Ed which has rw zero entries. 

Further, El and E2 satisfy 

for each H in if" {Ed, 

for each H in if" {E1, E2 }. 

For every inflation sequence {U;} ~ -1 for if, 

EI = G(UI ) xx ... xx Uk' 

E2 = G(U2) XX ... XX Uk' 

Finally, the element EI is the unique minimal element of if both ~ and ~.; 
and the element E2 is the unique minimal element of if" {El} with respect 
to both ~ and ~'. 

Proof. First the existence of El is shown. Let {U;}~=I be any inflation 
sequence for iff. Since G(U1) xx ... xx Uk is in if and since G(UI ) = [1], 
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G(U1) xx ... XX Uk is strictly positive. Next, for i ;;. 2, G(U;) is an M-matrix 
which has at least one negative off-diagonal entry by Lemma 2.3.2 and the 
fact that nj < n j + 1 for each j in the partition sequence corresponding to the 
inflation sequence. Hence for i;;. 2, G(~) xx 0; + 1 XX . .. XX Uk has at 
least one negative entry. Thus iff has a unique strictly positive element, call it 
E 1, and El = G(U1) xx U2 XX ... xx Uk for every choice of inflation se­
quence. Since El is strictily positive and since every other element of iff has a 
negative entry, El -< H for every H in iff" {Ed. 

Now the existence of E2 is shown. Let {0;}7=1 be an inflation sequence 
for iff. From the definition of an inflation sequence, the partition correspond­
ing to U2 is a I-partition of n2 for some integer n2 ;;. 2. Thus by Lemma 2.3.2, 
G(U2 ) has no zero entries and it does have off-diagonal entries. Thus G(U2 ) is 
an M-matrix with a strictly positive diagonal. Suppose that i;;. 3. Then 
G(U2 ) xx U3 XX ... xx 0; has no zero entries. Further, as noted in Lemma 
2.4.1, G(U2 ) XX U3 XX ... XX Ut has nonnegative diagonal blocks in the 
partition of ~. Together, these results imply that G(U2 ) xx U3 xx ... xx 0; 
has strictly positive diagonal blocks in the partition of ~. From the definition 
of an inflation sequence, the partition corresponding to 0; contains at least 
two sets, and at least one of those sets contains more than a single element. 
Thus by Lemma 2.3.2, G(O;) is a block-diagonal matrix with at least two 
diagonal blocks, at least one of which is nontrivial. Consequently, G(~) has 
zero entries, hence G(O;) xx 0;+ 1 XX ... XX Uk has zero entries. Thus there 
is a unique element of iff" {El} which has no zero entries, call it E2. Since 
the inflation sequence used was chosen arbitrarily, it has been shown that 
E2 = G(U2 ) xx U3 xx ... xx Uk for every inflation sequence for iff. It re­
mains to check the ordering assertion. If k = 2, then the claim is trivially true, 
since iff = {E1, E2 }. Suppose that k> 2. From the above, G(~) is an 
M-matrix with a nontrivial diagonal block; hence it has a diagonal block with 
an off-diagonal negative entry. Also from the above, the diagonal block of 
G(U2 ) xx ... xx 0; is strictly positive. Thus G(U2 ) xx ... xx ~ -< G(~) 
for 3 ~ i ~ k. Then by Lemma 3.1, E2 -< H for every H in iff" {El' E2 }. • 

4. .fl/( iff) AND ~(iff) 

Corresponding to a partially ordered set and its order relation, there is a 
natural directed-graph structure. In this section, the necessary definitions and 
results from the theory of directed graphs are presented, and then the 
directed graph corresponding to the order ~. on a complete set iff of 
inflation-generated projectors is studied. It will be shown that a certain, much 
sparser graph, the directed covering graph (Hasse diagram), contains all of 



ZME-MATRICES 91 

the essential properties of the full graph, and that certain results concerning 
the structure of Iff are more effectively stated in terms of this sparser graph. 

CONVENTION 4.1. The term "graph" will mean a directed graph having 
no multiple directed edges and no loops. That is, a graph G consists of a 
finite set of nodes (called vertices by some authors) and a finite set of 
directed arcs (called directed edges by some authors) joining certain nodes. 
The graph G may have at most one arc from node i to node j for each 
ordered pair of nodes i and j. That is, G does not have multiple arcs as a 
directed graph. No arc may begin and end at the same node. That is, the 
graph G cannot have loops. 

CONVENTION 4.2. All terms which refer to collections of arcs will be 
understood to involve directed arcs unless otherwise explicitly stated. In 
particular, the term "cycle" will always mean a directed cycle. 

NOTATION. If G is a directed graph, i.e. a "graph", then UG will denote 
G considered as an undirected graph. It should be noted that although G 
cannot contain multiple directed arcs, UG may contain multiple undirected 
arcs (occurring in pairs). 

Let G be a graph. Let e be an arc in G. Suppose that e goes from node x 
to node y. Then e exits x and enters y. The node x is the initial node of e, 
and the node y is the terminal node of e. The arc e meets the nodes x and y. 
The arc e will be denoted (x, y). 

Let H be an undirected graph with no loops and no multiple arcs. If for 
each pair of distinct nodes x and y in H, there is a positive integer k and a 
sequence of pairwise distinct nodes x = Vo, . . . , v k = Y such that there is an 
undirected arc in H between V i - l and Vi for 1 ~ i ~ k, then H is connected. 
Let G be a graph. If UG is connected, then G is connected. 

Let H be an undirected graph. An undirected path P is a sequence of 
nodes vo,"" v k such that for 1 ~ i ~ k, there is an undirected arc between 
V i - l and Vi in H, and such that for i * j, Vi = Vj implies either i = 0 and 
j = k, or else i = k and j = O. (Some authors use the term "simple path.") If 
P is an undirected path in H for which k> 1 and Vo = Vk' then P is an 
undirected cycle. (Some authors use the terms "closed simple path" and 
"simple cycle".) 

Let G be a graph. A path is a sequence of nodes Vo,"" v k such that 
(Vi-I' Vi) is an arc for 1 ~ i ~ k, and such that Vi = Vj with i < j implies i = 0 
and j = k. The path arcs (for P) are the arcs (Vi-I' Vi) for 1 ~ i ~ k. If P is 
a path in G for which k > 1 and Vo = v k , then P is a cycle. A maximal path 
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is a path in G whose node set does not form a proper subset of the node set 
of any other path in G. 

It is apparent that every path is finite and that every path is contained in 
a maximal path. 

EXAMPLE. The graph G I has five maximal paths and three cycles. The 
maximal paths are Po = {3,4}, PI = {5,6, 7}, and Pi = {i, i + 1, i +2 (mod 
3)} for i=2,3,4. The cycles are Gi = {i,i+1,i+2,i+3 (mod 3)} for 
i = 0, 1,2. 

5 · 6 

Let x be a node of a graph G. The in degree of x , denoted d i( x), is the 
number of arcs entering node x. The outdegree of x, denoted do(x), is the 
number of arcs exiting node x. The node x is a maximal node if do(x) = O. 
The node x is a minimal node if d;(x) = O. 

Let (x, y) be an arc in a graph G. The arc (x, y) is a covering arc (in G) 
if there exists no node w (instinct from x and y) in G such that there is a 
path in G from x to y passing through w. The skeleton of G (called the 
covering subgraph by some authors) is the subgraph of G consisting of all of 
the nodes of G and all of the arcs of G which are covering arcs in G. If the 
graph G is its own skeleton, G is called a skeleton. 

EXAMPLE. The graph G I in the preceding example has skeleton 

2 

o 

LEMMA 4.3. Let G be a graph with at least one node. Suppose that G 
contains no cycles. Then: 

(i) G contains at least one minimal node and one maximal node. 
(ii) Every maximal path in G begins at a minimal node and ends at a 

maximal node. 
(iii) For every pair of distinct nodes x and y, at most one of the edges 

(x, y) and (y, x) is in G. 
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(iv) The covering arcs in G are precisely tlwse arcs which are path arcs 
for at least one maximal path in G. 

(v) The arc set for the skeleton ofG is the union of the path arcs sets for 
the maximal paths in G. 

Proof. These are standard results in the theory of directed graphs. Note 
that the hypotheses do not preclude the existence of undirected cycles. • 

Let G be a graph with at least two nodes. Suppose that there are two 
nodes x and y satisfying: 

(i) x. is a minimal node, 
(ii) (x, y) is the unique arc exiting node x, 
(iii) (x, y) is the unique arc entering node y, 
(iv) if w is a node distinct from x and y, then there is a path from y 

to w. 

Then G is called a tap-rooted graph. The node x is called the root of G. The 
node y is called the stem. 

LEMMA 4.4. Suppose that G is a tap-rooted graph. Then G has a unique 
root and a unique stem. 

Proof. Let x be a root and let y be a corresponding stem. Suppose that 
w is another root. Then by condition (iv), there is a path from y to w, 
contradicting the fact that w is a minimal node. Thus x is the unique root. 
Since x has outdegree one, y is uniquely determined. • 

EXAMPLE. The graph G2 is a tap-rooted graph with root x and stem y. 

z 

'9 x 

The transitive closure of a graph G is the graph obtained from G by 
adding all arcs of the form (x, y) such that x and y are distinct nodes of G 
and such that there is a path in G from x to y but such that (x, y) is not an 
arc of G. The graph G is transitively closed if whenever (x, y) and (y, z) are 
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arcs in G with x =1= z, the arc (x, z) is in G. (This is "essentially graph 
transitive" in [2].) 

LEMMA 4.5. The following properties hold for the transitive closure of a 
graph: 

(i) A graph contains no cycles if and only if its transitive closure 
contains no cycles. 

(ii) The transitive closure of the skeleton of a graph is the transitive 
closure of the graph. 

Proof. These are standard results from graph theory. • 
Let S be a finite, partially ordered set with a strict inequality order 

relation R. The comparability graph of S with respect to R is the graph 
whose nodes are bijectively mapped to the elements of S by a map a, and 
which has an arc from node i to node j precisely when a( i) R aU) holds. 
Note that the partial-order graph is transitively closed. Note also that some 
authors use "comparability graph" to mean the undirected comparability 
graph. 

NOTATION. Let tff be a complete set of inflation-generated projectors. 
The comparability graph of tff with respect to -<. is denoted by 2( tff). The 
skeleton subgraph of 2( tff) is denoted by ~(tff). It is often convenient to 
assume that the nodes of 2( tff) and of ~(tff) share a common numbering 
with the projectors in tff, so that node i corresponds to E; for each i. 

Let E and F be distinct elements of a complete set tff of inflation-gener­
ated projectors. Let V E and V F be the corresponding nodes of 2( tff). Then 
E -<. F if and only if (VE' VF) is an arc in 2( tff). 

LEMMA 4.6. Let tff be a complete set of inflation-generated projectors. 
The graphs 2(tff) and ~(tff) are connected and contain no directed cycles. 
Further, ·2(tff) is the transitive closure of ~(tff). 

Proof. By Theorem 3.7, tff contains an element El such that El -<·E for 
every E in tff '\. {El}. Let VI be the node of 2( tff) corresponding to E1• 

Then there is an arc from VI to every other node. Thus 2( tff) is connected, 
and further, there is a maximal path from VI to every other node; hence 
~(tff) is connected. 

The remaining properties follow from the preceding lemmas. • 
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Observe that .fe( tff) and ~(tff) are equivalent in the sense that they both 
carry a complete deSCription of the ordering -<. for tff. Since ~(tff) has fewer 
arcs than .fe( tff) when Itffl > 2, it is easier to work with ~(tff). Additionally, 
certain results (see Section 5) are more naturally expressed in terms of the 
structure of <§( Iff). 

LEMMA 4.7. Let tff be a complete set of k inflation-generated projectors 
with k ~ 2. Label the projectors as Ei for 1 ~ i ~ k, and label the nodes of 
.fe( tff) so that node Vi corresponds to Ei for each i. If (Vi' Vi) is a covering 
arc, then E; -< Ej' and there does not exist an index h such that Ei -<·Eh in 
and Eh -<. E j in tff. 

Proof. This is immediate from the definition of ~(tff) and -<.. • 

THEOREM 4.8. Let tff be a complete set of inflation-generated projectors 
with I Iff I ~ 2. Let the nodes VI and v2 correspond to the projectors EI and E2 

of Theorem 3.7. Then every maximal path in .fe( tff) begins with VI followed 
by V 2• Consequently, ~(tff) is a tap-rooted graph with root VI and stem v2• 

Proof. This a direct consequence of Theorem 3.7. • 
LEMMA 4.9. Let Iff be a complete set of inflation-generated projectors. 

For each pair of distinct nodes x and y, ~(tff) contains no undirected cycle 
arising from the arc (x, y) and a path from x to y. Further, u<§( tff) contains 
no undirected triangles. 

Proof. The nonexistence of such undirected cycles in ~(tff) follows from 
the definition of a skeleton. 

If <§( Iff) has at least one triangle when considered as an undirected graph, 
then ~(Iff) has a subgraph isomorhpic to either 

2 3 2'J.----+-----oloo 3 

Since ~(tff) contains no directed cycles, TI cannot occur. Since the arc (1,3) 
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is not a covering arc in T2, it cannot be a covering arc in :t'( g); thus T2 
cannot occur. • 

The preceding results indicate that if g is a complete set of inflation-gen­
erated projectors, then ~(g) is a connected, tap-rooted graph which contains 
neither directed cycles nor undirected cycles formed from a path and an arc. 
That is, ~(g) is a connected, tap-rooted skeleton which has no cycles. A 
natural question is whether the converse holds: If G is a connected, tap-rooted 
skeleton which contains no cycles, does there exist a complete set g of 
inflation-generated projectors such that G = ~(g)? The answer is affirmative 
(see [5, Chapters 4 and 7]). 

5. ALTERNATIVE INFLATION SEQUENCES 

In this section, the alternative-sequences theorem is proven. This theorem 
determines the set of normalized inflation sequences for a fixed, complete set 
of inflation-generated projectors. 

LEMMA 5.1. Let g be a complete set of inflation-generated projectors. 
Let E' be maximal in g with respect to -< .. Then: 

(i) There exists a unique, nonnalized inflator U such that E' = G(U). 
(ii) If E is in g " {E'}, then E = F xx U for some unique F. 
(iii) E in g is maximal with respect to -<. if and only if E is an 

M-matrix. 

Proof of (i). Let {(U~~l be an inflation sequence for g. Then E' = 
G(Uh)XX Uh+ 1 xx ... xx Uk for some h. If h = k, then E'= G(Uk), and by 
Lemma 2.3.2, there is a unique normalized inflator u such that G(U) = G(Uk). 

Suppose that h < k. Let H = G(Uh ), and label the entries of H by hif 
Since H = G(Uh ), it follows that 

H= Ee He "), 
j~l J.] 

where s is the block order of Uh and where ( , > denotes blocks with respect 
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to the natural partition of Uh• By Lemma 2.3.2, H(j,j ) is an irreducible 
M-matrix for each j; and when HO,j ) =1= [0], H(j,j ) has no zero entries. 
Hence hij =1= 0 implies both hijhji > 0 an~ h~i.hjj > O. Let t be the orde.r of !l' 
Let P r;; {I, 2, ... , t} be the subset P - {t. hii =1= O}. Then hi j =1= 0 unplies 
both i and j are in P. 

Let W = Uh + 1 XX ... XX Uk' Then E' = H X X W. Let < < ' » denote 
the natural partitioning of W. Let m be the order of W. Assume that 
W«i. i» =1= [1] for some i in P. Then WW , i» is a strictly positive submatrix 
which is at least 2 X 2. In particular, there is a first index r with r > h such 
that hii is inflated by a nontrivial, diagonal block of Ur' Let W' = 

Uh + 1 xx ... xx Ur' Compare H xx W' and G(W'). Let « ' »' denote 
the natural partitioning of W'. Then [Hxx W'] «i,i» ,=hii,W<'(i,i»'» O. 
Since the partitioning of Ur subpartitions the partitioning of W', it follows 
that G(Ur ) has a nontrivial block inside W<,(i,i»" Thus H xx W' -< G(Ur ). 

Then E' -< [G(U,) xx U,+ 1 XX ... XX Ud by Lemma 3.1, which contradicts 
the maximality of E'. Thus W« i,i» = [1] whenever i is in P. 

Suppose that i is in P. Then W« i, j» is a row vector and W« j,i» is a 
column vector. This follows from the way that the partitions are constructed. 
If both i and j are in P, then WW,j» = [1]. Recall that E'= H xx W, and 
that E' has blocks hi( W« i, j»' Also, hij =1= 0 if and only if both i and j are in 
P. Thus hij =1= 0 implies that the corresponding block in E' is hij · [1] . Thus E' 
is formed from H by symmetrically inserting m - t rows and m - t columns 
of zeros. Thus E is permutation-similar to the direct sum of H = G(Uh ) and a 
zero matrix of order m - t . Since a zero matrix of order m - t is equal to a 
direct sum of irreducible, idempotent, singular M-matrices. by Lemma 2.3.3, 
there exists a unique, normalized inflator U such that E' = G(U). • 

Proof of (ii) . Suppose that E is in Iff '\. {E'}. Since Iff is a complete set 
of projectors, EE' = E'E = O. Since E' = G(U), Lemma 2.3.2 implies that 
there exists a matrix F such that E = F xx U. Since U is strictly positive, F 
is unique. • 

Proof of (iii). If E is maximal in Iff, then E = G(U) for some inflator U 
by (i). The matrix G(U) is an M-matrix. Conversely, suppose that E is an 
M-matrix. Then Eij ~ 0 when i =1= j . Since E is in Iff, E has a nonnegative 
diagonal by Lemma 2.4.1. Assume that E is not maximal, that is, E -<. E" for 
some E" in Iff. Then there is an F in Iff such that E -< F. Since F is in Iff, F 
has a nonnegative diagonal. Since E -< F, there are i and j such that F';j < 0 
(hence i =1= j) and Eij > O. This contradicts the fact that Eij ~ 0 whenever 
i =1= j. • 
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NOTATION. Suppose that U is an inflator associated with a known 
partition II such that II is not the I-partition of 1. Suppose that the matrix 
A can be expressed as A = B xx U for some matrix B. Then the matrix B 
will be denoted by A//U. Observe that B is well defined, since U is strictly 
positive. 

LEMMA 5.2: Let t' be a complete set of inflation-generated projectors 
with It'l ~ 2. Let E' = G(U) be a maximal element of t' with respect to -<'. 
Let ~ = {E//U: E E t'" {E'}}. Then ~ is a complete set of projectors 
with I~I = 1t'1-1. 

Proof. .Let m be the block order of E', and let n be the order of E'. 
Since u is strictly positive, E//U = E//U implies E = E. Thus I~I = 1t'1-1. 
Let k = I~I. Note that the elements of t'" {G(U)} can be expressed as 
F; xx U, where I ~ i < k. Since t' is a complete set of projectors, 

Thus 

, k-l [k-l 1 
In- E'= L E= L '(FjXXU)= L Fj xxU, 

Ee/f'{E'} j=l j=l 

where the last equality is a consequence of Lemma 2.1.1. Also, 

m 

' In - E' = In - G(U) = EB U{;,;)' 
i = 1 

Hence, for I ~ a, f3 ~ m, 
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where l)ij is the Kronecker delta. That is, 

By Lemma 2.2.2, [FiFjJ xx U = [Fi xx U][Fj xx UJ. Since Fi XX U and 
Fj xx U are in iff, [Fi xx U][Fj xx UJ = l)ij[Fi xx UJ. Since U is strictly 
positive, FiFj = l)ijFi· Thus the Fi are pairwise orthogonal idempotents which 
sum to the identity. Hence F is a complete set of projectors. • 

LEMMA 5.3. Let iff be a complete set of inflation-generated projectors 
with Igl;;;. 2. Let E' be a maximal element of iff with respect to -<' . Let U be 
the unique, normalized inflator such that E' = G(U). Let .'F = {E jlU: E E 

iff" {E'}}. Then .'F is a complete set of inflation-generated projectors. 

Proof. Since g is inflation-generated, here exists a normalized inflation 
sequence {U;} f = 1 for iff by Theorem 2.4.4. Label the elements of iff so that 
Ei corresponds to U; for each i. By the inflation theorem (Theorem 2.6.3), 
there exist real numbers Ai;;;' 0, for I.,. i.,. k , such that 

k 

B= ~ A.E. i... I I 

i=1 

is an MMA-matrix. (For example, let Ai = i for each i .) Choose a set of A/s 
so that B is an MMA-matrix. The projector E' corresponds to Uj for some j. 
Since E' is maximal with respect to -<' , it is an M-matrix by Lemma 5.1. 
Thus [E'J rs .,. 0 for r * s. For each a;;;' A j' define a new matrix Ba by 

Ba=a ·E'+ L AiEi· 
i* i 

Then for each positive integer n , 

(Bat = an·E'+ L (AitEi ' 
i*i 
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a MMA-matrix, it follows that Ba is a ZM-matrix. By choosing a large 
enough that the nonzero entries of aE' dominate the corresponding entries of 
L; '" iA~E;, the support of Ba will contain the support of B. Thus for large 
enough a, Ba will be an irreducible ZM-matrix, hence a ZME-matrix. Finally, 
spec(Ba) = [spec(B)j{Aj}] U {a} ~ 1R+.o, so Ba is an MMA-matrix. 

Now require that a also satisfy a> A; for all i. By the inflation theorem, 
there is a normalized inflation sequence {V; }~-l for C such that E' = G(Vk)' 
By Lemma 2.3.3., Vk=V, Then ff has inflation sequence {V;}~':f. By the 
preceding lemma, ff is a complete set of projectors. • 

LEMMA 5.4. Let C be a complete set of inflation-generated projectors 
with ICI ~ 2. Let E' be a maximal element of C with respect to -<' . Let V be 
the unique, normalized inflator such that E' = G(V). Let ff = {E/lV: E E 

C " {E'}}. Then the map "/IV" sending C to .% preseroes -<'. That is, 
suppose El = Fl XX V and E2 = F2 XX V are in C" {E'}; then El -<. E2 in C 
if and only if Ji' 1 -<. F2 in ff. 

Proof. By the preceding lemma, ff is a complete set of inflation-gener­
ated projectors. Thus the relation -<. is a well-defined partial order on .%. 
Suppose that El -<. E2 in C. Then either El -< E2, or there is a sequence of 
projectors E; in C which define El -<. E2. By the maximality of E', E' 

J 
cannot be a member of .such a sequence. Thus the sequence resides in 
e " {E'}. Thus each E; can be expressed as F; xx V. Apply Lemma 3.1 to 
Fl xx V and F2 xx V, br to consecutive pairs ~f F; xx V's as necessary to 

J 

arrive at Fl -<. F2• Since Lemma 3.1 reverses, a similar argument proves that 
Fl -<. F2 implies El -<. E2. • 

LEMMA 5.5. Let C be a complete set of inflation-generated projectors 
with lei ~ 2. Let E' be a maximal element of C with respect to -<'. Let V be 
the unique, normalized inflator such that E' = G(V). Let.% be the complete 
set of inflation-generated projectors {E /IV: E E C" {E'}}. Then 2(,%) 
[~(ff)] is obtained from 2(C) [~(C)] by deleting the node of 2(C) 
[~(e)] corresponding to E', and all arcs entering that node. 

Proof. This is immediate from Lemma 5.4 and the definitions of .%2 
~~ . 

Let L be a partial-order graph with respect to some partial-order relation 
R on a set S. Let R be an extension of R to a linear order on S. Then R is 
equivalent to a bijective function f mapping the set {1, 2, ... , k} onto the set 
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of nodes of L such that (a, {3) is an arc in L implies I l( a) < I l( {3). Such a 
map f will be called a linear extension on L. 

EXAMPLE. Let L be the graph below, then L has exactly two linear 
extensions, f and g: 

~V4 V4~3 

\f2 \f.1 \}~' 
vl 1 1 

L f g 

REMARK. Let f be a linear extension for a partial-order graph L with k 
nodes. Then along any path in L, the integers assigned by I I form an 
increasing sequence. Also, f(k) must be a maximal node of L, and f(l) must 
be a minimal node. Finally, it is clear that a map f is a linear extension on L 
if and only if it is also a linear extension on the skeleton of L in the sense that 
(a, {3) is an arc in the skeleton of L only if II(a) < I\{3). 

Now that the necessary machinery has been established, the following 
theorem determines which inflation orderings are possible for a fixed, com­
plete set of projectors which possesses a normalized inflation sequence. 

THEOREM 5.6 (Alternative-inflation-sequences theorem). Let iff be a 
camplete set of inflation-generated projectors. Let f be a linear extension on 
.!R(iff). Then there exists an unique, normalized inflation sequence {U;}~~l 
such that: 

(i) iff is generated by {U;}~- l' 
(ii) C(Uj ) XX Uj + l xx ... xx Uk corresponds to node f(j) for each j. 

That is, given any linear extension on .P( iff), the projectors in iff can be 
generated in that order. 

EXAMPLE. H.!R( iff) is the graph L in the example above, and if the 
nodes of .!R( iff) are labeled so that node Vi corresponds to Ei for each i, 
where each E j corresponds to an inflator U; in some inflation sequence for iff, 
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then there are two distinct inflation orderings for If: 

(1) E 1, E2 , E3, E4 corresponding to f, 
(2) E1, E2 , E4, E3 corresponding to g. 

Proof of Theorem 5.6. The proof proceeds by induction on k = Ilfl. The 
result is clear if k = 1, since If = {[1]} and !l'( If) consists of an isolated node 
VI' There is only one linear extension on !l'( If), the map f sending 1 to VI' 

There is only one normalized inflation sequence: {U1 = [OJ}. 
Suppose that the theorem holds for Ilfl = k -1. Suppose that Ilfl = k. Let 

f be a linear extension on !l'( If). The node f(k) is a maximal node in !l'( If). 
Let E' in If correspond to the node f(k). Then E' is maximal with respect to 
-<', and by Lemma 5.1, there exists a unique, normalized inflator U such that 
E' = G(U). Let Uk = U. Let .fJ' = {Ej'U: E Elf" {E'}} . By Lemma 5.2, ff 
is a complete set of projectors with 1.fJ'1 = k -1. By Lemma 5:3; jj; is 
inflation-generated. By Theorem 2.4.4, ff has a normalized inflation se­
quence. By Lemma 5.5, !l'(.fJ') is derived from !l'(If) by deleting the node 
f( k) and all arcs entering that node. Thus f restricted to the set {1, 2, ... , 
k - 1} is a linear extension on !l'(.fJ'). By the induction hypothesis, there is 
an unique, normalized inflation sequence {[;;}7,:1 for ff such that .fJ' is 
generated by {U;}7,:L and such that G(Uj)xx Uj+ 1 XX ... xx Uk- 1 corre­
sponds to the node f(j) of !l'(.fJ') for 1::;; j::;; k -1. Then If is generated by 
the unique, normalized inflation sequence {U;}7=1' and G(Uj)XXUj+ 1 
xx ... xx Uk corresponds to the node f(j) of !l'( If) for 1::;; j ::;; k. The 
induction is complete. • 

COROLLARY 5.7. Let If be a complete set of inflation-generated projec­
tors. Then the set of linear extensions on !l'( If) is in bijective correspondence 
with the set of all normalized inflation sequences for If. 

Proof. 'From the preceding theorem, there exists a unique, normalized 
inflation sequence for If for each linear extension on !l'( If). Let q; be the 
map from the set of linear extensions on !l'( If) to the set of normalized 
inflation sequences for If, 

Suppose that k = Ilfl and that {If;}7=1 is a normalized inflation sequence 
for If. Define the map f sending {1,2,.,., k} to the node set of !l'( If) by 
letting f(i) be the node corresponding to G(lf;) xx If;+1 xx .. . xx Uk for 
each i. Suppose that (f(i),f(j)) is an arc in!l'(If). Then G(lf;)xxlf;+l 
xx ... xx Uk -<·G(Uj)XX Uj+l XX ... XX Uk in If. Hence Lemma 3.4 im­
plies i < j. So Jl(f(i)) < Jlf(j)). Thus f is a linear extension on !l'(If). 
Let 'T be this map which sends normalized inflation sequences for If to linear 
extensions on !l'( If). 
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Let 7" be this map which sends normalized inflation sequences for iff to linear 
extensions on £7( iff). 

It is easily verified that 7" and cp are inverses. Hence cp and 7" are 
bijections. • 

EXAMPLE 5.8 (Example of Section 2.7 revisited). Let iff = 

{E1' E 2 , E 3 , E 4 } be the complete set of inflation-generated projectors given 
in the example of section 2.7. Recall that iff was generated by a sequence 
{ Ui } t _ 1 such that each ll; was symmetric (hence, normalized). The graph 
£7( iff) is the graph L given in the example immediately following the 
statement of Theorem 5.6. As noted there, there exist exactly two linear 
extensions on £7( iff), labeled f and g in that example. The extension f 
corresponds to the sequence {ll;} t = 1· The extension g corresponds to the 
normalized inflation sequence {Y,} t= 1 where 

Thus, 

Y,=U; for i = 1,2, 

1 [ 2 
/2 

V3="2 /2 1 

/2 1 

1 1 
1 1 1 

V4 =-
2 /2 /2 

/2 /2 

G(U2 ) XX U3 XX U4 = 

G(U3 ) xxU4 = 

G(U4 ) = 

J21 1 ' 
1 

/2 
/2 
2 

2 

/2 
/2 
2 

2 

G(V4 ), 

G(V3 ) XX V4 • 

Using the alternate-inflation-sequences theorem, it is possible to strengthen 
Lemma 3.4. Recall that Lemma 3.4 states that E -<. F in iff implied that E 
preceded F. It is now shown that the converse holds when iff is generated by 
a normalized inflation sequence. 
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COROLLARY 5.9. Let Iff be a complete set of inflation-generated projec­
tors. Suppose that E and E' are in Iff. Then E -<. E' in Iff' is equivalent to E 
preceding E'. 

Proof. If E -<·E' in Iff, then E precedes E' for every inflation sequence 
generating Iff by Lemma 3.4. Conversely, suppose that E -<. E' in Iff is false. 
If E' -<. E in Iff, then E' precedes E for every inflation sequence generating 
Iff; hence E does not precede E'. So suppose that E and E' are noncompara­
ble in Iff with respect to -<.. Let v and v' be the nodes of fi>( Iff) 
corresponding to E and E', respectively. Since there is no path from v to v' 
in fi>( Iff), and there is no path from v' to v in fi>( Iff), there exist two linear 
extensions f and g on fi>( Iff) such that r 1( v) < r 1( v') and such that 
g-l(V') < g-l(V). Applying Theorem 5.6 twice, once for f and once for g, 
produces two normalized inflation sequences for Iff. In the first one, E arises 
before E'; in the second, E' arises before E. Thus E does not precede E'. • 

The following is a useful application of Theorem 5.6. 

THEOREM 5.10. Let Iff be a complete set of projectors. The following 
algorithm determines in a finite number of steps whether Iff is generated by a 
normalized inflation sequence, and if so, it produces such a sequence: 

Algorithm. At each of steps (ii) through (v), a negative answer 
terminates the algorithm by implying that Iff is rwt generated by a normalized 
inflation sequence. Let k = Ilffl. 

(i) If k > 1, go to (ii). If k = 1, does Iff = {[I]}? If yes, the inflation 
sequence is {U1 = [OJ}. Stop. 

(ii) Does Iff have a strictly positive element? If yes, continue. 
(iii) Form the weak partial-order graph with respect to -< for Iff. Let L be 

the transitive closure of this graph. If L free of directed cycles? If yes, 
continue. 

(iv) Is each element of Iff corresponding to a maximal rwde of L an 
M-matrix? If yes, continue. 

(v) Choose an element E' in Iff which is maximal in L. Is there a 
rwrmalized inflator U such that E' = G(U)? /f"yes, let Uk = U. Continue. 

(vi) Replace k by k - 1. Replace Iff by {E j'U: E E Iff " {E'}}. Go to 
step (i). 

Proof. The proof is an easy consequence of Theorem 3.7 and the results 
of this section. • 
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6. THE RELATION BETWEEN -<. IN g AND IN % 

LEMMA 6.1. Let g be a complete set of rank-one, inflation-generated 
projectors. Let {U;J?=1 be an inflation sequence for g. Then for each i with 
i ~ 2, U; has a unique nontrivial diagonal block, and that block is 2 X 2. If E 
and E' are in g, then E -<·E' in g implies both E -< E' and supp(E') ~ 
possupp(E). 

Proof. Let E be in g and let U be the corresponding inflator. Then 
rank[E] = rank[G(U)] by Lemma 2.2.2. Recall from Lemma 2.3.2 that the 
rank of G( U) is the difference between the order of U and the block order of 
U. Thus, if E is rank-one, then U must exactly one nontrivial diagonal block, 
and further, that block must be 2 X 2. Now apply Lemma 3.5 and Theorem 
~a • 

LEMMA 6.2. Let ff be a complete set of inflation-generated projectors. 
Let g be a complete set of inflation-generated projectors which is a rank-one 
refinement of ff. Let E+ be the unique strictly positive element of g. Then 
E + is the unique strictly positive element of ff. 

Proof. Since ff is inflation-generated, it has a unique strictly positive 
element, call it F+. Let {U;}~-l be an inflation sequence for ff. By Theorem 
3.7, F+ corresponds to U1, so that rank[F+] = ranlc[G(U1)] = 1. Thus F+ is 
in g. Since g is inflation-generated, it has a unique strictly positive element. 
Thus F+ = E+. • 

THEOREM 6.3. Let ff be a complete set of inflatioTirgenerated projec­
tors. Let g be a complete set of inflation-generated projectors which is a 
rank-one refinement of ff. Let E and E' be in g. Let F and F' be the unique 
element(s) of ff such that fix(E) ~ fix(F) and fix(E') ~ fix(F') . Then: 

(i) E -<. E' in g implies F.;;; F'; 
(li) F -<. F' in ff implies either E -< E' or else E and E' are noncompara­

ble with respect to -<. 

Proof of (i). H F = F', the result is clear. So suppose that F =1= F'. For 
convenience, denote the strictly positive element of gas E+. If E = E+, then 
F = E+ by Lemma 6.2. Then by Theorem 3.7, F~ F for every F in %. So 
suppose that E =1= E+. Then E -<. E' implies E' =1= E+, and hence F' =1= E+. 
Thus fix(E+) is not contained in fix(F)Ufix(F'). By Lemma 6.1, E -< E'. 
Extend this to a maximal chain in F and F', that is, to a maximal partially 
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ordered chain of projectors from Iff each of whose invariant space is con­
tained in the invariant space of either F or F'. Label the elements of this 
maximal chain as El -< E2 -< ... -< E,. Since E and E' are elements in this 
chain, E = Ea and E' = ET with (1 < 'T. The sets {i: fix( Ei) ~ £ix( F)} and 
{ i : fix( Ei ) ~ fix( F')} are a partition of the set {I, 2, .. . , r} into two nonempty 
sets. Label the set containing the element 1 as A, and label the other set as 
B. For convenience, label {F, F'} as {FA' FB} in the obvious manner. Since 
for each i, Ei =1= E+, it follows from Theorem 3.7 that SUPP(Ei):::J possupp(E;). 
In conjunction with Lemma 3.5, this implies 

Let t be the minimal element of B. Then 

Since possup(Et_1) d supP(Et), it follows that 

Note that negsupp(Et)ilsupp(Ej) =0 for j > t. Thus 

provided that it can be shown that there is no E in Iff with £ix(E) ~ £ix(FB) 
such that possupp(E)ilnegsupp(Et) is nonempty. Assume that E exists. 
Clearly, E -< Et • By the maximality of the chain, and by the choice of t, it 
follows that E cannot be in the chain. Thus Et - 1 -< E cannot occur. Observe 
that negsup(Et) c possupp(Ej) for 1 ~ j < t. Hence for 1 ~ j < t, E and E j 
have overlapping supports, and thus must be -< -comparable by Theorem 3.2. 
This forces E -< Et - 1• Then by maximality, Et - 2 -< E cannot occur. Thus 
E -< Et_~ Iterating this process, Ej -< E cannot occur for any j with 1 ~ j < t, 
so that E -< E1, contradicting the maximality of the chain. 

Since Et=l=E+, negsupp(Et)=I=0. Thus possupp(FA) and negsupp(FB) 
overlap. Thus FA -< F B. 

Assume that there is an sEA such that s> t. Choose the minimal such 
s. Note that negsupp(Es)ilsupp(Ej) =0 for j > s, and that negsupp(Es) C 

possupp(Ej) for j < s. Since s > t, negsupp(Es) ~ posSUPP(FB). It suffices to 
show that negsupp(E.)ilnegsupp(FA) =1=0 in order to imply that FB -< FA­
a contradiction, since $" is inflation-generated and FA -< F B. 
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Let (a, /3) be in negsupp(Es)' Then 

Since E 1 ..( E2 ..( ••• ..( Es' it follows by Theorem 3.2 that these projectors 
arise in this order for every inflation sequence for Iff. Let {u;}~~l be any 
inflation sequence for Iff. Let Uh correspond to Ei for 1.::;; i .::;; s. Since 
(E i) afJ > 0 for 1 .::;; i < s, it follows by Lemma 2.4.5 that 

( E ) () = (1- U )Uh ... U ... uh ... uh ... U 1 C'1.p hI 1 + 1 h2 t-l s n' 

(1 - U h ) ... Uh ... Uh ... U , 
2 t-l "' n 

(1 - Uh . ) ... Uh ... U , 
t-l " n 

Since each U i satisfies 0 < u j .::;; 1, it is easily verified that 

( F ) fJ < - u h uh ... u h ... uh ... uh .•. U < O. 
A ex 1 1 + 1 2 t-l .J n 

Thus negsupp(Es) ~ negsupp(FA)' As indicated above, this yields a con­
tradiction. Consequently, s does not exist. That is, A = {l, 2, ... , t - I} and 
B = {t, t + 1, ... , r}. It remains to show that FA = F and that FB = F'. As 
noted above, E = Eo and E' = ET where 1.::;; (J < 7''::;; r. Since E is a sum­
mand for F and since E' is not, it follows that (J < t, and hence FA = F, and 
FB = F'. Thus E..( E' implies F..( F'. • 

Proof of (ii). Suppose that F ..(. F' in ff. Since ..(. is a partial order on 
Iff, exactly one of the following must hold: 

(1) E..(· E' in Iff, 
(2) E'..(· E in Iff, 
(3) E and E' are noncomparable with respect to ..(. 

By Lemma 6.1, ..( and ..(. are the same partial order on Iff. Thus it suffices 
to show that E'..( E cannot hold. Assume the contray, that E'..( E does hold. 
Then by part (i) of this theorem, F'..( Fin ff. This is a contradiction, since 
ff is inflation-generated, and hence, ..(. is a partial order on ff. • 
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The following result shows that the elements of .fft are "convex" sums of 
elements of g . 

COROLLARY 6.4. Let.fft be a complete set of inflation-generated projec­
tors. Let g be a complete set of inflation-generated projectors which is a 
rank-one refinement of.fft. Let E and E' be distinct elements of g. Suppose 
that there is an Fin .fft such that £ix(E) c fix(F) and fix(E') c fix(F). If 
there is an E" in g such that E -< E" and E" -< E', then fix(E") c fix(F). 

Proof. Suppose that E -<AE" and E" -< E'. Let F be the unique element 
of .fft such that £ix(E") ~ £ix(F). By the preceding theorem, F~· F in .fft and 
F~. F in .fft. Thus F = F. • 

Let .fft be a complete set of projectors. Suppose that .fft has an inflation­
generated refinement g. Then each element in .fft is a sum of elements of g. 
The set .fft contains a cyclic sum with respect to g if there exist an integer 
r;:;. 2, a sequence {F;}r~l of distinct elements in .fft, and two sequences 
{E;}~= l and {En:=l of element sin g with the following properties: 

(1) fix(E;) and £ix(E[) are both in £ix(F;) for each i; 
(2) Ei -<·E:+ 1 for 1 < i < r -1; 
(3) E, -<·E1. 

If the set .fft contains no cyclic sums with respect to g, then .fft is acyclic 
with respect to g. 

THEOREM 6.5. Let g be a complete set of rank-one inflation-generated 
projectors. Let E1 be the unique strictly positive element of g. Let .fft be a 
complete set of projectors such that g is a refinement of.fft and such that E1 
is an element of.fft. Then the following are equivalent: 

(i) the set .fft is inflation-generated; 
(ii) the set .fft is acyclic with respect to g . 

Proof of (i) = (ii). Suppose that .fft is inflation-generated. Assume that 
.fft contains a cyclic sum. Then there exists an integer r ;:;. 2, and there exist 
sequences {FJ ~ = l' {Ej} ~ = 1, and {En ~ = 1 which satisfy the conditions in the 
definition of a cyclic sum. Due to conditions (1) and (2), Theorem 6.3 implies 
Fj -< FH 1 for 1 < i < r. Because of conditions (1) and (3), Theorem 6.3 
implies F, -< Fl' Then F1 -<. F1, a contradiction. • 
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PToof of (ii) = (i). Suppose that I§I = k, and suppose that the matrices 
in § are n X n. Let Fl = E1• H k = 1, the result is clear. So suppose k ~ 2. 
Let E2 be the unique strictly nonzero element of tf" {El}' (Note that by 
Theorem 3.7, E2 is the unique minimal element of tf" {Ed.) Let F2 be the 
unique element of § such that fix(E2) ~ fix(F2)' Label the summands from 
tf so that F2 = E2 + E3 + ... + Er .. Further, these labels can be assigned so 
that for 2 ~ i, j ~ To, El <,.E j in tf implies i < j. Since § is acyclic, 
E E tf\ {El' E2, ... , ~r2} implies E <,. Ei in tf must be false for each i with 
1 ~ i ~ T2- Assume not. Then for some i, E <,. Ei in tf. Clearly, i > 2. Let F 
be the element of § with fix(E) ~ fix(F). Then § has a cycle with respect 
to tf: use the sequences {F2' F }, {E2' E}, and {E i' E }. This contradicts the 
acyclicity of § with respect to tf. 

Consider the minimal elements (with respect to <,. in tf) of tf" 
{El' E2, ... , Er2 }. By acyclicity, there a minimal element E with correspond­
ing element F of § such that for every E' in tf" {El' E2, ... , Er2 } and for 
every E" with fix(E") ~ fix(F), E' <,·E" implies fix(E') ~ fix(F). Label E as 
Er + l' and label F as F3 • Then the summands in F3 can be labeled so that 

2 

F3 = Er2 +1 + Er2+2 + ... + Er3. Further, these labels can be assigned so that 
for T2 < i, j ~ T3, Ei <,.Ej in tf implies i < j. Then by the acyclicity of § and 
by the minimality of Er2 + l' it follows that E E tf" { E1, E2, ... , Er2,· .. , Er3 } 
implies E <,. Ei must be false for each i with 1 ~ i ~ T3. Also note that for 
l~i,j~T3' Ei<,·E j in tf implies i<j. 

By iterating this process, at the hth step, Er + 1 is chosen as a minimal h-l 
element of tf" {El' E2, ... , Eh-d such that for every E' in tf" 
{El' E2, ... , Eh-d and for every E" with fix(E") ~ fix(F), E' <,. E" implies 
fix(E')~fix(F), where F is the element of § with fix(Erh_l+1)~fix(F). 
The element F is labeled as Fh. Then the summands in Fh are labeled so that 
Fh = Er + 1 + Er +2 + ... + Er . Further, these labels are assigned so that 

h-l "'-1 h 

for Th- 1 < i, j ~ Th' Ei <,. EL in tf implies i < j. Then by the acyclicity of § 

and by the minimality of.t;r + l' it follows that E E tf " {E1' E2, . .. , Er } 
h-l h 

implies that E <,. Ei must be false for each i with 1 ~ i ~ Th. Also, note that 
for 1 ~ i, j ~ Th' Ei <,·Ej ill tf implies i < j. 

Mter k iterations, the elements of tf have been labeled so that Fl = E1, 

and for 2 ~ i ~ k, 

'i-I 

And further, Ei <,. Ej implies i < j. Thus the map sending i to the node 
corresponding to Ei in !l'( tf) for each i with 1 ~ i ~ n is a linear extension 
on !l'( tf). By the alternative inflation sequences theorem (Theorem 5.6), 
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there is an inflation sequence {U;}? -1 for Iff such that E i corresponds to U; 
for each i. By repeated applications of the compression theorem (Theorem 
2.5.4), the inflation sequence {W;}~~1 given by WI = U1, and for 2::::; i::::; k by 

W; = u,. . + 1 XX . .. XX Ur , 
1-1 I 

is an inflation sequence for ff such that W; corresponds to Fi for each i. • 

7. SLIDE-AROUND THEOREMS 

In this section, we return to the subject of Z- and M-matrices in order to 
generalize the original "slide-around" theorem (Theorem 2.9.1). The essence 
of that theorem is that the numerical values in the spectrum of a ZME-matrix 
are not significant. Rather, what is significant is the manner in which the 
eigenvalues order the projectors. Thus it should not be surprising that the 
generalizations of this theorem will depend on the order relationship -<'. 

THEOREM 7.1 (The strict-inequality slide-around theorem). Let ff be a 
complete set of inflation-generated projectors with Iffl = k. Label the ele­
ments of ff as Fi for 1::::; i ::::; k. Let {aI' a2 , .•• , ak} be a set of distinct real 
numbers satisfying a1 < a2 < ... < ak and la11::::; a2• Let 

k 

A= L aiFi· 
i ~ 1 

Then the following are equivalent: 

(i) a, < as whenever F, -<. Fs in ff, 
(ii) A ,is a ZME-matrix. 

Further, if a1 = - a2 , then (ii) is equivalent to the assertion that A is a 
ZMO-matrix; if a1 > - a2, then (ii) is equivalent to the assertion that A is a 
ZMA-matrix; and if a1 ;;?; 0, then (ii) is equivalent to the assertion that A is 
an MMA-matrix. 

Proof of (i) = (ii). Label the nodes of 2( ff) so that node Vi corre­
sponds to Fi for each i. Define a map f sending the set {I, 2, ... , k} to the 
node set of 2(ff) by f(i) = Vi for each i. Suppose that there is a path from 
v, to Vs in 2(1ff); then F, -<. Fs in ff, and hence a, < as. Since the ai are 
increasing with i, it follows that r < s. Thus J 1(v,) < Jl(vs )' Thus f is a 
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linear extension on !l'( %). By the alternative-inflation-sequences theorem 
(Theorem 5.6), there is a normalized inflation sequence {l:-D7=1 for cff such 
that Fi corresponds to U; for each i. By the inflation theorem (Theorem 
2.6.3), A is a ZME-matrix. • 

Proof of (ii) = (i). By the inflation theorem, there is a normalized 
inflation sequence {U;}~=1 such that F; corresponds to U; for each i. Suppose 
that Fi -<. Fj in %. Then by Lemma 3.4, Fi precedes Fj ; hence i < j. Thus 
a i < ar • 

In the preceding theorem, the real numbers ai were required to be 
distinct. This requirement can be weakened. 

THEOREM 7.2 (The weak-inequality slide-around theorem). Let % be a 
complete set of inflation-generated projectors with 1%1 = k. Label the ele­
ments of % as F; for 1 ~ i ~ k. Let aI' a2 , ••• ,ak be real numbers which are 
not necessarily distinct, but which satisfy 

Let 

k 

A= L aiFi· 
i=1 

Then the following are equivalent: 

(i) ar ~ as whenever Fr -<. Fs in %, 
(ii) A is a ZME-matrix. 

Further, A is a ZMO-, ZMA-, or MMA-matrix depending on the relationship 
of a1 and the next smallest eigenvalue of A as given in Theorem 2.6.1. 

Proof of (i) = (ii). Without loss of generality, it may be assumed that 
ar = as and Fr -<. Fs in % together imply r < s. Then F,. -<. Fs in % implies 
r < s. For f > 0 and for 1 < i ~ k, define aj(f) = a j + if. Define aif) = a1 

for f > O. Note that for small f (that is, for f such that h is less than the 
minimum separation of distinct a;), the ai( f) are distinct real numbers 
satisfying: 
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For t: > 0, define A( t:) by 

k 

A(t:) = L a;{t:)Fi · 

j~l 

Since Fr -<. Fs in § implies r < 8, it follows for small t: > ° that ar( t:) < a s( t: ) 
whenever Fr -<. Fs. By Theorem 7.1, A( t:) is a ZME-matrix for all small t: > 0. 
By Lemma 2.6.5, A is a ZME-matrix. Then using Theorem 2.6.1, it is easy to 
check that the relationship between the restrictions on a1 and A being a 
ZMO-, ZMA-, or MMA-matrix hold. • 

Proof of (ii) = (i). By Theorem 2.8.2, § has a rank-one, inflation-gener­
ated refinement. Let Iff be such a complete set of projectors. Suppose that 
I Iff I = n. Label the elements of Iff as Ei for 1 ~ i ~ n. There exists a k-parti­
tion Q of n given by the sets C1, C2 , ..• , Ck , such that for each i, 

There also exist n real numbers 131, 132, •.. , f3n such that for each i and every j 
in Ci , f3 j = a i• Thus, 

n 

A = L f3j Er 
j~l 

Let aI' a2 , •• ·, ap be the distinct elements from among the a (hence from 
among the f3 j ). Without loss, it may be assumed that the ah are labeled so 
that 

For each h, let 

Hh = L Er 
j: a j ~ ah 

Let .Yi' be the set .Yi'= {H1,H2 , ••• ,Hp }. Then .Yi' is a complete set of 
projectors which has Iff as a refinement. Note that 
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where the ah are distinct. Since A is a ZME-matrix, it follows by the inflation 
theorem (Theorem 2.6.3) that .Yt' is inflation-generated. And further, since 
ai < aj implies i < j, there is an inflation sequence {~}r-l for.Yt' such that 
~ corresponds to Hi for each i. Then by Theorem 3.2, Hi <$. Hj in .Yt' implies 
i ~ j, and hence, a i ~ ai" 

Suppose that Fr -<. F. in $. Then by the definition of -<', there is a 
sequence Fi = Fr , Fi , ... , Fi = F. in .fl' such that 

1 2 g 

By Theorem 3.6, supp(F,. )nsupp(F,. ) *' 0 for 1 ~ h < g. Then for each 
h h+l 

pair in the sequence {FiJ~-l' there are two sequences {EjJ~:~ and 
{EiJ ~~2 of elements of e such that: 

(1) £ix(EjJ ~ £ix(F;) for 1 ~ h < g; 
(2) £ix( E iJ ~ £ix( F;) for 2 ~ h ~ g; 
(3) supp(Ej) ~ sUPP(E'jh+) *' cf> for 1 ~ h < g. 

For each h, EJ. and E'J. are -<-comparable, by Theorem 3.2. Then by 
h h+l 

Theorem 6.3, Ejh -< E'jh+l for 1 ~ h < f!.. 
For each h, let f3J~ be the 13 corresponding to EJ~ . Observe that f3J. = f3J~ = a· 

h h h h 'h 

for each h. Let {HkJ ~-l and {HiJ ~=l be the sequences of elements of .Yt' 
such that 

(4) £ix(Ej) ~ fix(Hk) for 1 ~ i < g; 
(5) £ix(EiJ ~ £ix(Hi) for 2 ~ i ~ g. 

Let ak' be the a corresponding to Hk . Then 13· = ak and f3J~ = ak' for each h h Jh h h h 
h, and hence akh = a"h for each h. Since (3) holds for each h with 1 ~ h < g, 
it follows by applying Theorem 6.3 that Hk <$. Hi for each h. Then as 

h h+l 

noted above, ak ~ ak' for 1 ~ h < g. Thus 
h h+l 

• 
REMARK. These theorems have a nice pictorial interpretation. Given 

2($), assign the a/s to the nodes so that along any directed path the a/s 
form a nondecreasing sequence. Then the resultant matrix A is a ZME-matrix. 

8. PRODUCTS OF COMMUTING ZME-MATRICES 

In this section, we determine conditions for the product of commuting 
ZME-matrices to be a ZME-matrix. 
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It is well known that if two diagonalizable matrices commute, then they 
have a common complete set of spectral projectors. That is, if A and B are 
diagonalizable matrices in .A n(C) and if AB = BA, then there exists a 
complete set of projectors <f = {Ei: 1.::;; i .::;; n }, there exist complex numbers 
a i (not necessarily distinct) for 1.::;; i .::;; n, and there exist complex numbers /3i 

(not necessarily distinct) for 1.::;; i .::;; n such that 

n n 

i=1 i=1 

Even if each of the matrices has an inflation-generated complete set of 
projectors, ~t is not immediate that the common complete set is also 
inflation-generated. The question of when a decomposition into pairs of 
commuting, inflation-generated projectors exists appears to be a difficult one, 
and only certain partial results are known. (See [4, Chapter 8].) 

The following notation is adopted for the remainder of this section: 

NOTATION. Let A and B be commuting ZME-matrices which are in 
.A n(ll~) for some n ~ 2. Since A and B commute, they have a common set <f 
of rank-one projectors with n = l<fl. Let - a 2 .::;; a1 < a 2 .::;; a 3 '::;; ••• .::;; an be 
the spectrum of A. (Unlike the notation previously used, in this section the a i 

need not be pairwise distinct.) Label the elements of <f so that 

n 

A= L aiEi • 

i=1 

Label the spectrum of B as /31' /32' ... ,/3n so that 

n 

B= L /3iEj' 
i=1 

Then there exists a pennutation (J of the set {I, 2, ... , n} such that - /30(2) .::;; 

/30(1) < /30(2) .::;; /30(3)'::;; ••• .::;; /3o(n)' Since a1 and /30(1) are the simple, minimum 
eigenvalues of A and B, respectively, it follows that E1 is the unique, strictly 
positive element of <f, and hence, (J(1) = l. The product of A and B is 

n 

AB = L a i/3iEi' 
; = 1 
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LEMMA 8.1. Let A and B be commuting ZME-matrices. Then AB has a 
real spectrum {a1/31' a2 /32" ' " a n /3n}, and la1/311 ~ a;/3; for each i ~ 2. 
Further, if at least one of A and B is a ZMA-matrix and if i\ is the minimal 
eigenvalue of AB, then i\ is simple. 

Proof. Clearly the spectrum of AB is real. Since A is a ZME-matrix, it 
follows from the notational convention that la11 ~ a i for each i ~ 2. Since B 
is a ZME-matrix, both 1/311 ~ /3i and 0 < /3i hold for each i with i ~ 2. Then 
a 1/31 ~ la111/311 ~ a i /3i for each i ~ 2. 

Now suppose that one of A and B is a ZMA-matrix-without loss of 
generality, A. Then la11 < a i for each i ~ 2. Then a1/31 ~ la111/311 < aj /3i for 
each i ~ 2. The minimum eigenvalue of AB is i\ = a 1/31' which is simple. • 

REMARK. Suppose that A and Bare ZMO-matrices; then a1 = - a2 and 
/31 = - /30(2)' Let r be the largest integer such that a. = a2• Let s be the 
largest integer such that /3o(s) = /30(2)' Then a 1/31 is a simple eigenvalue for 
AB if and only if {2,3, ... , r}n{a(2),a(3), ... ,a(s)} =0. To see this, sup­
pose that j is in the intersection. Then a j /3j = a 2/30(2) = ( - ( 1)( - /31)' Since 
a 1/31 ~ a j/3j for i ~ 2, the existence of such a j implies that the minimal 
eigenvalue of AB has multiplicity greater than one. Hence AB cannot be a 
ZME-matrix if such a j exists. As a particular example, note that if A is a 
ZMO-matrix, then A2 is not irreducible; hence A2 is not a ZME-matrix. (This 
case corresponds to a being the identity map and j = 2 being in the 
intersection.) Additionally, note that if (r -1) +(s -1) > (n -1), then the 
intersection must be nonempty, and hence AB cannot be a ZME-matrix. 

THEOREM 8.2. Let A and B be ZMO-matrices. Suppose that A and B 
have a common complete set ff of projectors which is inflation-generated. 
Label the elements of ff as Fj for 1 ~ i ~ k. For 1 ~ i ~ k, let aj and A be 
the (not necessarily distinct) real numbers such that A and B can be 
represented as 

k k 

A = L ajFj and B = L /ljFj • 

; = 1 ;=1 

Then AB is not a ZME-matrix. 

Proof. Without loss of generality, suppose that the elements of ff are 
labeled so that A = L~_ laj.z;; with a1 < a2 ~ ... ~ ak' Clearly a1 = al and 
a2 = - a1• Since A is a ZME-matrix, Theorem 3.7 applies to A. Thus Fl is 
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the unique strictly positive element of :F, and F2 is the unique element of :F 
with mixed signs and no zero entries. Since B is a ZMO-matrix, Theorem 3.7 
applies toB. Consequently, iJ1 = /31 and iJ2 = - iJ1' Then ii1iJ1 = ii2iJ2' Since 
ii2iJ2 is in the spectrum of AB, it follows that the minimum eigenvalue of AB 
is not simple; hence AB cannot be a ZME-matrix. • 

COROLLARY 8.3. Let A and B be n X n commuting ZMO-matrices. 
Suppose that at least one of A and B has n simple eigenvalues. Then AB is 
not a ZME-matrix. 

Proof. Without loss, suppose that A has n distinct eigenvalues. Then iff 
must be inflation-generated, by the inflation theorem (Theorem 2.6.3). Since 
A and B commute, the set iff is the set :F of the preceding theorem. • 

Theorem 8.2 and the remarks which precede it suggest the following 
conjecture: 

CONJECTURE 8.4. The product of two commuting ZMO-matrices is not a 
ZME-matrix. 

We turn now to the case where at least one of A and B is a ZMA-matrix. 

THEOREM 8.5. Let A and B be ZME-matrices such that at least one of A 
and B is a ZMA-matrix. Suppose that A and B have a common complete set 
:F of projectors which is injW.tion-generated. Label the elements of.fF as F; 
for 1 < i < k. For 1 < i < k, let iii and iJi be the (not necessarily distinct) 
real numbers such that A and B can be represented as 

k k 

A = L ii;Fj and B = L iJjFj. 
;=1 ; = 1 

Then AB is a ZMA-matrix. 

Proof. Without loss of generality, suppose that the elements of :F are 
labeled so that A = L~= liiiFj with ii1 < ii2 < ... < iik • Clearly iiI = a1. Since 
A is a ZME-matrix, Fl is the unique strictly positive element of :F. 
Consequently, iJ1 = /31' since B is a ZME-matrix. By Lemma 8.1, AB has a 
real spectium with simple minimum eigenvalue ii l iJ1. Since A is a ZME­
matrix, and since :F is inflation-generated, Theorem 7.2 can be applied to A 
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TABLEB.l 
PRODUCTS OF ZME-MATRICES WHICH HAVE 

A COMMON SET OF INFLATION-GENERATED PROJECTORS 

A 

ZMO 
ZMA 
ZME 

B 

ZMO 
ZME 
ZMA 

AB 

Not ZME 
ZMA 
ZMA 
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to yield iii ~ ii j whenev~r FL -<.. Fj in ff. Similarly Theorem 7.2 can be 
appyed to _B to yield fJi ~ fJ j whenever F; -<.. F. in ~. By ~emma B.1, 
liilfJll<iijfJj for j~2. Thus F1-<.·Fj in ff implies ii1fJl< iijfJj for j~2. 
Supp_ose !hat i ~ 2. The_n F; -<.: Fj in ff implies both 0 < iii ~ ii j and 
o < fJi ~ fJj, and thus ii;fJ; ~ ajfJr Then by Theorem 7.2, AB is a ZME­
matrix, and hence a ZMA-matrix. • 

Table 1 summarizes the results of Theorems B.2 and B.4. 

COROLLARY B.6. Let A and B be n X n commuting ZME-matrices. 
Suppose that at least one of A and B is a ZMA-matrix. Suppose that at least 
one of A and B has n simple eigenvalues. Then AB is a ZMA-matrix. 

Proof. Without loss, suppose that A has n distinct eigenvalues. Then fff 
must be inflation-generated, by the inflation theorem (Theorem 2.6.3). Since 
A and B commute, the set fff is the set ff of the preceding theorem. • 

EXAMPLE. The product of commuting ZMA-matrices all of those eigen­
values are simple need not have all of its eigenvalues simple. Let fff = 

{ Ei : 1 ~ i ~ 4} be the complete set of inflation-generated projectors discussed 
in Section 2.7. Let A and B be the MMA-matrices 

Then AB is the MMA-matrix 
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We end this section with a final open question: 

QUESTION 8.7. Suppose that A and B are commuting ZME-matrices. 
Do A and B have a common complete set of projectors which is inflation­
generated? 

It should be noted that if the answer is affirmative, then it follows that the 
product of commuting ZMO-matrices is never a ZME-matrix, and that the 
product of commuting ZME-matrices is always a ZMA-matrix if one of 
the matrices is a ZMA-matrix. 
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