Linear and Multilinear Algebra, 1991, Vol. 29, pp. 21-42
Reprints available directly from the publisher
Photocopying permitted by license only

© 1991 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

Combinatorial Bases, Derived Jordan Sets
and the Equality of the Height and Level
Characteristics of an M-Matrix

DANIEL HERSHKOWMITZ*
Mathematics Department, Technion-israel instiiute of Technology, Haifa 32000, |srael

HANS SCHNEIDER}
Mathematics Department, Unk ity of Wis. in-Madison, Madison, Wisconsin 53708, US.A.

(Received February 26, 1990; in final form July 5, 1990)

We continue our scrics of papers on the gmph theoretic spectral theory of matrices. Let A be an M-
matrbe. We i the of ial vectors and proper combinatorial vectors in the gen-
eralized nullspace E(A) of A. We explore the properties of combinatorial bases for E(A) and Jordan
bases for E(A) derived from proper combinatorial scts of vectors, We use propertics of these bases to
prove additional new conditions for the equality of the (spectral) height (or Weyr) characteristic and
the (graph theoretic) level characteristic of 4. We also explore the role of the Hall Marriage Condition,
well structured graphs and their anchored chain decompositions in the study of the equality of the two
characteristics.

1. INTRODUCTION

With this paper we continue the series of papers [6], [4}, [7], [S), and [8] on the
graph theoretic spectral theory of matrices. In these papers we put emphasis on
the relation between the combinatorial structure and the spectral structures of the
generalized nulispace of the eigenvalue 0 of an M -matrix (or, equivalently, of the
generalized eigenspace of the spectral radius of a nonnegative matrix). In this topic,
conditions for the equality of the height (Weyr) and level characteristics for the
eigenvalue 0 of an M-matrix are of particular interest. This question was raised
in Schneider [13], where conditions for the equality of the two characteristics are
proved under some special hypotheses on the singular graph of the matrix. In the
general case, necessary and sufficient conditions are found in Richman-Schneider
[11), and in our recent paper [8], sce [8] and the survey [14] for further informa-
tion and references. Related results appear in Richman [10], Bru-Neumann [1}, and
Huang [9).
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Let A be an M-matrix and let E(A) be the generalized nullspace of A. Let n(A)
and A(A) be the height and level characteristics of 4 respectively. In [11] it was
proved that 5(A4) = A(A) if and only if E(A4) has nonnegative Jordan basis for — 4,
and several other equivalent conditions were proved. In [8] we introduced the con-
cepts of height and level bases for E(A) and, using these concepts, we proved a
number of other conditions equivalent to 7(.4) = A(A). In this paper we give fur-
ther equivalent conditions bringing the total to 36. Some of the new conditions are
stated in terms of the concept of combinatorial bases for E(A4) which we introduce
here. Combinatorial bases are more general than the Rothblum bases found in [12]
and, for example, in [1], as well as the preferred bases, found in [11}, [6] and many
other references. Later in this introduction we describe further main results of our
paper. These involve the Hall marriage condition (first used in this particular con-
text by [10]), well structured graphs and anchored chain decompositions of graphs
(both of which were introduced in [1}, the latter under the name of covering strate-
gies).

We now describe our paper in more detail. Section 2 is devoted to notation and
definitions. Here we give the definitions of the height of a vector and of the level
of a vector in E(A). We define peak vectors and peak bases, height bases and level
bases for E(A). We also define the height characteristic n(4) and the level charac-
teristic A(A).

In Section 3 we introduce (proper) combinatorial vectors, and (proper) combina-
torial bases. We show that every combinatorial basis is a proper combinatorial basis
and also a peak level basis, see Corollaries (3.15) and (3.17).

In the graph theoretic Section 4 we explore the role of the Hall Marriage Con-
dition. In [10] it was shown that this condition (or equivalently the existence of
systems of distinct representatives) for certain sets of predecessors in a graph § is
equivalent to a condition on the combinatorial dual of the level characteristic A(A4).
Here we shaw these conditions hold if and only if § is well structured, see Theorem
(4.13).

In Section $ we apply the concepts and results developed in Sections 3 and 4 and
we link graph theoretic and spectral properties. We show that every Jordan basis
for E(A) derived from a proper combinatorial set of vectors corresponds to an
anchored chain decompeosition such that the proper combinatorial set corresponds
to the final elements of the chains in the decomposition, see Theorem (5.9). We
show by an example that the converse is false.

In Section 6 we prove the conditions equivalent to 7(A) = A(A) that have been
mentjoned earlier, see Theorem (6.6). One new equivalent condition, for example,
is the existence of a Jordan basis for E(A) derived from a proper combinatorial
set of vectors. Another is that some combinatorial basis for E(A) is a height basis.
Other new equivalent conditions involve level bases, or height bases, and the linear
independence of the fundaments of Jordan sets derived from certain subsets of the
bases. We also show that some conditions that appear to have a similar flavor are in
fact not equivalent to n(A4) = A(A4). Our Theorem (6.6) proves a somewhat stronger
form of a theorem in [1] together with a converse that was conjectured there, see
Remark (6.13). At the conclusion of our paper another conjecture on well structured
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graphs in [1] is proved as a corollary to a result which extends a theorem in [10],
sec our Theorem (6.14) and Corollary (6.15).

This paper and our paper [8] discuss conditions for the equality of the level char-
acteristic and the height characteristic of an M-matrix. A more general question
concerning the relation between the two characteristics for M -matrices is raised in
[14]. Some results for a similar question for general matrices over an arbitrary field
are found in [5] and [3]. We hope that the concepts of height bases, level bases,
peak vectors and bases, and combinatorial vectors and bases, defined in [8] and in
this paper, will prove useful in further study of these questions.

2. NOTATION AND DEFINITIONS

In this paper we always assume that A is an # x n matrix. Most of our results are
on M -matrices (see Definition (2.27)). However some of them and almost all the
definitions and notation in this section hold for general matrices over an arbitrary
field. Some definitions and notation are given in the rest of the papér. Alniost all
the definitions and notation given in this section are given in [8], where some further
explanations may be found.

(2.1) Notation For a positive integer n we denote by (n) the set {1,...,n}.
(2.2) Notation For a set a we denote by |a] the cardinality of a.
(2.3) Notation For the matrix A we denote:

N(A)—the nullspace of A.
n(A)y—1ihe nullity of A (the dimension of N(A).
E(A)—the generalized nullspace of A4, viz. N(A™).
m(A)—the algebraic multiplicity of 0 as an eigenvalue of A (the dimension
of E(A)).
index(4)—the index of 0 as an eigenvalue of A, viz., the size of the largest
Jordan block associated with 0.

(24) Definition An m x n matrix is said to have full column rank if its rank
equals i,

(2.5) Definition Let B and C be m x n matrices. We say that B and C have the
same zero paitern if b;; = 0 if and only if ¢;; = 0 for all i € {(m), j € (n).

(2.6) Definition For a vector x in E(A) we define the height of x, denoted by
height(x), to be the minimal nonnegative integer k such that 4*x =0,

(2.7) Definition Let p = index(A). For i€ (p) let ni(A) = n(A4") — n(A'~1). The
sequence (m(A),...,np(A)) is called the height characteristic of A, and is denoted
by n(A). Normally we write 1; for 1;(A) where no confusion should result.

We remark that in many references the height characteristic of a matrix A is
called the Weyr characteristic of A, e.g. [13}.
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(2.8) Definition Let A be a square matrix and let index(A4) = p.

(i) Let S be a set of vectors in E(A), and let 1 (S) be the number of vectors
in S of height k. We define the height signature 1(S) of S as the p-tuple

N(S)mAS): -+ 1(S))
(ii) A basis B for E(A) is said to be a height basis for E(A) if 7(B) = n(A).

(29) Definition Let A be a singular matrix.

(i) A sequence (x!,...,x‘) of vectors in E(A) is said to be a Jordan chain for
Aif Axt=x"1 i€ {2...,t], and Ax! = 0. We call x* the top of the chain
(xlyepx)

(ii) A basis for E(A) that consists of disjoint Jordan chains for A is said to be a
Jordan basis for E(A).

As is well known, E(A) always has a Jordan basis.

(2.10) Remark Observe that every Jordan basis for A4 is a height basis, but clearly
a height basis need not be a Jordan basis.

We continue with some graph theoretic definitions. All the graphs we deal with
are simple directed graphs.

(2.11) Definition A graph G is said to be a subgraph of a graph H (GCH)if G
and H have the same vertex set, and if every arc of G is an arc of H.

(2.12) Definition Let G be a graph.

(i) Let i be a vertex of G. A vertex j is said to be a predecessor of i if | =i or if
there is a chain from j to i in G. The set of all predecessors of { is denoted
by Ac().

(ii) Let T be a set of vertices in G. We denote by Ag(T) the set | ;. Ac(i)-

(iii) Normally we write A({) and A(T) for Ag(i) and Ag(T) respectively where
no confusion should result.

(2.13) Notation Let G be a graph, and let T be a sef of vertices in G. We denote
by top(T) the set {i € T : i ¢ A(T\{i})}.

(2.14) Definition Let G be an acyclic graph, i.e., a graph that contains no simple
cycle other than loops. Let i be a vertex of G. We define the level of i, level(i), as
the maximal length (number of vertices) of a simple chain in G that terminates at /.
We call the set of all vertices of level j the jth level of G. Let G have q levels, and
let A; be the cardinality of the jth level of G. The sequence (Ay,...,Ag) is called the
level characteristic of G.

Let A4 be a square matrix over some field. As is well known, after performing
an identical permutation on the rows and the columns of A we may assume that
A is in Frobenius normal form, namely a (lower) triangular block form, where the
diagonal blocks are square irreducible matrices.

(2.15) Convention We shall always assume that A is an n x 1 matrix in Frobenius

normal form (A;;);. Also, every n-vector b will be assumed to be partitioned into r
vector components b; conformably with A.
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(2.16) Notation For an n-vector b we denote by supp(b) the set {i € (r) : b; # 0}.

(2.17) Definition ‘The reduced graph R(A) of A is defined to be the graph with
vertices 1,...,r and where (4, ) is an arc if and only if A4;; # 0. Note that R(A) is
acyclic.

(2.18) Definition A vertex i of R(A) is said to be singular if A; is singular. The
set of all singular vertices of R(A) is denoted by S.

(2.19) Definition The singular graph S(A) of A is defined to be the graph with the
vertex set S, and where (7, f) is an arc if and only if { € Ag(4)(j)- Note that S(A) is
a transitive acyclic graph.

(2-20) Definition Let b be an n-vector. The level of b, denoted by level(b), is de-
fined to be the maximal level in S(A) of a singular vertex i such that b; # 0.

(2.21) Definition A vector x € E(A) is said to be a peak vector if height(x) =
level(x). A subset of E(A) that consists of peak vectors is called a peak set of
vectors. A basis for E(A) that consists of peak vectors is called a peak basis for
E(A).

(2.22) Definition The cardinality of the jth level of S(A4) is denoted by A;(A). Let
S(A) have g levels. The level characteristic (A1(A),...,A7(A)) of S(A) is called the
level characteristic of A, and is denoted by A(A). Normally we write }; for A;(A)
where no confusion should result.

(2.23) Convention We shall always assume that the levels of S(A) are Ly,...,Lq.
The level characteristic of 4 will be assumed to be (Ay,...,A¢). The height charac-
teristic of A will be assumed to be (71,...,%p)-

(2.24) Definition
(i) Let S be a set of vectors in E(A), and let A\ (S) be the number of vec-

tors in § of level k. We define the level signature M(S) of S as the g-tuple

A1(SRA2S), s Ag(S))-
(ii) A basis B for E(A) is said to be a level basis for E(A) if A(B) = A(A).

(2.25) Remark Usually we order a level basis such that the levels of the vectors
are non-increasing.

(2.26) Definition A basis B for E(A) Is said to be a height-level basis for E(A) if
B is both a height basis and a level basis for E(A).

(2.27) Definition A Z-matrix is a square matrix of the form 4 = af — P, where a
is a real number and P is a (entrywisc) nonnegative matrix. Such a Z-matrix is an
M-matrix if a is greater than or equal to the spectral radius of P.

(2.28) Remark 1t is well known that for an M-matrix 4 we have p = g, see [12},
[113.

(2.29) Definition A vector b is said to be (strictly) positive (b3 0) if all its entries
are positive.
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(2.30) Definition Let H be a set of vertices in R(A), and let k= |H|. A set of
vectors {x',i € H} is said to be an H-preferred set (for A) if

I:v »0 if fe AR(A)(i)

=0 if f¢AR(A)(i)} ref, jelh

and

—Ax =Zc;kx“', i€H,

ieH
where the cj; satisfy

>0 if ke AR(A)(I)\{i}

. ieH.
cig =0  otherwise
(2.31) Definition Let H be a set of vertices in R(A). An H-preferred set that
forms a basis for a vector space V is called an H-preferred basis for V. An §-
preferred basis for E(A) (if exists) is called a preferved basis for A.

(232) Remark By the Preferred Basis Theorem (see paper [6] and the references
there), if A4 is an M -matrix then there exists a preferred basis for E(A).

3. COMBINATORIAL BASES

3.1) Deﬁhilion Let 4 be an M-matrix, and let i be a singular vertex in R(A).

(i) A vector x in E(A) is said to be an i-combinatorial vector if supp(x) C
Agai)-
(if) An i-combinatorial vector x is said to be a proper i-<combinatorial vector if
x #0.
(iii) A vector in E(A) is said to be a combinatorial [proper combinatorial] vector
if it is an i-combinatorial [proper i-combinatorial] vector for some singular
vertex i.

We remark that an i-combinatorial vector x is defined in [5] to be a weak i-
combinatorial extension,

(3.2) Definition Let A be an M-matrix, and let T be a-set of singular vertices in
R(A).

(i) A set {x':{eT} of vectors in E(A) is said to be a T-combinatorial set if x!
is an i-combinatorial vector, i € T
(ii) A set {x/ :i €T} of vectors in E(A) is said to be a proper T-combinatorial
set if x} is a proper i-combinatorial vector, i € T.
(iif) A set of vectors in E(A) is said to be a combinatorial [proper combinatorial]
set of vectors if it is a T-combinatorial [proper T-combinatorial] set of vectors
for some set T of singular vertices.
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(3.3) Remark Observe that every weakly preferred basis for E(A), as defined in
[5], is a proper S-combinatorial set of vectors.

(3.4) Observation Let x be an i-combinatorial vector. If x is a proper i-combina-
torial vector then we have level(x) = level(i). Otherwise we have level(x) < level(i).

(3.5) Observation Let x be a proper i-combinatorial vector. Then the vector x; is
a nonzero vector in E(A;) = N(Aii). Therefore, since N(A;) is one dimensional,
it follows that x; is a nonzero scalar multiple of the unique unit (length 1) positive
nullvector of A;;.

(3.6) PROPOSITION  Every proper combinatorial vector Is a peak vector.

Proof Let x be a proper i-combinatorial vector. Let B be a preferred basis for
E(A). By Remark (3.3), there exists a proper {~combinatorial vector y in B. Denote
by k the level of i. By observation (3.5) we can find a scalar ¢ such that the vector
z; = (x + ¢y); =0, and hence the vector z = x + ¢y is an i-combinatorial vector but
‘not a proper i-combinatorial vector. By Observation (3.4), the level of z is less than
k, and by Corollary (4.17) in [8), height(z) < k. Since height(y) = k, it follows that
height(x) = height(z — cy) = k = level(x). |

(3.7) COROLLARY Every proper combinatorial set of vectors is a peak set.
The following elementary lemma is proven as Lemma (3.1) in [7].
(3.8) LEMMA  For every vector x we have supp(Ax) C Agcqy(supp(x)).

(3.9) PROPOSITION Let T be a set of singular vertices in R(A), la T = (x' : i€ T}
be a proper T-combinatorial set of vectors, let c;, i € T, be nonzero scalars, and let

y =ZC,'X‘.

ieT
Then:

(i) y; # 0 for every j € top(T).
(ii) level(y) = max(level(x') : i € T}.
(iii) (Ay); = 0 for every J € top(T).
(iv) level(Ay) < level(y).
Proof
(i) Clearly, y; = c;x] # 0 for every j € top(T).
(i) follows from (j).
(iif) follows from Observation (3.5).
(iv) follows from Lemma (3.8) and (jii). |

(3.10) THEOREM Every proper combinatorial set of vectors is linearly independent.

Proof Let T be a proper T-combinatorial set of vectors. It follows from Propo-
sition (3.9) that every nontrivial linear combination of elements of 7° is not equal to
zero, Our claim follows. |
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(3.11) Definition A basis for E(A) which is a combinatorial [proper combinatorial]
set of vectors is said to be a combinatorial {proper combinatorial] basis for E(A).
(3.12) PROPOSITION  Every proper combinatorial set of vectors can be completed to
a proper combinatorial basis for E(A).

Proof Let TCS, and let T be a proper T-combinatorial set of vectors. By
Lemma (3.2) in [S], for cvery i € S there exists a proper i-combinatorial vector x¢ in
E(A).Let S be a proper S-combinatorial set of such vectors. Observe that the union
B of T and the proper (S\T)-combinatorial subset of S is a proper S-combinatorial
set of vectors. Since the cardinality of B is m(A), it follows from Theorem (3.10)
that B is the required basis. |

(3.13) PROPOSION  Every combinatorial basis for E(A) is an S-combinatorial set
of vectors.

Proof Let B be a combinatorial basis for E(A4). By Definition (3.11), Bisa T-
combinatorial set of vectors for some T C §. By Definition (3.2), the cardinality of
B is |T|. Since the cardinality of a basis for E(A) is m(A) = |§], it now follows that
Te=S. n
(3.14) THEOREM Let B = {x! : i € §) be a combinatorial basis for E(A). Then x'
is a proper i-combinatorial vector, i € S.

Proof Let i€ S be of minimal level k such that the i—combinatorial vector x/ is
not a proper i-combinatorial vector. It follows from Observation (3.4) that

k-1 k-1

YA <Y Ai(B),

i=1 =1
which contradicts (4.27) in (8], |
(3.15) COROLLARY A combinatorial basis {x! : | € 5} for E(A) is a proper combi-
natorial basis. '

(3.16) Remark It follows from Theorem (3.14) and Corollary (3.15) that combina-
torial bases and proper combinatorial bases are the same. Therefore, in general we
use only the term “combinatorial basis”.

(3.17) COROLLARY Every combinatorial basis for E(A) is a peak level basis.

Proof Let B be a combinatorial basis for E(A). It follows from Theorem (3.14)
and Corollary (3.7) that B is a peak basis. It follows from Theorem (3.14) and
Observation (3.4) that B is a level basis. |

(3.18) PROPOSITION Let B = {x! :i € S} be a combinatorial basis for E(A) and
let x € E(A). The coefficients c; in the expression

x= z::;xi
i€s
satisfy c; = 0 whenever i ¢ Agia)(supp(x))-
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Proof LetT = {i €S :¢; # 0}. By Proposition (3.9.), top(T) C supp(x). Hence,
T C Apy(top(T)) C Agca)(supp(x)), and the result follows. u

(3.19) THEOREM Let B = {x! : i € §} be a combinatorial basis for E(A) and let
j € 8. The coefficients c; in the expression

Axl = Z(:,x‘

i€T
satisfy ¢; = 0 whenever i = j or i ¢ Agcg(j).

Proof Let T ={i€S:¢; #0}. By Proposition (3.18) we have T C supp(Ax/).
Since, by Lemma (3.8), we have supp(Axl)C Apeay(supp(xf)) = Agigy(j), it now
follows that T C Ag(4)(j). We now show that j ¢ T. Assume that j € T. Then, since
T C Apeay()), it follows that j € top(T"). By Proposition (3. 9) it implies that (Ax/);
# 0. However, it follows from Proposition (3.9.iii) that (Ax ); = 0. This contradic-
tion yields that j ¢ 7. u

(3.20) Remark In view of Remark (3.3), Theorem (3 19) proves that for M -ma-
trices, combinatorial bases and weakly preferred bases coincide.

We continue with the definition of induced matrices, as defined in Definition (7.1)
in {8]. Induced matrices occur in {11] under the name of S-matriccs. We shall use
this definition in the sequel.

(3.21) Definition Let A be an n x n matrix and let B = {x!,...,x™4)} be a basis
for E(A).

R

(i) We define the correspanding basis matrix to be the n x m(A) matrix whose
columns are x!,...,x™4), We normally denote this matrix by B.

(ii) Clearly there exists a unique m(A) x m(A) matrix C such that 4B = BC. We
call this matrix the induced matrix for A by B, and we denote it by C(A,B).

(3.22) Observation (see Observation (6.6) in [8]) Let (Ay,...,Ap) be the level char-
acteristic of an M-matrix A4, and let B be a level basis for 4. We partition C into
a p x p block matrix where the ith diagonal block is 8 Ap4+1-i X Ap+1-; matrix. By
Lemma (4.13) in {8}, for every nonzero element x of E(A) we have level(Ax) <
level(x). Therefore, C in its block form appears as

0 o ... 0
Co-1p 0 0
c=
0
Gp - Cp O

Observe that our indexing of blocks is unusual. However, it is natural for this prob-
lem and it is consistent with the indexing used in {11] and [8). It follows from
the definition of a preferred basis that if B is a preferred basis then the blocks
C12;--.,Cp-1,p have no zero columns.
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We conclude the section with a corollary that follows immediately from Theorem
(3.19) and from the definition of induced matrices.

(3.23) COROLLARY Let B be a combinatorial basis for E(A) and let C = C(A,B).
Then G(C) is a subgraph of S(C), which is a subgraph of S(A) (after relabelling of
vertices).

4. THE HALL CONDITION

In this section we show the relation of the Hall Marriage Condition to the con-
cept of a well structured graph as defined in [1], and to an equivalent condition in
[10].

We first state Hall’s marriage Theorem essentially as it is found in [2, p. 155].

(4.1) THEOREM Let E;,...,Ey be subsets of a given set E. Then the following are
equivalent:

(i) We have

Us

i€a
(ii) There exist distinct elements ey,...,ex of E such that e; € E;, i € (h).
The condition (4.2) is often referred to as the Hall Marriage Condition. We re-

fer to the equivalent condition (ii) as the SDR (system of distinct representatives)
Condition.

(4.3) COROLLARY Ler Q be an m x n matrix, and define the sets E;, j € (n), by
Ej = {i € (m) : qij # 0). Then the following are equivalent:

(i) There exists a nonnegative matrix C of full column rank which has the same
zero pattern as Q.
(ii) There exists a matrix C of full column rank which has the same zero pattern

2lal, forall aC(h). “42)

as Q.
(iii) The sets Ey,...,E, satisfy the Hall Marriage Condition.
Proof

(i) =>(ii) is obvious.

(ii) = (iii) Let C be a matrix satisfying (ii). Then C has a nonsingular n x n sub-
matrix, which implies that there exist distinct ey, ...,e, in {m) such that
Ce;j # 0. Hence also ¢.,; # 0, and the sets Ej,..., E, satisfy the SDR
Condition. Our claim follows by Theorem (4.1).

(iii) =>(i) If the sets Ey,...,E, satisfy the Hall Marriage Condition, then by The-
orem (4.1) we can find distinct ey,...,e, in (m) such that q,,; # 0. We
set c.y =1, j€ (n), we set ¢;j=¢> 0 whenever ¢;; #0 and i £ ¢,
i € {m), ] € {n), and we sct all other entries of C equal to 0. If ¢ is suf-
ficiently small, then it is clear that C has a nonsingular n x 71 submatrix,
and hence C has full column rank. ]
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(4.4) Definition Let S be an acyclic graph. A chain (iy,...,#) is called an anchored
chain if the level of ig is k, k € {f).

(4.5) Definition Let S be an acyclic graph.

(i) A set x of chains in S is said to be a chain decomposition of S if each vertex
of S belongs to exactly one chain in «.
(ii) A chain decomposition & of S is said to be an anchored chain decompasition
of S if every chain in x is anchored.
(iif) S is said to be well structured if there exists an anchored chain decomposition
of §.

We comment that the term “well structured” is essentially due to [1]). An an-
chored chain decomposition of S is called there & covering strategy for S.
In view of Definition (2.11), the following proposition is clear.

(4.6) PROPOSITION Let G be a subgraph of a G". If G is well structured then G'
is well structured. Furthermore, every anchored chain decomposition of G s an an-
chored chain decomposition of G'.

(4-7) THEOREM Let S be an acyclic graph with levels Ly,...,L,, and let L} be a
subset of Ly, k € (g — 1). The following are equivalent:

(i) The sets E! = A()N L}, i € Lg+y, Satisfy the Hall Marriage Condition for all
ke(g-1).
(ii) S is well structured, and there exists an anchored chain decomposition & for S
such that all the elements in Lx\L;, k € (g — 1), are final elements of chains
m K,
Proof
(i) =(ii) Tt follows from (i) that the sets E; = A(i)N Ly, i € Ly 4y, satisfy the Hall
Marriage Condition, for all k € (g — 1). We prove our assertion by in-
duction on q. For g =1 there is nothing to prove. Assume our claim
holds for ¢ <h, h>1, and let g = h. Let S’ be the acyclic graph ob-
tained from S by removing the level L,. By the inductive assumption
there exists an anchored chain decomposition k' for $' such that all
the elements in Li\L}, k € (g — 2), are final elements of chains in x'.
Clearly, all the elements in L,_; are final elements of chains in '. Since
the sets E! = A(i)nL:,_l, i € L, satisfy the Hall Marriage Condition,
it follows from Theorem (4.1) that we can find distinct predecessors in
Ly._, for the elements of L,. Accordingly, we append the elements of
L, to the corresponding chains in ' and we obtain an anchored chain
decomposition x for S which satisfies the conditions in (ii). By Defini-
tion (4.5), S is well structured,
(ii) =(i) This implication follows very easily by induction on the number g of
levels of S, by use of the equivalence of the Hall Marriage Condition
and the SDR Condition. The details are omitted. |

(4.8) Definition Let p = (§sy,...,p4) be a non-increasing sequence of pasitive inte-
gers. Consider the diagram formed by ¢ columms of stars, such that the jth column
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(from the left) has p; stars. The sequence p* dual to p is defined as the sequence
of row lengths of the diagram (read upwards).
The following observation and proposition are well known.

(4.9) Observation Two equivalent definitions of p* are the following:

(i) Let g = (p1,...,48¢) be a non-increasing sequence of positive integers, and let
s = 1. The sequence p* = (u3,...,43) dual to p is defined by

pr=max{ic{t) : 2k}, kels)

(ii) Let p = (p3y,..., ) be a non-increasing sequence of positive integers. The
sequence p* dual to p is the non-increasing sequence of positive integers
contained in (¢), where for every k € (¢t), the number of elements of p* that
arc equal to k is equal to the difference gy — ptx+1 (Where pie4) is defined to
be 0).

(4.10) PROPOSITION Let p* = (p3, ..., p57) be the sequence dual to p = (..., pir)

() prteo b= pg oo+ p
@) ) =p.

(4.11) Definition The length signature h(x) of a set x of chains in § is defined to
be the sequence of the lengths of the chains in x, ordered in a non-increasing order.

(4.12) THEOREM Let § be an acyclic graph with level characteristic X = (Ay,...,Aq)
and let k be a chain decomposition of S. Then the following are equivalent:

(i) x is an anchored chain decomposition of S.
(ii) A is a non-increasing sequence, and h(x) = A°*,

Proof

(i) =(ii) If x is an anchored chain decomposition of § then, in view of Definition
(4.8), it is easy to verify that A(x)* = A, Hence, A is non-increasing. By
Proposition (4.10.ii) it now follows that (k) = A°.

(ii) =(i) Clearly all chains of length q are anchored. Since h(x) = A*, it follows
that the number of such chains is Ag. Therefore, the other chains form a
chain decomposition for an acyclic graph with level characteristic A’ =

© (M~ Agsee A~ Ag), where k is the greatest index such that Ay > Ag.
Since A = h(x)*, it follows from Definition (4.8) that A’ is the dual of
the sequence obtained by eliminating the first A, elements of A(x). Our
assertion now follows using induction. n

(4.13) THEOREM Let § be an acyclic graph with levels L,, ..., L, Then the following
are equivalent.
(1) S is well structured.
(ii) The sets E; = A(i)N Ly, § € Lyyy, satisfy the Hall Marriage Condition, for all
ke{g—1).
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(iii) The level characteristic A of S is a non-increasing sequence, and there exists a
chain decomposition k of S such that h(k) = A°.

Proof

(i) (i) follows from Theorem (4.7) with L} = Ly, k € {g—1).

(i) =>(iii) By Definition (4.5), (i) means that there exists an anchored chain de-
composition of S, and (jii) follows by Theorem (4.12).

(iii) = (i) Let & be & chain decomposition of § such that i(x) = A*. By Theorem
(4.12), x is an anchored chain decomposition of §, and by Definition
(4.5), S is well structured. n

We note that the equivalence of conditions (ii) and (iii) is already proven in [10].
Thus, Theorem (4.13) also follows from our Theorem (4.12) and Theorem 4.4 in
[10], without the use of Theorem (4.7). However, the general case of Theorem (4.7)
in full strength will be applied in the sequel, and it does not follow from Theorem
(4.13).

5. JORDAN BASES DERIVED FROM PROPER COMBINATORIAL SETS

In this section we apply the graph theoretic tools developed in the previous sec-
tion in order to obtain a necessary condition on the tops of the chains in a Jordan
basis, provided the set of tops is a proper combinatorial set of vectors.

(5.1) Definition Let Wy and W, be subspaces of a vector space V. We say that a
vector z in V is in Wy modulo W, if z can be written as z=x + y, where x € W
and y € Wa.

(52) LEMMA Let y!,...,y™ be elements of a Jordan basis B for A, all of same
height t, all tops of chains. Then no nontrivial linear combination of y!,...,y™ is in
Range(A) modulo N(A'~1).

Proof Assume that there exists a nontrivial linear combination y of y!,...,y™
which is in Range(A4) modulo N(A'™Y). Then y = Ax + w, where w € N(4'~1).
Since B is a height basis, it follows from Proposition (3.14) in [8] that the expres-
sion of w as a linear combination of elements of B does not involve elements of
height greater than or equal to ¢, and therefore it involves none of y!,...,y™. Note
that x € E(A). So x can be expressed as a linear combination of elements of B.
Consequently, Ax is a linear combination of elements of B, none of which is a
top of a chain. Therefore, the expression of Ax involves none of y,...,y™. Hence,
the expression of Ax + w involves none of y!,...,y™, which contradicts the equality
y=Ax+w, |

(5.3) PROPOSITION Let B be a height basis for an M-matrix A, and let t be a
positive integer, 1 <t < p. Let x},...,x™ be the elements of B with height t, and let
¥,....¥* be the elements of B with height t — 1. Furthermore, assume that y™*+.,...,y*
are tops of chains in some Jordan basis J for E(A). Suppose that

X
Ax =Y "cuyl +wi,  where wieN(A'Y), ie(m).
j=
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Then the matrix C = (c;;)7' is nonsingular.

Proof Suppose that C is singular and let d be a nonzero m-vector such that
Cd = 0. Define the n-vector x by

m
X = Zdlxi.
i=l
Then x # 0. Also, by Propasition (3.14) in [8], x ¢ N(A4’~!) and hence
Ax ¢ N(A2). (5.4
Note that
m k X
Ax =3 "N diciiyi +v,  where ve N4 (5.5)
i=l j=l
Since Cd = 0 it now follows from (5.5) that

m k
Ax=3" 3" diciyl +v,  where veN(AY). (5.6)

i=] j=m+]

By (5.4) it now follows that

m k
3% dicwy!

i=l j=m+l

is a nontrivial linear combination of y™*1,...,y*, and hence (5.6) is a contradiction
to Lemma (5.2).

‘We continue with the definition of Jordan set derived from-a given set of vectors
in E(A).

(5.7) Definition Let A be a matrix.

(i) Let x be a vector in E(A), and let ¢ = height(x). The Jordan chain (x, Ax,...,
A*2x, A~'x) is said to be the Jordan chain derived from x. The vector
A" 1x is said to be the fundament of x.

(ii) Let S bea set of vectors in E(A). The multi-set which consists of the union
of the Jordan chains derived from the elements of S is said to be the Jordan
set derived from S. The multi-set which consists of the fundaments of the
elements of S is said to be the fundament of S.

(i) Let S be a set of vectors in £(A), and let J be the Jordan set derived from
8. If J is a (Jordan) basis for 4 then we say that J is the Jordan basis for
A derived from S.

(5.8) Observation It is easily shown that the Jordan set derived from S is linearly
independent if and only if its fundament is linearly independent. A related result is
proved in Lemma 2.1 in [1).
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(5.9) THEOREM Let A be an M-matrix and assume that 7(A) = A(A) Let T be a
set of singular vertices. If there exists a Jordan basis J for A derived from a proper
T-combinatorial set of vectors, then there exists an anchored chain decomposition x
of S(A) such that T is the set of final vertices of the chains in k.

Proof Let J be a Jordan basis derived from a proper T-combinatorial set 7.
Let k € (p), and let T; be the set of k-level vertices in T. Since T is the set of
the tops of the chains in J, and since 5(A4) = A(A), it follows that the cardinality
of T iS Tk — M+t = Ak — Aks1, Where 1p41 = Apyg = 0. Let L} = L;\T;. Without
loss of generality we assume L} is indexed by the first Aryy elements of L. By
Proposition (3.12), T can be completed to a combinatorial basis B. Let C be the
induced matrix C(A,B). By Proposition (5.3), the first Aty rows of G+ form
a full column rank matrix for all K € {p — 1). This implies, by Corollary (4.3), that
the sets E; = Agcy(f)N L}, i € Ly +y, satisfy the Hall Marriage Condition, for all
k € {(p —1). By Theorem (4.7), there exists an anchored chain decomposition & for
G(C) such that the elements in Ty = Ly\L}, k € {p), are ﬁnal elements of chams
in k. -

We must still show that T is the set of all final vertices in the chains in x, and
that « is an anchored chain decomposition for S(A4). The first statement follows
since the number of the Jordan chains in J is Ay, and the number of chains in x is
A1. The second statement follows by Proposition (4.6), since by Proposition (3. 23),
G(C) is a subgraph of S(A).

The converse of Theorem (5.9) is false in general. In the following example we
give an M -matrix 4 with 5(A4) = A(A), and a set T of singular vertices, such that
there exists no Jordan basis derived from a proper T-combinatorial set of vectors,
although there exists an anchored chain decomposition « of S(4) such that T is the
set of final vertices of the chains in x.

(5.10) Example Let

0 0000

0 0000
A=]-1 -1 0 0 O
-1 -1 000

-1 -2 000

We have n(A) = A(4) = (3,2). It is easy to see that (3,1), (4,2) and (5) form an
anchored chain decomposition x of S(A), where the set of final vertices of chains
in « is T = {1,2,5}. However, every proper 5-combinatorial vector is of the form
[0 0 0 0 c]7, where ¢ # 0. Since this vector is in Range(4), it follows from Lemma
(5.2) that it cannot be a top of a Jordan chain in a Jordan basis.

6. EQUALITY OF THE HEIGHT AND THE LEVEL CHARACTERISTICS

In this section we add twenty three statements equivalent to the conditions in
Theorem (8.1) in [8]. The section in concluded with an affirmative answer to a
conjecture in [1).
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(6.1) Definition Let A be a square matrix and let B be a height basis for E(A). A
Jordan basis for A that is derived from a subset of B is called a Jordan basis linked
to B.

(6.2) Observation Let J be a Jordan basis linked to a height basis 8, and let S
be the subset of B such that 7 is derived from S. Then S is the set of the tops
of the Jordan chains in 7, and hence 7;(S) = M +1(A) — i (A), k € {p~1), and
1p(5) = 1p(A).

(6.3) Remark Jordan bases linked to height bases are defined in Definition (6.7) in
[8]. Proposition (6.1) in (8] proves that for every height basis B, there exists a Jordan
basis 7 that is linked to B. The proof of that proposition describes the construction
of sucha J.

(6.4) Definition Let S be a set of vectors in E(A). We define the level sum of S
to be the sum of the levels of the elements of S.

(6.5) PROPOSITION If x € E(A) is a peak vector then Ax is a peak vector.

Proof By two results in [8), Lemma (4.13) and Corollary (4.17), we have level(x)
—1 = height(x) — 1 = height(Ax) < level(Ax) < level(x), which yields that helght
(Ax) = level(Ax).

We now come to the main result of the section, which adds 23 Conditions to
Theorem (8.1) in [8].

(6.6) THEOREM Let A be an M-matrix. The following are equivalent:

1. 1(A) = MA).
2. Every vector in E(A) is a peak vector.
3. Every basis for E(A) is a peak basis.
4. Every height basis for E(A) has a peak subset S with level sum m(A) such that
the fundament of S is linearly independent.
S. Every height basis for E(A) has a peak subset S such that the Jordan set derived
from § is a Jordan basis for A.
6. Some height basis for E(A) has a peak subset S with level sum m(A) such that
the fundament of S is linearly independent.
7. Some height basis for E(A) has a peak subset S such that the Jordan set derived
from § is a Jordan basis for A.
. 8 Every level basis for E(A) has a peak subset S with level sum m(A) such that
the fundament of S is linearly independent.
9. Every level basis for E(A) has a peak subset S such that the Jordan set derived
from 8 is a Jordan basis for A.
10. Every level basis for E(A) has a subset S with level sum m(A) such that the
fundament of S is linearly independent.
11, Every level basis for E(A) has a subset S such that the Jordan set derived from
S is a Jordan basis for A.
12. Every combinatorial basis for E(A) has a subset S with level sum m(A) such
that the fundament of S is linearly independent,
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13. Every combinatorial basis for E(A) has a subset S such that the Jordan set
derived from S is a Jordan basis for A.

14. Some combinatorial basis for E(A) has a subset S with level sum m(A) such
that the fundament of S is linearly independent.

15. Some combinatorial basis for E(A) has a subset S such that the Jordan set

- derived from S is a Jordan basis for A.

16. Some level basis for E(A) has a peak subset S with level sum m(A) such that
the fundament of S is Linearly independent.

17. Some level basis for E(A) has a peak subset S such that the Jordan set derived
from S is a Jordan basis for A.

18. Some peak basis for E(A) has a subset S with level sum m(A) such that the
fundament of S is linearly independent.

19. Some peak basis for E(A) has a subset S such that the Jordan set derived from
S is a Jordan basis for A.

20. There exists a peak set S with level sum m(A) such that the fundament of S is
linearly independent.

21. There exists a Jordan basis for A which is derived from a peak subset of E(A).

22, Some height basis for E(A) is a peak basis.

23. Every height basis for E(A) is a level basis for E(A).

24. Every level basis for E(A) is a height basis for E(A).

25. Some preferred basis for E(A) is a height basis for E(A).

26. Some combinatorial basis for E(A) is a height basis for E(A).

21. There exists a Jordan basis for A which is derived from a proper combinatorial
set of vectors.

28. There exists a nonnegative height-level basis for E(A).

29. There exists a nonnegative height basis for E(A).

30. There exists a nonnegative Jordan basis for —A.

31. Forall j, j € (p), there exists a nonnegative basis for N(A?).

32. For every level basis B for E(A) with induced matrix C = C(A,B) the block
Gix+1 has full column rank for all k € {p —1).

33, There exists a level basis B for E(A) with induced matrix C = C(A,B) such
that for all k € {p — 1) the block Cy+1 has full column rank,

34, For every combinatorial basis B for E(A) there exists a proper T-combina-
torial subset of B with linearly independent fundament, where T is the set
of final vertices of the chains in some anchored chain decompasition of
S(A).

35. There exists a proper T-combinatorial set of vectors with linearly independent
fundaments, where T is the set of final vertices of the chains in some anchored
chain decomposition of S(A).

36. There exists a proper T-combinatorial set of vectors with linearly independent
fundament, where the sum of the levels of the vertices in T is m(A).

Proof The equivalence of Conditions (1), (2), (3), (22), (23), (24), (25), (28),
(29), (30), (31), (32), and (33) is proven in Theorem (8.1) in [8]. Therefore, it is
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enough to prove the implications:

@Gy ©e@: @«0 1«17 18 19).
()= @=6)= (20)=(21)=(22),
(H&(24) = (8) = (10) => (12) = (14) = (16) => (20),
9) = (11)= (13)= (15) = (A7),
(14) = (18) = (20),
(25)= (26) = 2N = (21),
(13)= (34) = (35) = (36) > (20),

(4) & (5); (6) < (7); (8) & (9); (16) < (17); (18) <> (19). All these equivalences fol-
low from Observation (5.8).

(3) = (4). Let B be a height basis for E(A4), and let J be a Jordan basis linked to
B. Since by (3) B is a peak basis, it follows from Observation (6.2) that the set S
of the tops of the chains in 7 satisfies the conditions of (4).

(4) = (6) = (20) is trivial.

(20) = (21). Let S satisfy the conditions in (20). By Observation (5.8), the Jordan
set J derived from S is a linearly independent set. Furthermore, since 7 is de-
rived from the peak set $ with level sum m(A), the cardinality of J is m(A), and
hence J is a Jordan basis for A.

(21) = (22). Let J be a Jordan basis for 4 which is derived from a peak subset of
E(A). By Proposition (6.5), J is a peak basis, and (22) follows.

(4)&(24) = (8) = (10) are all immediate.

(10) => (12) follows since every combinatorial basis is a level basis.

(12) = (14) is triviak

(14) = (16) follows since every combinatorial basis is a peak level basis.

(16) = (20) is immediate,

(9) = (11) is trivial.

(11) => (13) follows since every combinatorial basis is a level basis.

(13) = (15) is trivial

(15) = (17) follows since every combinatarial basis is a peak level basis.

(14) = (18) follows since every combinatorial basis is a peak basis.

(18) = (20) is trivial.

(25) = (26) is trivial since a preferred basis is a combinatorial basis.

(26) = (27). Let B be a combinatorial basis for 4 which is a height basis. Clearly,
every Jordan basis linked to B satisfies (27).

(27) = (21) follows since every proper combinatorial set is a peak set.

(13) = (34). Let B be a combinatorial basis for E(A4), and let S be a proper T-
combinatorial subset of B such that the Jordan set derived from S is a Jordan
basis for A. Then the fundament of S is linearly independent. Furthermore, by
Theorem (5.9) there exists an anchored chain decomposition & of S(A) such that
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T is the set of final vertices of the chain in K.

(34) = (35) is trivial.

(35) => (36). Clearly, if T is the set of final vertices of the chains in some chain de-
composition of S(A) then the sum of the levels of the vertices in T is m(A).

(36) = (20) follows since a proper combinatorial set is a peak set, and since the
level of a proper i-combinatorial vector is equal to the level of i. |

(6.7) Remark The following four conditions hold for every M -matrix A, and hence
they are not equivalent to the conditions in Theorem (6.6),

(a) Every height basis for E(.A4) has a subsct S such that the Jordan set derived
from § is a Jordan basis for A4.
(b) Some height basis for E(A) is a level basis for E(A).
(c) Some level basis for E(A) has a subset S such that the Jordan set derived
from S is a Jordan basis for A4.
(d) Every combinatorial basis for E(A) is a level basis for E(A).
Condition (a) holds for every M-matrix A, since by Proposition (6.1) in [8], for
every height basis B for E(A) there exists a Jordan basis linked to B.
Condition (b) holds for every M-matrix, as proven in Corollary (5.6) in [8].
It follows from Conditions (a) and (b) that Condition (c) holds for every M-
matrix.
Condition (d) is proven in Corollary (3.17).

(6.8) Remark By Theorem (6.6), the following condition follows from Condi-
tion (1).

(c) Some level basis for E(A) has a subset S with level sum m(A) such that the
fundament of S is linearly independent.

However, we do not have (¢) =-(1) in general, as demonstrated by the matrix

0 00
A= 0 00
-1 -1 0

Here we have A(A) = (1,2) and 1(A4) = (2,1). The vectors [1 0 0]7, [1 —1 O],
and [0 0 1]7 form a level basis B for E(A). The last two vectors have level sum 3
(= m(A)) and have a linearly independent fundament. Yet, A(A) # n(A).
(6.9) Remark The following condition implies Condition (19) in Theorem (6.6).
(f) Every peak basis for E(4) has a subsct S such that the Jordan set derived
from S is a Jordan basis for A.

However, Condition (f) is not implied in general by the conditions in Theorem
(6.6), as follows from Theorem (6.12) below.

(6.10) PROPOSITION Every basis for E(A) has a subset S of v, but no more, p-
height vectors, such that the fundament of 8 is linearly independent.
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Proof Clearly, every set S of p-height vectors in E(A) is linearly independent
modulo N(AP~!) if and only if the fundament of S is linearly independent. Let B
be a basis for E(A). Since the p-height vectors in B span E(A) modulo N(AP~1),
and since the dimension of E(A) modulo N(A?~") is ,, it now follows that we can
find a set S of 5, but no more, p-height vectors such that the fundament of S is
linearly independent. n

(6.11) LEMMA There exists a peak basis B for E(A) such that all the elements of B
are of height p.

Proof Thke a preferred basis for E(A) and then add one of the p-level vectors to
all the others to obtain a new basis B for E(A). Then B contains only nonnegative
vectors, and hence, by Corollary (4.11) in [8}, B is a peak basis. Also, all the vectors
in B are of level p. |

(6.12) THEOREM Let A be an M-matrix, and let 71 = m(A)/p. The following are
equivalent:

(i) Every peak basis for E(A) has a subset S such that the Jordan set derived
from & is a Jordan basis for A4.

(ii) Some peak basis B for E(A), such that all the elements of B are of height p,
has a subset S such that the Jordan set derived from S is a Jordan basis

for A.
(iii) m =m.
(i) 9(A4) = MA) = (m,m,...,m).
) np =71
Proof

(i) =(ii) is trivial, in view of Lemma (6.11).

(ii) = (iii) Let B be a peak basis for E(A), such that all the elements of B are
of height p. If therc exists a subset S of B such that the Jordan set J
derived from § is a Jordan basis for A, then clearly the number 7 of
Jordan chains in J is equal to m(A)/p = m.

(iii) =(iv) Let i = m. Since n(A) is a non-increasing sequence, and since ny +
-+ 1, = m(A) = pm, it follows that (A) = (1,7, ...,7). By Theo-
rem (3.7) in [3] we have max{}; : i € (p}} <™. Since Ay +:-- +Ap =

. w. . i(A) = pmi, it follows that M(A) = (m,1,..., 7).

(iv) =(v) is trivial.

(v) =(i) Assume that 1, = 7. Let B be a peak basis for E(A). By Proposi-
tion (6.10) let S be a set of M p-height vectors in B such that the
fundament of S is linearly independent. Since the level sum of § is
#p = m(A), it follows from Observation (5.8) that the Jordan set de-
rived from S is a Jordan basis for A. n

We now explain the relation of Theorem (6.6) (and Theorem (5.9) used in the
proof of Theorem (6.6)) to the results in [1).

(6.13) Remark The paper [1] investigates Rothblum bases, which are a special case
of combinatorial bases. Using our terminology, Theorem 3.4 in [1] can be stated as:
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(i) If there exists an anchored chain decomposition of S(A) such that for some
Rothblum basis R for E(A), the fundament of the subset of R that corresponds
to the final vertices of the chains in k is linearly independent, then there exists
a nonnegative Jordan basis for —A.

(ii) If there exists a nonnegative Jordan basis for —A, then there exists a set T of
singular vertices with level sum m(A) and a proper T~combinatorial set T of
Rothblum vectors with linearly independent fundament.

The converse of part (i) is also conjectured in [1].

Observe that part (i) follows immediately from the more general implication
(35) =(30) in Theorem (6.6). Part (ii), as well as the converse of part (i), follows
from the stronger result (30) = (34) in Theorem (6.6).

Let S be a transitive acyclic graph. In {11] the authors prove necessary and suffi-
cient conditions on § such that all M-matrices A4 with S(A4) = S satisfy §(4) = A(A),
see also [14]. We conclude the paper with a companion result.

(6.14) THEOREM Let S be a transitive acyclic graph, Then the following are equiva-
lens: ’

(i) There exists an M-masrix A with S(A) = S such that n(A) = A(A).
(ii) The graph S is well structured.
(iiiy The sets E; = A({)N Ly, i € Li+y, satisfy the Hall Marriage Condition for all
ke{qg-1).
Proof ,
(i) =(ii) By the implication (1) =(35) in Theorem (6.6), if (i) holds then there
exists an anchored chain decomposition of S.
(i) «(iii) follows from Theorem (4.7) with L} = L;.
(iii) = (i) Let S be a weli structured graph with level Ly,...,L,. Let @ be a
matrix such that G(0) is equal to S with its Joops removed. Then Q is
a strictly lower triangular matrix.-Let |L;| = Az, k € (p), and partition
Q in the same manner as the matrix C in Observation (3.22). Let k €
{g — 1) and let F be the matrix Q4 4 +1. Define

Ej={ic (M) : fi; # 0} = A()NLy, J € Lgsy.

Since § is well structured, it follows by Theorem (4.7) with L} = L,
that the sets Ej, j € Ly4y, satisfy the Hall Marriage Condition. By
Corollary (4.3) there exists a nonnegative matrix Hj, which has the
same zero pattern as Qy 441, such that Hi Is of full column rank. Let
A be any nonpositive matrix partitioned conformably with Q such that
G(A) = G(Q) and A 4+1 = —Hj} for all k € (p — 1). Observe that A4 is
an M -matrix, that the standard basis B of unit vectors is a level basis
for A, and that C(A,B) = A. By the implication (33) =>(1) in Theorem
(6.6) we obtain (i). |

We note that the equivalence of conditions (i) and (jii) is already proven as The-
orem (3.2) in {10]. We have provided a proof for the sake of completeness, and as
an application of Theorem (6.6).
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As a corollary we obtain the following affirmative answer to the conjecture that
concludes [1]. The corollary follows immediately from Theorems (6.6) and (6.14)
above.

(6.15) COROLLARY Let A be an M-matrix. If there exists @ nonnegative Jordan ba-
sis for — A then S(A) is well structured.
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