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CLASSIFICATIONS OF NONNEGATIVE MATRICES 
USING DIAGONAL EQUIVALENCE· 

DANIEL HERSHKOWITZt, URIEL G. ROTHBLUMt, AND HANS SCHNEIDER§ 

Abstract. This article studies matrices A that are positively diagonally equivalent to matrices that, for 
given positive vectors u, v, r, and c, map u into r, and where AT map v into c. The problem is reduced to 
scaling a matrix for given row sums and column sums, and applying known results for the latter. Further 
classifications that use these results are investigated. 
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). Introduction. The problem of examining matrices that map a given n-dimensional 
vector into a given m-dimensional vector underlines many important issues in linear 
algebra. For example, the assertion that the row sums and/or the column sums of a 
matrix A are given by vectors rand c, respectively, means that A maps e into rand/or 
that AT maps e into c, where e denotes the vector of appropriate dimension all of whose 
coordinates are 1. Also, the statement that a square matrix A has a right eigenvector u 
and a left eigenvector v corresponding to a nonzero eigenvalue X, means that A/X maps 
u into u and that AT / X maps v into v. Another example is the statement that the null 
space of a matrix A contains the vector x, which means that A maps x into the zero 
vector. 

The purpose of this paper is to study matrices that are positively diagonally equivalent 
to nonnegative matrices A that map u into r, and where AT map v into c for given positive 
vectors u, v, r, and c. We show that, in general, the set of such matrices can be represented 
as the set of matrices that are positively diagonally equivalent to nonnegative matrices 
having prespecified row sums and column sums. We then use a known characterization 
of the latter class to obtain a characterization of the former class. We also characterize 
matrices in the intersection, as well as in the union of these classes, over all possible 
choices of the vectors u, v, r, and c for which these sets are nonempty. We also obtain 
a special characterization for the eigenvector problem, where m = n, u = r, and v = c. 

2. Notation and definitions. 
Notation 2.1. Let m and n be positive integers. We denote by 
( n ), the set { 1, 2, .. . , n } ; 
R ~, the set of all nonnegative m X n matrices; 
R ~, the set of all positive n X 1 column vectors; 
en, the n X 1 column vector all of whose components are 1. 
Notation 2.2. For a set a we denote by I a I the cardinality of a. 
Notation 2.3. Let A be an m X n matrix and let a and f3 be nonempty subsets of 

(m) and (n), respectively. We denote by A[alf31 the submatrix of A whose rows and 
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columns are indexed by the elements of a and {J, respectively, in their natural order. 
Also, we denote by a' and (J' the sets (n) \a and (n) \(J, respectively. 

Notation 2.4. Let x be an n X 1 column vector and let a s: (n). We denote by x .. 
the subvector of x whose coordinates are indexed by the elements of a. 

Notation 2.5. Let m and n be positive integers, let u, c E R~, and let v, r E R~. 

We denote 

Smn(r, c) = Fmn(en, em, r,c). 

In the case that m = n we denote 

Enn(u, v) = Fnn( u, v, u, v) . 

Remark 2.6. Observe that Smn(r, c) is the set of all m X n nonnegative matrices 
with row sums r .. ... , rm and column sums c .. . .. , Cn. The set Enn(u, v) consists of 
all n X n nonnegative matrices with eigenvalue I, where u and v are the corresponding 
right and left eigenvectors. 

Notation 2.7. Let ube a vector. We denote by Uthediagonal matrix whose diagonal 
elements are u., ... , Un. Similar relations hold between v, r, c and V, R, C respectively. 

DEANITION 2.8. A diagonal matrix is said to be positive diagonal if it has positive 
diagonal elements. 

DEANITION 2.9. Let A and B be m X n matrices. We say that A and B are positively , 
diagonally equivalent if there exists positive diagonal matrices D E R'!2 and E E R~ 

such that A = DBE. 
Notation 2.10. Let u,cER~ and let v,rER~. We denote the set of all 

B E R~8 such that B is positively diagonally equivalent to some A E Fmn(u, v, r, c) by 
F~n(u, v, r, c). Also, we use the following notation: 

S~n(r, c) =sF~n(en, em, r, c). 

and in the case that m = n 

Notation 2.11. Let A and B be m X n matrices. We denote by A 0 B the Hadamard 
product of A and B, viz., the m X n matrix Csuch that cij = aijbij, i E (m ),j E (n). In 
particular, this notation applies when A and B are vectors. Obviously, the Hadamard 
product is commutative. 

DEANITION 2.12. An m X n matrix A is said to be chainable if it has no zero row 
or column, and if for every pair of nonempty proper subsets a and {J of ( m) and (n), 
respectively, A [a I {J] = 0 implies A [a' I (J'] + O. 

DEANITION 2.13. Let m and n be positive integers, let a .. ... , ap be nonempty 
pairwise disjoint subsets of (m) such that ' Ufa. aj = (m), and let {J., ••• , {Jp be 
nonempty pairwise disjoint subsets of ( n) such that uf _ • {Jj = (n). An m X n matrix 
A is said to be a (rectangular) direct sum of A [a.! {J.], ••• , A[ap I {Jp] if A raj I (Jj) = 
o for all i, j E (p), i + j . 

We comment that every rectangular matrix having no zero row or zero column is 
a (rectangular) direct sum of chainable matrices A [aj, {J;] for some sets a., ... , ap that 
partition (m), and for sets {J., ••• , (Jp that partition (n). 

3. The classes F:n(u, v, r, c), S:'(r, c), and E:"(u, v). 
LEMMA 3.1. Let A E R~, let u, cE R~ and let v, rE R~. Then A E Fmn(u, v, r, c) 

if and only if VAU E Smn(r 0 v, co u). 
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Proof The statement A E Fmn(u, v, r, c) means 

(3.2) e'!,VA=e!C, 

while the statement V AU E Smn(r. V, c. u) means 

(3.3) e'!,VAU=e!CU. 

The equivalence of(3.2) and (3.3) is clear. 0 
COROLLARY 3.4. Let u, c E R~ and let v, r E R~. If Fmn(u, v, r, c) is non empty 

then vTr = cTu. 
Proof The result follows directly from Lemma 3.1 and the corresponding standard 

result concerning the transportation problem. 0 
COROLLARY 3.5. Let AER~8, let u,cER~, and let v,rER~. Then AE 

F!n(u, v, r, c) if and only if A E S!n(r. v, c· u). 
COROLLARY 3.6. Let A E R~ and let u, v E R~. Then A E E~n(u, v) ifand only 

if A E S!n(u • v, u 0 v). 
The following theorem is proved in [3] as Theorems 3.9 and 4.1. We state it here 

in a slightly different way. 
THEOREM 3.7. Let A E R'!:'8 have no zero row or zero column, let c E R~, and let 

r E R ,!:,. Then we have the following: 
(i) When A is chainable, then A E S!n( r, c) if and only if for every pair of non

empty proper subsets a and f1 of ( m) and ( n) we have 
, 

A[alt1.l=O and A[a'If1']~O=> L rj< L Cj. 
;Eer iE/J' 

In this case, there exist unique (up to scalar multiplication) positive diagonal matrices 
D and E such that DAE E Smn(r, c). 

(ii) A E S!n (r, c) if and only if A is a direct sum of chainable matrices A [aj I f1;], 
i = 1, ... ,p, such that 

iE(p). 

(iii) If A E S!,n(r, c) then there exists a unique matrix in Smn(r, c) which is positively 
diagonally equivalent to A . 

Remark 3.8. Statement (iii) in Theorem 3.7 follows immediately from statement 
(ii). Observe that in statement (iii) we do not assert uniqueness of the positive diagonal 
matrices D and E such that DAE E Smn(r, c), but the uniqueness of the matrix DAE. 

We now use our results in order to generalize Theorem 3.7. The following result 
also generalizes Theorem 3.10 of [I] and Theorem 3.2 of [2]. 

THEOREM 3.9. Let A E R'!:'8 have no zero row or zero column, let u, c E R~, and 
let v, r E R ~. Then we have the following: 

(i) When A is chainable then A E F!n(u, v, r, c) if and only iffor every pair of 
non empty proper subsets a and f1 of ( m) and ( n) we have 

A[alf1] =0 and A[a'If1'] ~O=> v!r", <c},up'. 

In this case, there exist unique (up to scalar multiplication) positive diagonal matrices 
D and E such that DAE E Fmn( u, v, r, c). 

(ii) A E F!'n(u, v, r, c) if and only if A is a direct sum of chainable matrices 
A[a·IR.] i= 1 ... p such that I fJl , , " 

iE(p). 
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(iii) If A e F~,,(u, v, r, c) then there exists a unique matrix in Fm,,(u, v, r, c) which 
is positively diagonally equivalent to A. 

Proof The assertion follows directly from Corollary 3.5 and Theorem 3.7. 0 
In view of Corollary 3.4, statements (i) and (ii) of Theorem 3.9 can be combined 

and restated as Theorem 3.10. 
THEOREM 3.10. Let A e R~, have no zero row or zero column, let u, c e R~, and 

let v, r e R ~. Then A e F~" (u, v, r, c) if and only if/or every pair 0/ nonempty proper 
subsets a and /3 0/< m) and < n), respectively, we have 

A[aI.8] = 0 and A[a'I/3'] +0 = v!ra<cJ,up., 

A[aI.8] = 0 and A[a'I/3'] = 0= v!ra =cl·up" 

4. The classes nF:', UF:', ns:., US:", nE:"n, and UE:"n. 
Notation 4.1. Let m and n be positive integers. We denote the following: 

nF~II= n F~,,(u,v,r,c), 
Il,ceR=' 
v,rER~ 

uT c_I1Tr 

UF~II = U F~II(u, v,r,c), 
u,cER~ 
v.reR~ 

nS~II= n S~II(r,c), 
ceR~ 
reR: 

e~c=- e~ 

US~II= U S~II(r,c), 
ceR=. 
reRf 

nE:" = n E:II ( u, v), 
u,vER~ 

UE:" = U E:II (u, v). 
u,veR~ 

THEOREM 4.2. Let A e R~. Then we have the/ollowing: 
(i) A e n F~" if and only if A has no zero entries. 

(ii) A e UF~" \nF~" if and only if A has at least one zero entry but there is no 
zero row or zero column in A . 

(iii) A ~ U F~" if and only if A has at least one zero row or zero column. 
Proof (i) Let A e R~. If A has no zero entries then Theorem 3.10 immediately 

implies that A e nF~II' Conversely, we show that if au = 0 for some i e < m) and j e 
<n), then A ~ nF~II' We choose u, c e R~ with UjCj = i and UTC = 1, and v, r e R~ 
with Vjrj = i and vTr = 1. Then for a = {i} and (3 = {j} we have that 

Since A[al{3] = 0 it now follows from Theorem 3.10 that A ~ F~II(u, v, r, c). 
(ii) Let A e UF:'" \nF~". By (i), A has at least one zero entry. Since A belongs 

to some F~" (u, v, r, c), where u, v, r, c are strictly positive vectors, it follows that A has 
neither a zero row nor a zero column. Conversely, if A has a zero entry but no zero row 
or zero column, then by (i), A ~ nF~". Moreover, A e Fm"(e,,, em, r, c), where rand c 
are, respectively, the strictly positive vectors of row sums and column sums of A. 

(iii) This equivalence follows directly from (i) and (ii). 0 
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The next theorem shows that the classifications with respect to S:'n and F:'n 
coincide. 

THEOREM 4.3. We have nS:'n = nF:'n and US:'n = UF:'n. 
Proof. Trivially, nF:'n S; nS:'n and US:'n S; UF:'n. The reverse inclusions follow 

immediately from Corollary 3.5. 0 
Recall that a square matrix is said to be completely reducible iffor some permutation 

matrix P, the matrix PApT is a direct sum of irreducible matrices. 
THEOREM 4.4. Let A E R~. Then we have thefol/owing: 

(i) A E nE~n if and only if A is completely reducible and the diagonal elements 
of A are positive. 

(ii) A E UE~n \nE~n if and only if A is completely reducible, au = 0 for some i E 

(n), and A has no zero row or zero column. 
(iii) A fJ. UE~n if and only if either A is not completely reducible or A has a zero 

row or zero column. 
Proof. Since the conditions in (i)-(iii) are mutually exclusive and collec

tively exhaustive, it is enough to prove the "if" part in each of the three assertions. 
(i) Suppose that A is completely reducible with positive diagonal elements. Let 

u, V E R ~ and let a and fl be nonempty proper subsets of ( n ). Suppose that 

(4.5) A[alfl]=O. 

Also, suppose that 

(4.6) A [a' I fl'] + O. 

Since A has positive diagonal elements it follows from (4.5) that a n fl = 0, i.e., a S; 

(l'. We claim that a is a proper subset of fl'. Suppose to the contrary that a = fl'. Then 
(4.5) and (4.6) imply that A [fl' I fl] = 0 and A [fl I fl'] + 0, contradicting the assumption 
that A is completely reducible. Thus, l' = a U fl is a proper subset of (n) and, since 
an fl = 0, we have 

(4.7) 

implying that 

(4.8) 

V!Ua+V}Up = V~U'Y<VTU, 

Now suppose that (4.5) holds and that 

(4.9) A[a'lfl']=O. 

As before, (4.5) implies that a S; fl'. Similarly, (4.9) implies that a'S; fl, i.e., fl' s; a. So, 
a = fl', and hence v!ua = v},up'. It now follows from Theorem 3.10 that 

A E F:'n(u, v, U, v) = E~n( U, v). 

(ii) Suppose that A is completely reducible, that au = 0 for some iE (n), and that 
A has no zero row or zero column. We choose u, v E R~ with VjUj = i and vTu = 1. 
Then for a = fl = {i} we have 

v!ua= 'i> i =vTU-VjUj=v}.up" 

Therefore,) by Theorem 3.10 and Notation 2.10 we have A fJ. E~n(u, v). We now have 
to show that A E U E~n. Since A is completely reducible, it follows that A is a direct sum 
of irreducible matrices. Furthermore, since A has no zero row or zero column, each of 
these irreducible matrices is nonzero and thus has a positive spectral radius. It now 
follows that we can find a matrix B which is positively diagonally equivalent to A, where 
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B is a direct sum of irreducible matrices with spectral radii 1. By the Perron-Frobenius 
theory for nonnegative matrices it follows that for some u, v E R~ we have Bu = u and 
v T = V T B, i.e., BE Enn(u, v). Hence A E E:n(u, v) s;; UE:n. 

(iii) In the case that A has a zero row or zero column the assertion is clear. Suppose 
that A is not completely reducible. Then there exist nonempty subsets a and 13 of ( n > 
with a = 13', such that A[alp] = 0 and A[a'ip'] ". O. Since a = 13', for every u, v E 

R~ we have v!u .. = v1,up'. By Theorem 3.10 it now follows that A ~ E:n(u,v). 0 
Our final observation shows that the requirement u = v in E:n(u, v) or r = c in 

S!.n(r, c) does not yield new classifications. Specifically, let 

nE: = n E:n(u, u), 
lIeR~ 

UE: = U E:n(u,u), 
UER~ 

ns: = n S:n(r,r), 
'ER~ 

us: = U S:n(r,r). 
'ER~ 

THEOREM 4.10. We have 

us: = UE: = UE:n. 

Proof. For u E R't, let U(l/2) be the vector in R't with (U(I/2»; = (U;)1/2, i = 1, 
... , n. Then Corollary 3.6 shows that S:n(u, u) = E:n(u(l!2), U(l/2», implying that 
nE: s;; ns; and US: s;; UE:. Next, the inclusions nE:n s;; nE: and UE: s;; UE:n 
are immediate, and the inclusions ns: s;; nE!, and UE:n S;; US: follow directly from 
Corollary 3.6. Thus, the conclusions of our theorem have been established. 0 
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