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Let VI and V2 be compact subsets of m x n nonnegative matrices with prescribed row 
sums and column sums. Given A in V2 , we study the quantity 

JI(VI ; A) = max{b: A - bB is nonnegative for some Bin Vd 

and the matrices B in VI that satisfy A - JI(VI ; A)B is nonnegative. The quantity 

JI*(VI , V2 ) = min{JI(V1; A): A E V2 } 

is determined. Using the results obtained, we give a lower bound for the permanent of 
nonnegative matrices. Moreover, we study the scaling parameters of nonnegative 
matrices. An upper bound and an extremal characterization for their product are given. 

1. INTRODUCTION 

Let A be an m x n matrix with row i of sum rj (i = 1, . . . , m) and 

t Presented at the Third Haifa Matrix Theory Conference, January 1987. 
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column j of sum cj (j = 1, ... ,n). We call r = (r1 , • •• ,r m) the row sum 
vector and c = (c 1 , ••• ,cn) the column sum vector of A. We denote by 
U(r, c) (resp. U(R, C» the class of all m x n nonnegative matrices with 
row sum vector r (resp. R) and column sum vector c (resp. C). Several 
authors [3, 6, 8] have studied the following problems. 

(I) Given U(r, c) and a matrix A in U(R, C), determine the quantity 

Jl(U(r, c); A) = max{b: A - bB ~ 0 for some BE U(r, c)}, 

where a matrix D ~ 0 means that D is nonnegative. 
(II) Given U(r, c) and U(R, C), determine the quantity 

Jl*(U(r, c), U(R, C» = min{Jl(U(r, c); A): A E U(R, C)}. 

In particular, Cruse [6] (see also [3]) has given a complete answer to 
question (I), and Fulkerson [8] has solved problem (II) for certain sets of 
0-1 matrices. The purposes of this note are as follows. For problem (I) 
we study the matrices B in U(r, c) such that A - Jl(U(r, c); A)B is 
nonnegative. We give a complete answer to question (II) and consider 
similar problems for sets of integral matrices. The results are then 
applied to obtain a lower bound for the permanent of nonnegative 
matrices. Bregman [4] (see also [1]) has also obtained a lower bound for 
permanent, we compare our result with his. 

Given an n x n nonnegative matrix A = (aij), the positive numbers Xj 

and Yj (1 ~j:::; n) are called the scaling parameters of A if the matrix 
(ajjx;y) is doubly stochastic. As a second application of our results we 
study the scaling parameters of nonnegative matrices. An upper bound 
and an extremal characterization for their product are obtained. 

Clearly U(r, c)is nonempty for r, c ~ Oifand only ifDn= 1 rj = rj= 1 cj • 

In the rest of the paper we always assume r = (r l' ... , r m) and c = 
(c 1 , .•. ,cn), where rj and cj are positive numbers satisfying rT= 1 rj = 
rj= 1 cj • When no confusion should arise, we write Jl(A)for Jl(U(r, c); A), 
and Jl* for Jl*(U(r, c), U(R, C». 

2. DECOMPOSITION OF MATRICES 

Let <n) denote the set {I, ... , n}. Suppose J S <m), J S <n) and 
A = (aij)E U(R, C). We use the following notation: 
A[I, J]: the submatrix of A lying in all rows i and all columns j, with 

iEJ andjEJ, 
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AI,J: the sum of the entries of A[I, J], 
RI: the sum of those Ri with i E I, 
CJ : the sum of those C) withjEJ, 
1': the complement of I in <m), 
J': the complement of J in <n). 

Cruse [6] (see also [3]) has proved 

THEOREM 2.1 Given U(r,c) and AE U(R, C), we have 

J.l(U(r, c); A) = min{AI,J/(rl - cJ'): 1£ <m), 

J c <n), r l - CJ' > O}. 

From Theorem 2.1, one easily deduces the following corollary. 
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COROLLARY 2.2 Given U(r, c) and A E U(R, C), the following conditions 
are equivalent. 

(a) J.l(U(r, c); A) = J.l(A) > O. 
(b) If 1£ <m) and J £ <n) satisfy rl - c)' > 0, then AI,J > O. 
(c) If 1£ <m) and J £ <n) satisfy AI,J = 0, then rl - cJ. ~ O. 

By Corollary 2.2 we see that the more nonzero entries A has, the more 
probable that J.l(A) is positive. For the most extreme case, if every entry 
of A is positive, then J.l(A) must be positive. This can also be deduced 
from the following observations. 

(1) The matrix A = (ai) satisfies J.l(A) > 0 if.and only if there exists 
B = (b i) in U(r, c) such that au = 0 implies bij = O. 

(11) The matrix t-1(r;ej), where t = r(m) =c(n), is always in U(r,c). 
In fact, applying these observations in the extreme case, we easily get 

J.l(A) ~ min{taiJi(r;e): iE <m),jE <n)} > O. 

Besides knowing J.l(A), one might want to have more information 
about the matrix B such that the matrix A - J.l(A)B ~ 0, we have 

THEOREM 2.3 Suppose U(r, c) and A are given such that J.l(A) > O. Let 
BE U(r, c) satisfy A = J.l(A)B + D with D ~ O. Then for any I £ <m) and 
J £ <n) with AI,J = J.l(A)(rl - c)'), we have B[I, J] = A[I, J]/J.l(A) and 
B[I',J'] = O. Consequently, D[I, J] = 0 and D[I', J'] = A[I', J'], 

Proof Suppose A and B satisfy the hypotheses of the theorem. In 
general, for any 1£ <m) and J £ <n) we have 

AI,J ~ J.l(A)BI,J ~ J.l(A)(rl - cJ')' 
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If AI"! = Il(A)(rl - cJ ' )' then AI"! = Il(A)BI,.!. It follows that 

B[I,J]=A[I,J]IIl(A) as A[I,J]-Il(A)B[I,J]~O. 

Moreover, since BI"! = rl - c)' = BI"! - BI'.J" we have B[I', J'] = O. • 

Given VCr, c) and A, there is no doubt that we can find Bin VCr, c) 
such that A - Il(A)B ~ O. Since the set of all those B that satisfy A = 
Il(A)B + D with D ~ 0 is convex, either there is only one element or there 
are infinitely many elements in VCr, c) which satisfy the equation. We 
determine the conditions for the solution to be unique in the following 
theorem. Associate with the matrices Band D a (directed) bipartite 
graph G(B, D) with nodes {Xl"'" Xm, Y1" ' " Yn} . There is an arc (Xi' Yj) 
if the (i,j) entry of D is positive, and an arc (Yj' x;) if the (i,j) entry of B is 
positive. We have 

THEOREM 2.4 Suppose VCr, c) and A are given such that Il(A) > O. Let 
A = Il(A)B + D with D ~ O. Then the matrix B is the unique element in 
VCr, c) such that A -1l(A)B ~ 0 if and only if the graph G(B, D) does not 
contain cycles of length greater than two. 

Proof Let A and VCr, c) satisfy the assumptions of the theorem. 
Suppose 

with D ~ O. If there is a cycle (Xi1, Yj.), (Yj1' Xi,), (Xi" Yh)' . .. , (Xi" Yj,), 
(Yi,' Xi.) in G(B, D) with I> 1, then we can construct a corresponding 
cycle matrix Q with the same dimension as B such that the (i1,j1) entry 
equals 1, (i2,jtl entry equals -1. (i2,j2) entry equals 1, ... , (i1,j,) entry 
equals - 1. Then for a sufficiently small 0 > 0, we obtain another matrix 
B' = B + OQE VCr, c) and D' = D -1l(A)OQ ~ 0 satisfying 

A = Il(A)B' + D'. 

Conversely, suppose there exist another matrix B' in V(r,c) and D' ~ 0 
such that the above equality holds. Then Bo = B - B' =1= 0 is a matrix 
with zero row sums and zero column sums. Moreover, ifthe (i,j) entry of 
Bo is positive. Then the (i,j) entry of B is positive; ifthe (i,j) entry of Bo is 
negative, then the (i,j) entry of D is positive. Let the (i1 ,j tl entry of Bo be 
positive. Then there must be a negative (i2,jtl entry, a positive (i2,j2) 
entry, a negative (i3,j2) entry .... We must eventually return to some 
previous position in a certain number of steps. This will give rise to a 
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cycle in G(B, D). Since the cycle in G(B, D) is obtained by alternate 
vertical and horizontal movements in Bo, its length cannot be less than 
fum. • 

By Theorem 2.4 one can check whether there are any elements X in 
U(r, c) other than B that satisfy A - ~(A)X ;::: 0 as follows. Start from a 
positive entry of D, move vertically to a positive entry of B, then move 
horizontally to a positive entry of D, then move vertically to a positive 
entry of B, . . . , until we revisit an entry in B or D. If we can find such a 
path, then there are other elements in U(r, c) that satisfy the equation. 
We illustrate these procedures in the following examples. 

Example 2.5 Let U(r, c) be such that r = c = (1, 1, 1). Suppose 

['I ~l B~U 
0 

~] A = 1 1 

o 0 0 

and D~ [~ 0 ~l 0 

Then ~(A) = 1 and A = ~(A)B + D. 

We can start from the (1,2) entry of D, move to the (2,2) entry of B, 
move to the (2, 1) entry of D, move to the (1, 1) entry of B, then move 
back to the (1, 2) entry of D. So B is not the only element in U(r, c) such 
that A - ~(A)B;::: O. In fact, interchanging the first two rows of B, we get 
another matrix B' in U(r, c) such that A - ~(A)B';::: O. 

Example 2.6 Let U(r, c) be such that r = c = (1,1,1). Suppose 

r 
1 0 1] 

A= 0 1 1 , 

001 

B = [~ ~ ~ 1, and D = [~ ~ : 1. 
o 0 1J 00 oj 

Then ~(A) = 1 and A = ~(A)B + D. 

Clearly, whether we start from the (1,3) or the (2,3) entry of D, we 
cannot construct the required path. Therefore B is the only element in 
U(r, c) such that A - ~(A)B;::: O. 
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3. DECOMPOSITION OF MATRIX SETS 

THEOREM 3.1 Given U(r,e) and U(R, C), we have 

Jl*(U(r, e), U(R, C)) = min{[RI - CJ.] + /(rl - e},): Is (m), 

J S (n), rl - eJ • > O}. 

where [t]+ =max{t,O}. 

Proof Let 

a=min{[RI - CJ.] + /(rl -eJ.):I S (m),J s(n),rl-eJ' > O}. 

If A E U(R, C), then for any Is (m) and J s (n) 

AI) ~ AI) - AI',}' = RI - C}' . 

It follows that Jl(A) ~ a for all A in U(R, C). Thus Jl* ~ a. We shall show 
that there exists A in U(R, C) satisfying Jl(A) ~ a. As a result, Jl* ~ a ~ 
Jl(A) ~ Jl* implies Jl* = a. Now suppose Is (m) and J s (n) satisfy 

a = [RI - CJ.J+ /(rl - eJ.) . 

We consider two cases. 

Case 1 a = 0, i.e. 0 ~ RI - C}'. Let A E U(R, C). If A[J, J] = 0, then 
Jl(A) ~ AI,J*(rl - eJ.) = a and we are done. Suppose A[I, J] =F 0 and 
aij> 0 with iE I andjE J. Since AI,J - AI'.J' = RI - CJ. ~ 0, there exists 
apq > 0 with pE I' and q EJ'. Set () = min{aij' apq } . Obtain Al from A by 
adding () to its (i, q), (p,j) entries and subtracting () from its (i,j), (p, q) 
entries. If A I [I, J] = 0, then A I is the matrix in U (R, C) with Jl(A I) = 0; 
otherwise we repeat the above procedures until we get a matrix Ak in 
U (R, C) such that Ak[I, J] = 0 and hence Jl(Ak) = O. 

Case 2 a> 0, i.e., 0 < RI - CJ. = CJ - RI" In this case we can 
construct an A in U(R, C) with A[l', JI] = 0 by similar method as in 
Case 1. Then we have AI) = AI,J - AI')' = RI - CJ" and 

• 
COROLLARY 3.2 Given U(r, e) and U(R, C), the following are equivalent. 

(a) Jl*(U(r,e), U(R, C)) = Jl* > O. 
(b) If Is (m) and J S (n) satisfy rl - eJ > 0, then RI - CJ > O. 
(c) If Is (m) and J S (n) satisfy RI - CJ ~ 0, then rl - eJ ~ O. 
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Note that rl - CJ = CJ' - rl' and RI - e J = e J, - RI" It follows that 
rl - CJ > 0 if and only if rl' - CJ' < 0, and RI - e J > 0 ifand only if RI' -
eJ' < o. Thus condition (b) of Corollary 3.2 is equivalent to 

(b /) If I£; <m) and J £; <n) satisfy rl - CJ < 0, then RI - e J < O. 
Similarly condition (c) is equivalent to 

(c') If I £ <m) and J £ <n) satisfy RI - e J ~ 0, then rl - CJ ~ o. 

COROLLARY 3.3 Let!ln be the set of all n x n doubly stochastic matrices. 
Suppose U(r, c) =!In and U(R, C) satisfies Rl ~ ... ~ Rn and 
e 1 ~ ••• ~ en. Then 

{[

It + 1 It J+ } Jl*(!ln,U(R,C))=min .L Rn-j+1- .L eJ :O~k~n-I. 
J= 1 J= 1 

Proof Note that if U(r, c) = !In, then m = nand rl - CJ' = 
III + IJI- n. So by Theorem 3.1, we have 

Jl*(!ln, U(R, e)) = mio{[ RI - e J,] + /(111 + IJI- n): III + IJI- n > O} . 

To get the conclusion, we prove that Jl* can always be attained at certain 
10,10 such thatIo = {n- I, . .. , n} andJo = {I, ... , I} for some 1 ~ I ~ n. 
Suppose I, J are such that III + IJI- n = k > 0 and Jl* = [RI - e J,] + /k. 
Since R j ~ Jl* for all i = I , ... ,n, and by our assumption on Ri and e j , 

we have 

Set 10, Jo so that Io={IJI, ... ,n} and Jo={I, ... ,n-IJI}. If Jl*=O, 
then 0 ~ RI - e J, ~ RID - eJ~' If Jl* > 0, 

kJl* = RI - e J, ~ (k - I)Jl* + Rio - eJ~ ~ kJl*. 

So we have [Rio - eJJ + = Jl* as required. • 
By Theorem 3.1, it seems that we have to consider many expressions 

of the form [R1 - e J,] + /(rl - cJ') in order to find Jl* . By Corollary 3.3, 
we see that in actual computation, we usually may consider far fewer 
expressions. 

In view of Corollary 3.3, one might expect to have 
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Unfortunately, it is not true in general as shown by 

Example 3.4 Let 

Then 
J.l(fl4 ; A) = 4.5 < 6 = min{ A,.J : III + IJI = 5}. 

Now suppose that we have IRi - ril < e, lei - cil < e (1 ~ i ~ n) for 
some positive e. If U(r, c) = fln' it is clear from Corollary 3.3 that jj.* = 
J.l*(fln, U(R, C)) > 0 if e < 1/(2n -1). In fact, it is not hard to show that 
jj.* > Oif e < lin (see Theorem 5.1 in Section 5). For general U(r, c) this is 
false as the following example shows. 

Example 3.5 Let r = (1, 1), c = (1 + e, 1 - e), where e> O. Let I be 
the 2 x 2 identity matrix. Since every matrix in U (r, c) has positive (2, 1) 
entry, we have J.l(U(r, c); I) = O. It follows that J.l*(U(r, c), il2 ) = O. 

4. SETS OF INTEGRAL MATRICES 

In [8] Fulkerson studied the maximum number of disjoint 
permutation matrices a 0-1 matrix can contain. We consider similar 
problem for sets of integral matrices. Denote by U'(r, c) (resp. U'(R, C)) 
the set of integral matrices with (integral) row sum vector r (resp. R) and 
column sum vector c (resp. e). Define 

x(U'(r,c); A) = max{l: A - (Bi + .. . + B,) ~ 0 

with B i , ... , B,E U'(r,c)} 

for any A in U'(R, e), and 

x*(U'(r, c), U'(R, e)) = min{x(U'(r, c); A): A E U'(R, e)}. 

As mentioned in [6], by network flow theory one easily proves an 
integral version of Theorem 2.1 . 

THEOREM 4.1 Suppose U'(r, c) is nonempty and AE U'(R, C). Then 
x(U'(r, c); A) is the integral part of J.l(U(r, c); A). 

By a slight modification of the proof of Theorem 3.1 we obtain 
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THEOREM 4.2 Suppose V'(R, e) and V'(r, c) are nonempty. Then 
n*(V'(r, c), V'(R, e)) is the integral part of the quantity 
J.l*(V(r, c), VCR, e» . 

By Corollary 3.3 and Theorem 4.2, we get 

COROLLARY 4.3 Let Pn be the set of n x n permutation matrices. If 
V'(R, C) is a set of integral matrices, then 

n*(Pn, V'(R, e» = J.l*(Qn, VCR, e)). 
Note that if A is an n x n 0-1 matrix and V'(r, c) = Pn, then n(Pn; A) is 

the maximum number of disjoint permutation matrices A contains. So 
Theorem 4.1 reduces to the result of Fulkerson [8]. However, if 
Vff(R, C) is a nonempty set of 0-1 matrices with row sum vector Rand 
column sum vector e and 

n(Pn, Vff(R, e)) = min{n(Pn ; A): AE Vff(R, e)}, 

then the formula for n(Pn, Vff(R, e)) is much more complicated than 
n*(Pn, V'(R, C» as shown in [8]. Nevertheless, in some particular cases, 
we may have better results as shown in the following theorem. 

THEOREM 4.4 Let k and s be positive integers. Assume that n - 2k + 1 ~ 
max{k,s}. Let 

Rl = ... = Rs = e 1 = ... = es = k -1, 

Rs + 1 = ... = Rn = e s + 1 = ... = en = k. 

Then Vff(R, e) is nonempty and 

n(Pn, Vff(R, e» = n*(Pn, V'(R, e)) = [k - s] + . 

Proof By Corollaries 3.3 and 4.3, one easily checks that 

n*(Pn, V'(R, e)) = J.l*(Qn, VCR, e)) = [k - sr. 
In general, we have 

n(Pn, Vff(R, C» ~ n*(Pn, V'(R, e». 
So we only need to construct a matrix A in Vff(R, C) such that 

n(Pn ; A) ~ [k - s] + . 

Then the result of the theorem will follow. 
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Let T be the k x (k - 1) matrix all filled with ones. Assume that s ;::: k. 
Let Q be the (2k - 1) x (2k - 1) matrix such that 

Q[I,/] = 0, Q[I',I'] = 0, Q[I,I'] = T, Q[I',/] = T', 

where 1= {I, ... , k} . Note that per(Q) = 0, k rows and columns of Q 
have k - 1 ones and all other rows and columns contain k ones. Set p = 
s - k and q = n - s - k + 1. Then p;::: 0, q;::: k and m = p + q = n -
2k + 1, By a result of Gale and Ryser (see [9, pp. 176-178]), we can 
construct an m x m 0-1 matrix D such that p rows and columns of D 
have k - 1 ones and all other rows and columns contain k ones. (In fact, 
the row sum vector of D is majorized by any integral vectors with m 
entries whose sum equals p(k -1) + qk. In particular, it is majorized by 
the conjugate column sum vector of D. Hence the construction is 
possible.) Let A be the direct sum of Q and D. Then per(A) = 0 = 
[k - sr = n(pq; A), s rows and columns of A have k - 1 ones and all 
other rows and columns contain k ones. By a suitable permutation of the 
rows and columns of A, we get the required matrix in U"(R, e). 

Assume now that k > s. Let B be the (2k - 1) x (2k - 1) matrix 
obtained by adding ones to the (1, 1), ... , (k - s, k - s) positions of the 
matrix Q constructed above. Let m = n - 2k + 1. Then m ;::: k, and we 
can consttuct an m x m 0-1 matrix e with k ones in every row and every 
column. Let A be the direct sum of Band e. Set I = {I, ... , k} and J = 
{t, ... , k, 2k, 2k + 1, ... , n}. Then by Theorems 4.1 and 2.1 

n(pq; A) ~ p(Qq ; A) ~ A/ .. '/(i/i- Wi) = k - s = [k - s] + • 

Clearly, s rows and columns of A have k - 1 ones and all other rows and 
columns contain k ones. So by a suitable permutation of rows and 
columns of A, we get the required matrix in U"(R, e). • 

5. PERMANENTS AND SCALING PARAMETERS 

In this section we concentrate on the relation between an n x n 
nonnegative matrix A and the set Qq. In particular, for an n x n 
nonnegative matrix A in U(R, C), we define 

and 
jl*(A) = p*(Qn, U(R, e». 
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Furthermore, setting 
" " 

S(A)= L R j = L C j 

j= 1 i= 1 
and 

1 
w(A) = -S( ) max (InRi - S(A)I, InC i - S(A)I), 

A l';j';" 

we have 

THEOREM 5.1 Let A be an n x n nonnegative matrix in U(R, C). If jl(A), 
jl*(A), w(A) and S(A) are defined as above, then 

~ (~A»)" - per(A) ~ jl(A)" ~ jl*(A)" ~ - [1 - nw(A)] + • 
n! n 

Proof Since by Egorichev-Falikman Theorem 

per (B) ~ n!/n" 

for any B in On, we easily deduce 

per(A) ~ jl(A)"n!/n". 

To get the conclusion, we only need to prove 

jl*(A) ~ S(A)([l- nW(A)]+)/n. 

Note that we may write 

and 

where 

R j = (1 + xp>(A»S(A)/n 

Ci = (1 + y,.w(A»S(A)/n, 

" n 

yj~ -1; L X j = L Yj=O. 
j= 1 j= 1 

Let k = 111 = 111- 1. Suppose 1 ~ k < n/2. Then 

L R j - L Cj = S(A) [1 + (L Xj- LYJ)W(A)] 
"=1 jeJ n iEl JEJ 

~ S(A) [1 + (-III-llj)w(A)] 
n . 

S(A) 
~-[l-nw(A)]. 

n 
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Suppose n/2 :::; k < n. Then 

L Rj - L Cj = S(A) [1 + (L Xj - L YJ)W(A)] 
iEl JEJ n iEl jeJ 

= S(Al[l + (- L Xj + L Yj)W(A)] 
n iEl' je}' 

~ S(A) [1 + (-II'I-IJ'/)w(A)] 
n 

S(A) 
~ - [1 - nw(A)]. 

n 
In both cases, we have 

[ ]

+ S(A) + L Rj - L CJ ~-[1- nw(A)] . 
iEl jeJ n 

In view of Corollary 3.3 we have 

Ji*(A) ~ S(A) [1- nw(A)] + . 
n • 

Bregman in [4] has obtained a bound for the permanent of 
nonnegative matrices as follows. 

For any nonnegative n x n matrix A = (ajj) and for any B = (bi)EOn, 

n 

per(A) ~ per (B) n (au/bi)"ii, 
i,j= 1 

where A.i) = bi) per(B[I, J])/per(B) with 1= (n) \{i} and J = ( n) \{j}. 

We remark that in order to get the bound of Bregman, one has to find 
a B in On to make the comparison. Whether the bound of Bregman is 
better than ours depends on the choice of the matrix B. However, if 
BEOn satisfies A = Ji(A)B + D with D ~ 0, then 

per(A) ~ per(B) n (aij/bij)AiJ 

i,j 

i,j 
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So we have 

jl(A)"n!/nn !( max{per(B) n (aij/bij)A.iJ: BEnn} 
!,J 

!( per(A) . 

In any case, the bounds we obtain is simple and easy to compute. 
Several authors [5, 12] have studied necessary and sufficient 

conditions on an n x n nonnegative matrix A such that there exists a 
doubly stochastic matrix B of the form X A Y, where X = 
diag(x" ... , xn)and Y = diag(y" . . . , Yn)satisfy Xi> OandYi> o for i = 
1, ... ,n, (for further exposition see [10]). The numbers Xi and Yi 

(l !( i!( n) are known as the scaling parameters of A. The following 
result was proved. 

An n x n nonnegative matrix A has scaling parameters if and only if A 
has total support, i.e., every positive entry of A lies on a positive diagonal. 

Using the results in the previous sections we give an upper bound for 

n7=, XiYi' 

THEOREM 5.2 Let A be an n x n nonnegative matrix with scaling 
parameters Xj' Yj (l !( j !( n). Then 

Proof By Theorem 5.1, we only need to prove the first inequality. 
Let XAY = BEnn, where X = diag(x" . .. , xn) and Y = 

diag(y" ... ,Yn)' By a result of Friedland [7] 

Thus 
n 

lim [per(A®Jm)]' /m=e- n n xj-'Yj-" 
m-co j=l 

On the other hand, since A - jl(A)D ;::: 0 for some DE nn' we have 

A ® Jm;::: jl(A)D ® Jm . 

So 

The result follows. • 
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We remark that the first inequality in Theorem 5.2 also follows from 
the theorem in [2]. 

We give an extremal characterization for the product of scaling 
parameters in 

THEOREM 5.3 Let A be an n x n nonnegative matrix with scaling 
parameters Xj' Yj (l ~j ~ n). Then 

n o xi 1 Yj-I = max{il(D 1AD2t: DI and D2 are n x n nonnegative 
j=1 

diagonal matrices satisfying per(DI D2 ) = I}. 

Proof For an n x n nonnegative matrix B which can be scaled to a 
doubly stochastic matrix, let b(B) denote the product of the reciprocals 
of the scaling parameters. Using this notation, we have b(A) = 
Oi=1 xj-1Yj-l. Moreover, if 

S = {D1 AD2 : DI and D2 are n x n nonnegative diagonal 

matrices satisfying per(DI D2) = I} 

then for any B in S 

b(A) = b(B) ~ {l(Bt 

by Theorem 5.2. Thus 

b(A) ~ max{il(B)n: BE S}. 

Finally for DI = b(A)I /n X and D2 = Y, we have DI AD2 E Sand 

{l(D1AD2t = {l(b(A)I /nx A Y)n = b(A). 

The result follows. • 
COROLLARY 5.4 Suppose AEOn' Then for any nonnegative diagonal 
matrices DI and D2 we have 

{l(DIAD2)n ~ per(D1D2). 

Proof If DI or D2 has zero diagonal entries, then both {l(D1AD2) and 
per(D1D2) equal zero. If it is not the case, by Theorem 5.3, 

).n{l(DIAD2)n = {l()'D1AD2t ~ 1, 

where). = per(DI D2 ) -I /n. The result follows. • 
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NONNEGATIVE MATRICES 

Corollary 5.4 is also a consequence of the theorem in [2]. 
In view of Corollary 3.3 and by Corollary 5.4, we have 
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COROLLARY 5.5 Suppose AEn" and D1, D2 are nonnegative diagonal 
matrices. If D1AD2 has row sums Rl ~ ... ~ R" and column sums 
C1 ~ ••• ~ C", then there exists k such that 1 ~ k ~ n - 1 and 

Ct: R"-j+l- Jl Cj )" ~per(D1D2)' 
By Corollary 5.4, we see the following interesting property of nIl' 

Suppose A, BEn", Dl and D2 are nonnegative diagonal matrices with 
per(D1D2) = 1. If D1AD2 -;'B ~ 0, then;' ~ 1. In general one might want 
to know that for given A = (aij) and B = (bij), whether the set 

r(A, B) = {u ~ 0: D1AD2 - uB ~ 0, where Dl and D2 are 

nonnegative diagonal matrices with per(D1 D2 ) = I} 

is bounded. If it is, what is the bound 

rJ(A, B) = supr(A, B)? 

Clearly in order that r(A, B)"# {O}, we must have bi] = 0 whenever 
aij = O. If it is the case, then one may verify that 

By a result of Saunders and Schneider [11], if 

P(B) = {P: P is a permutation such that i\ bip(i)"# O}, 

then 
if P(B) = 0, 

otherwise. 

It follows that rJ(A, B) is finite if and only if per (B) > O. It might be 
interesting to determine the quantity 

rJ*(U(r, c)) = max{rJ(A, B): A, BE U(r, cn 

if all the elements in U(r, c) have positive permanents. 
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