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A necessary and sufficient condition (or the identity matrix to be the unique Lyapunov 
scaling factor o( a given real symmetric matrix A is given. This uniqueness is shown to be 
equivalent to the uniqueness ofthe identity matrix as a scaling D for which the kernels o( A 
and AD are identical. 

1. INTRODUCTION 

A real square matrix A is said to be Lyapunov diagonally semistable if 
there exists a positive definite diagonal matrix D, called a Lyapunov 
scaling factor of A, such that the matrix AD + DAT is positive 
semidefinite, 

Lyapunov diagonally semistable matrices play an important role in 
applications in several disciplines, and have been studied in many matrix 
theoretical papers, see for example [2] for some references. 

In this paper we mainly discuss real Hermitian (symmetric) matrices. 
The problem of characterizing Lyapunov diagonally semistable 
symmetric matrices is easy. Clearly, every positive semidefinite 
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symmetric matrix A is Lyapunov diagonally semistable, and the identity 
matrix is a Lyapunov scaling factor of A. Conversely, as is well known 
(e.g. [1]), a Lyapunov diagonally semistable matrix has nonnegative 
principal minors. Therefore, a symmetric matrix A is Lyapunov 
diagonally semistable if and only if A is positive semidefinite. 

An interesting and natural question is the following: Given a positive 
semidefinite symmetric matrix A, is the identity matrix the unique (up to 
a nonzero scalar multiplication) Lyapunov scaling factor of A? 

This problem is solved in this paper. The uniqueness of Lyapunov 
scaling factors for general matrices has recently been studied in [2], [4] 
and [5]. Here we employ and improve methods developed in [2] in 
order to give a necessary and sufficient condition for the above
mentioned uniqueness. We give two equivalent such conditions, a graph 
theoretic one as well as a rank condition. Also it is shown that the 
identity matrix is the unique Lyapunov scaling factor of a positive 
semidefinite symmetric matrix A if and only if the only nonsingular 
diagonal matrices D, for which the kernels of A and AD are identical, are 
the nonzero scalar matrices. 

An important tool used in our study is the principal submatrix rank 
property. This property was introduced in [3], where it is also shown to 
be linked to Lyapunov diagonal semistability. Here we also define and 
use a somewhat weaker property. Another concept we define is the 
concept of A-minimal sets. We prove some properties of these sets, 
which are of interest by themselves. 

2. NOTATION AND DEFINITIONS 

2.1 Notation For a positive integer n we denote by: 
(n) - the set {I, 2, ... , n}, 
eM - the set of all n x n complex matrices, 
en - the set of all n-dimensional complex (column) vectors. 

2.2 Notation For a ser a we denote by lal the cardinality of a. 

2.3 Notation Let A E en", let x E en and let a and f3 be nonempty 
subsets of(n). We denote by: 
N(A) - the nullspace (kernel) of A, 
n(A) - the nullity of A, i.e., the dimension of N{A), 
r(A) - the rank of A (r(A) = n - n(A)), 
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A[a\p] - the submatrix of A whose rows are indexed by a and whose 
columns are indexed by p in their natural orders. 

A [a] = A[a\ a]. 
x[a] - the vector obtained from x by eliminating the components XI 

such that i ~ a, 
supp(x) = {iE<n): Xj:;6 Pl. 

2.4 Notation Let V be a subset of C"". We denote 

supp(V) = U supp(x). 
xeV 

2.5 Notation Let V be an m-dimensional subspace of C"". We 
denote by E(V) the n x m matrix which is in column reduced echelon 
form and such that the columns of E(V) form a basis for V. 

2.6 Notation Let G be a (nondirected) graph. An edge between i and 
j in G is denoted by [i,j]. 

2.7 Notation Let G be a graph and let E be the edge set of G. The 
graph G is said to be full (or complete) iffor every two vertices i andj in G 
we have [i,j] E E. 

2.8 Notation Let G be a graph and let E be the edge set of G. The 
graph G is said to be transitive if [i,j], [j, k] E E implies that [i, k] E E. 

2.9 Definition Let G be a graph and let i and j be two vertices of G. 
We say that there exists a path between i and j in G if there exists a 
sequence ii' .. . , ik of vertices of G such that i 1 = i, ik = j, and there is an 
edge between ir and ir+ I' t = 1, . . . , k - 1, in G. The graph G is said to be 
connected if there exists a path between every two vertices in G. 

2.10 Definition Let G1 and G2 be graphs. We say that G1 is a 
subgraph of G2 if the vertex sets of G1 and G2 are identical, and if the 
edge set of G1 is contained in the edge set of G2• 

2.11 Definition Let A be an m x n matrix. The (nondirected) 
bipartite graph of A, denoted by H(A), is the bipartite graph for which 
the two sets of vertices are {I, . . . , m} and {m + 1, ... , m + n}, and where 
there is an edge between i andj + m (i E <m),j E <n») if and only if aj}:;6 O. 

The following Definitions 2.12,2.13 and 2.14 were first given in [2]. 

2.12 Definition Let A be an n x n matrix and let a be a nonempty 
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subset of <n). We define the set s(A, a) by 

s(A,a) =au {je<n); A[a In ¢ Range(A[a] + A[ay)}. 

2.13 Definition Let A be an n x n matrix and let a be a nonempty 
subset of <n). We define the set s ~(A, a) by the following algorithm: 

IS : = a 

! yes 

I.- (A,a) := ~I 
FIGURE I. 

2.14 Definition Let A e C"". The graph U(A) is defined as follows: 
The vertex set of U(A) is <n), and there is an edge between the vertices i 
and j if i and j belong to a set s ~(A,a) where A[a] is singular and 
H(E(N([ex]))) is connected. 

2.15 Definition Let A e C"". A set a S; < n) is said to be an A -minimal 
set if A[ a] is singular but all proper submatrices of A[ a] are nonsingular. 

2.16 Definition Let AeC"". The graph U-(A) is defined as follows: 
The vertex set of U-(A) is <n), and there is an edge between the vertices i 
and j if there is an A-minimal set a such that i,j e a. 

2.17 Definition An n x n matrix A is said to have the principal 
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submatrix rank property (PSRP) if it satisfies 

r(A[a] I (n»= r(A[(n) I a]) = r(A[a]) 

for all nonempty sets as (n) (see also [3]). 
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The matrix A is said to have the row principal submatrix rank 
property (RPSRP) if it satisfies 

r(A[ (n) I a]) = r(A[a]) 

for all nonempty sets as (n). 
The matrix A is said to have the column principal submatrix rank 

property (CPSRP) if it satisfies 

r(A[a I (n)]) = r(A[a]) 

for all nonempty sets as (n). 

2.18 Remark As is well known, positive semidefinite (Hennitian) 
matrices have the PSRP. This fact will be heavily used in the sequel. 

3. MINIMAL SETS 

3.1 LEMMA Let A be a singular matrix and let i E supp(N(A». If A has 
the RPSRP then there exists an A-minimal set which contains i. 

Proof Let Xl, . .. ,xP be the columns of the matrix E(N(A», and let 
iEsupp(N(A». Obviously, there exists jE(p) such that iESUpp(Xi ). 

Since E(N(A» is in column reduced fonn, the set supp(xi) is an A
minimal set, and the result follows. • 

The requirement that A has the RPSRP cannot be omitted from 
Lemma 3.1 as demonstrated by the matrix 

A=[~ ~J 
Since N(A) is spanned by [1 - 1Y, it follows that supp(N(A» = {I, 2}. 
However, there exists no A-minimal set that contains 2, since {I} is the 
only A -minimal set. 

3.2 PROPOSITION Let A E enn have the RPSRP (or the CPSRP), and let a 
and /3 be A-minimal sets. If an/3 #- 0 then for every k,IEau/3 there exists an 
A-minimal set Y such that k, lEY. 
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Proof Without loss of generality we may assume that A has the 
RPSRP. We prove our assertion by induction on IIXU PI . For IIXU PI = 1 
there is nothing to prove. Assume that our claim holds for IIXU PI < m, 
m > 1, and let IIXU PI = m. If both k and I are in IX or in P then there is 
nothing to prove. Therefore, without loss of generality we may assume 
that 

kEa\p, (3.3) 

Let yl and i be nonzero vectors in N(A[IX]) and N(A[P]) respectively, 
and define Xl, x2 E en by 

{
YI' Xl = 
0, iE(n)\IX, 

iE IX 

{
Y2 iEP 

X2 = 0,' iE(n)\p. 

Since A has the RPSRP it follows that Xl, x2 E N(A). Observe that since 
IX and P are A -minimal sets, we have SUpp(XI) = supp(i) = IX and 
supp(xl)=supp(i)=P. Since IXnp#0 we can choose tElXnp. 
Define the vector X = x; Xl - x: x2 , and let ~ = supp(x). Observe that t ¢ 
~ and that 

k, IE~. (3.4) 

Since XE N(A) it follows that the matrix B = A[~] is singular. By Lemma 
3.1 it follows from (3.4) that there exist B-minimal (and thus A-minimal) 
sets J.l and v such that 

kEJ.l, lEV. (3.5) 

It follows from the minimality of IX and P that J.l<t. IX and v<t. p. Thus, 

vn (IX\P) # 0. (3.6) 

Distinguish between two cases: 

(i) IX\P £ J.l. By (3.6)we have J.ln V # 0. Since J.lu v £ ~ and since ~ is a 
proper subset of IXU p, our assertion now follows from (3.5) by the 
inductive assumption: 

(ii) IX\P <t. J.l. In this case J.lu P is a proper subset of IXU p. Since by (3.6) 
J.lnp#0, and since kEJ.l and IEP, our assertion now follows by the 
inductive assumption. • 
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3.7 COROLLARY Let A E en have the RPSRP (or the CPSRP). Then the 
graph U -(A) is transitive. 

3.8 PROPOSITION Let A be a positive semidefinite matrix. Then 
U(A)= U-(A). 

Proof Let rx be an A-minimal set. Clearly, the bipartite graph 
H(E(N(A[rx])) is connected. Thus, it follows from Definitions 2.14 and 
2.16 that U (A) is a subgraph of U(A). 

Conversely, since A is a symmetric matrix it follows that A + AT = 2A . 
Furthermore, since A has the PSRP it follows that for every rx ~ (n) we 
have s~(A,rx)=rx. Now let rx~(n) be such that H(E(N(A[rx]))) is 
connected . Observe that for every column x of E(N(A[ rx])), the set 
supp(x) is A-minimal. It now follows from the connectedness of 
H(E(N(A[rx]))) and from Corollary 3.7 that for every i,jErx there is an 
edge between i andj in U -(A). Therefore, the graph U(A) is a subgraph 
of U-(A). • 

3.9 Remark Proposition 3.8 does not hold in general if we weaken 
the requirement that A is positive semidefinite by requiring that A have 
the PRSR. This is demonstrated by the matrix 

234 2 

2 3 1 
A= o 1 2 0 

000 

The matrix A has the PSRP, and the only A-minimal set is {t, 2, 3} . 
Thus, the graph U-(A) is 

1 i/· 2 

3· • 4 
FIGURE 2. 

However, since s ~(A, (X) = {t, 2, 3, 4}, the graph U(A) is 

1 iXi 2 
3· • 4 

FIGURE 3. 
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4. UNIQUENESS OF LVAPUNOV SCALING FACTORS 
FOR HERMITIAN MATRICES 

4.1 LEMMA Let an n x n matrix A have the RPSRP (or the CPSRP). 
Then for all nonempty sets a £ (n), a 1= (n), we have 

r(A)~ r(A[a]) + r(A[(n)\a]). (4.2) 

Furthermore, if for some nonempty a £ (n), a 1= (n), equality holds in 
(4.2) then for every nonempty {3 £ a and every nonempty y £ (n) \a we 
have 

r(A[{3u y]) = r(A[{3]) + r(A[y]). (4.3) 

Proof Suppose that A has the RPSRP. It follows that for every 
nonempty a£(n), a1=(n), we have 

N(A[a])$ N(A[(n)\a]) £ N(A), 

where $ denotes a direct sum of vector spaces. Hence, 

n(A)~ n(A[a]) + n(A[(n)\a]), 

which implies (4.2). 

(4.4) 

To prove the rest of the lemma let equality holds in (4.2) for some 
nonempty a£ (n), a 1=(n). By (4.4) we now have 

N(A[a])$ N(A[(n)\a]) = N(A). 

Let y £ (n)\a, y 1= 0, and let 

xeN(A[auy]). 

Define the vector y E en by 

ieauy 
otherwise. 

(4.5) 

(4.6) 

Since A has the RPSRP it follows that yE N(A). By (4.5) we now have 

x[a] = y[a]eN(A[a]). (4.7) 

By the RPSRP it follows from (4.7) that A[y I a]x[a] = 0, and hence 

A[y]x[y] = A[y I a]x[a] + A[r]x[y] = (A[auy]x)[y] = O. 

which means that 

x[y] eN(A[y]). (4.8) 
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It now follows from (4.6), (4.7) and (4.8) that 

N(A[ IXuy ])!;; N(A[ IX])EB N(A[y]) . 

However, as observed in (4.4), 

N(A[IX]EBN(A[y])!;; N(A[IXuy]), 
and therefore 

N(A[ IX U y]) = N(A[ IX ])EB N(A[y]) . (4.9) 

We have proved that (4.5) implies (4.9). Choosing nonempty fJ!;; IX, it 
thus follows that (4.9) implies that 

N(A[fJuy]) = N(A[fJ])EB N(A[y]), 

which yields (4.3). • 
It is clear that the identity matrix is a Lyapunov scaling factor of every 
positive semidefinite symmetric matrix. We now characterize those 
positive semidefinite symmetric matrices for which the identity matrix is 
the unique Lyapunov scaling factor. 

4.10 THEOREM Let A be a n x n positive semidefinite symmetric matrix. 
Then the following are equivalent: 

(i) The identity matrix is the unique Lyapunov scaling factor of A; 
(ii) The graph U-(A) is connected; 
(iii) The graph U-(A) is full; 
(iv) For every nonempty IX!;; <n), IX ¥- (n), we have 

r(A) < r(A[IX]) + r(A[<n)\IX]). 
(v) The bipartite graph H(E(N(A»)) is connected; 
(vi) For every nonsingular diagonal matrix D we have N(AD) = N(A) if 

and only if D is a scalar matrix. 

Proof (i)~ (ii) In view of Proposition' 3.8, this equivalence follows 
from Theorems 6.18 and 6.200f[2], observing that for every v!;; <n) we 
have A[v] + A[vY = 2A[v]. 

(ii)~ (iii) By Corollary 3.7. 
(i) => (iv) Let IX !;; < n), IX ¥- 0, < n). In view of (4.2) we have to prove 

that if 

r(A) = r(A[IX]) + r(A[<n)\IX]), (4.11 ) 

then A has a Lyapunov scaling factor which is not a scalar matrix. So, 
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assume that (4.11) holds. Let Da , a> 0, be the n x n diagonal matrix 
whose diagonal entries are 

dll = {
I, 

a, 
i E IX 

i ¢ IX. 

Clearly, if a:l: 1, then Da is not a scalar matrix. Consider the matrix Ca = 
ADa + DaA. Observe that C 1 = 2A. Let p,,;; (n), P:I: 0. If p,,;; IX, then 
Ca[P] = 2aA[P] and hence 

det Ca[P] ~ o. (4.12) 

If P 1"1 ex :I: 0 then Ca[P] = 2aA.[P] and again (4.12) holds. The remaining 
case is where y = ex, P:I: 0 and ~ = P\IX:I: 0. Here we distinguish 
between two possibilities: 

(a) At least one of the matrices A[Y] and A[~] is singular. Without 
loss of generality we assume that A[Y] is singular. Since A has the 
PSRP it follows that for every j e ~ we have 

Ca[y \n = (a + 1 )A[y \n e Range A[y] , 

and hence Ca[P] is singular. 
(b) Both A[y] and A[~] are nonsingular. By Lemma 4.1 it follows 

from (4.11) that A[P] is nonsingular and hence is positive definite. 
Therefore, the matrix C 1 [P] is positive definite. By continuity 
arguments it follows that (4.12) holds whenever \a - [\ is 
sufficiently small. 

We have proved that in any case, if \a - 1\ is sufficiently small then (4.12) 
holds. Since the number of sets p, p,,;; (n) is finite, it follows that the 
matrix Ca is positive semidefinite for \a - 1\ sufficiently small. Hence the 
nonscalar matrix Da is a Lyapunov scaling factor of A. 

(iv)=> (ii) Suppose that (iv) holds. Assume that U-(a) is not 
connected, namely, that there exists a nonempty set IX";; (n), a:l: (n), 
such that if P is an A-minimal set then either p,,;; ex or pI"I ex = 0. Let 'I 
and '2 be the ranks of A[ ex] and A[ (n) \ ex] respectively, and let y ,,;; (n) 
be such that A[Yl"lex] and A[y\ex] are'l X'I and'2 X'2 (respectively) 
positive definite matrices. If A[y] is singular then y contains an A
minimal set which, by the choice of ex, is contained in ex or (n)\IX, 
contradicting the positive definiteness of A[YI"I IX] or A[y\ex]. Therefore, 
A[y] is nonsingular and hence . 
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r(A[y])=r1 +r2 • 

It now follows from (4.13) that 

r(A)~ r 1 + r 2 = r(A[IX]) + r(A[<n)\IX]), 
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(4.13) 

in contradiction to (iv). Thus, our assumption that V-(A) is not 
connected is false. 

(ii)~ (vi) Clearly, if Dis a scalar matrix then N(AD) = N(A). Suppose 
that N(AD) = N(A) where D is a nonsingular diagonal matrix. Let 
IX £; < n) be a nonempty set, and let x E e" be such that XI = 0 for all j ¢ IX. 
Since A has the PSRP it follows that xEN(A) if and only if X[IX]E 
N(A[IX]). Hence, we have n(AD) = N(A) if and only iffor every IX£; <n), 
IX # 0, we have N(A[IX]D[IX]) = N(A[ IX]). By Corollary 5.5 of [2], if IX is 
an A-minimal set then D[ IX] is a scalar matrix. Thus, if the graph V -(A) 
is connected then (vi) follows. 

(vi)=:. (i) By Lemma 6.6 of [2]. 
(v)~ (vi) By Theorem 5.2 of [2]. • 

4.14 Remark The equivalence (v)~ (vi) in Theorem 4.10 holds for 
general Hermitian matrices. Also it is easy to prove that the implication 
(v) =:. (ii) holds for general Hermitian matrices. However, the converse is 
not true in general, as demonstrated by the matrix 

The A-minimal sets are {I, 2} and {2, 3} and hence V-(A) is connected. 
Nevertheless, A is nonsingular and hence H(E(N(A))) is not connected. 
This example also shows that the implication (ii) =:. (iii) does not hold for 
general Hermitian matrices. 

4.15 Remark Our results raise the natural question whether 
Theorem 4.lOcan be strengthened by replacing the phrase "Let A be an 
n x n positive semidefinite matrix" by "Let A be an n x n Lyapunov 
diagonally semistable matrix such that the identity matrix is a 
Lyapunov scaling factor of A and such that A has the PSRP". The 
answer to this question is negative as demonstrated by the matrix A 
defined in Remark 3.9. The matrix A is a Lyapunov diagonally 
semistable matrix such that the identity matrix is a Lyapunov scaling 
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factor of A and such that A has the PSRP. Since U(A) is connected, it 
follows from Theorem 6.18 in [2] that the identity matrix is the unique 
Lyapunov scaling factor of A. However, the graph U-(A) is not 
connected. 
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