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ABSTRACT 

The combinatorial structure of the generalized nullspace of a block triangular 
matrix with entries in an arbitrary field is studied. Using an extension lemma, we 
prove the existence of a weakly preferred basis for the generalized nullspace. Indepen­
dently, we study the height of generalized nullvectors. As a corollary we obtain the 
index theorem, which provides an upper bound for the index of a general matrix in 
terms of the indices of its diagonal blocks. We also investigate the case of equality in 
the index theorem. 
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INTRODUCTION 

Beginning with Frobenius [2], many authors have investigated the combi­
natorial structure of a basis for the generalized eigenspace associated with the 
spectral radius of a (not necessarily irreducible) nonnegative matrix; see [10], 
[8], [7] , [4], and the survey [11.]. These results have been partially extended to 
other real eigenvalues of a nonnegative matrix, or equivalently to the real 
eigenvalues of a Z-matrix [12, 5] . In this paper we eliminate the restriction to 
nonnegativity and show that a somewhat weaker version of the combinatorial 
results on the structure of certain bases holds for matrices with entries in an 
arbitrary field. Thus, it is possible to apply, for example, our results to 
complex eigenvalues of real matrices. Our aim is to relate the structure of the 
generalized eigenspace of a matrix given in a block triangular form to 
the Jordan structure of its diagonal blocks and to the graph structure of the 
matrix. Formally our results are stated in te!lllS of the eigenvalue 0 of a 
singular matrix, but this is a technicality, since a scalar matrix may always be 
added to the original matrix. Our principal results are the Extension Lemma 
(3.2), the theorem (4.9) on the existence of weakly preferred bases, and the 
Index Theorem (Corollary (5.8» and the discussion of the equality case in the 
Index Theorem in Section 6. 

The Extension Lemma (3.2) proved in Section 3 shows that every vector 
in the generalized nullspace of a diagonal block of a matrix has an extension 
to a vector in the generalized nullspace of the matrix which satisfies certain 
combinatorial properties. This lemma is a major tool used for subsequent 
results. 

The existence of a weakly preferred basis for the generalized nullspace of 
a matrix is proved in Section 4; see Theorem (4.9). Such a basis is character­
ized by a very special combinatorial structure induced by the reduced graph 
of the matrix. 

Section 5 is independent of Sections 3 and 4. It is an easy consequence of 
Theorem 2.1 in [6] that the index of a matrix given in a block triangular form 
is less than or equal to the sum of the indices of the diagonal blocks. In the 
Index Theorem (Corollary (5.8» we improve this result. We show that the 
index of the matrix is less than or equal to the maximal sum of the indices of 
blocks along a path in the reduced graph. Another proof of the Index 
Theorem using an entirely different approach is given in [1]. A special case 
for nonnegative matrices for the eigenvalues that are possibly different from 
the spectral radius is contained in [9] . 

In Section 6 we discuss the equality case of the inequality in the Index 
Theorem. We give a necessary and sufficient condition when A is a 2 X 2 
block matrix (see Theorem (6.8», and we show that an analogous condition is 
necessary for the equality when the number of blocks is arbitrary (see 
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Theorem (6.13)). We show by means of examples that our condition is not 
sufficient. 

This paper continues the series of papers [4, 5, 3] . The current paper is 
logically independent of these references. 

2. NOTATION AND DEFINITIONS 

In this paper we discuss n X n matrices A and vectors with n entries 
over an arbitrary field (which will not be mentioned explicitly in the sequel). 
The matrix A is always assumed to be in a (lower) block triangular form, 
with p diagonal blocks, all square. The diagonal blocks are not necessarily 
irreducible. The dimension of the jth block is n j ' j E < p ). Also, every vector 
b with n entries will be assumed to be partitioned into p vector components 
bi conformably with A. 

We follow the notation and definitions of [4], [5], and [3] . 

(2.1) NOTATION. For a positive integer n we denote by < n ) the set 
(l, ... , n}. 

(2.2) NOTATION. Let b be a vector with n entries (partitioned as above). 
We denote 

supp( b ) = {i E < p) : bi '* O} . 

(2.3) DEFINITION. The reduced graph R( A) of the matrix A is defined 
to be the (directed) graph with vertices 1, . . . , p and where (i, j) is an arc if 
and only if A i j '* O. 

Note that since A is in a block triangular form, R( A) may contain loops 
but no other (directed, simple) cycles. 

(2.4) DEFINITION. Let i and j be vertices in R(A). We say· that j 
accesses i if i = j or there is a path in R( A) from j to i. In this case we write 
that i =< j. We write i -< j for i =< j but i '* j. We write i '*< j if i =< j 
is false. 
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(2.5) DEFINITION. A set Wof vertices in R( A) is said to be initial if for 
every vertex j of R( A) and every element i of W, i = < j implies that 
JEW. 

(2.6) NOTATION. Let W be a set of vertices of R( A). We denote 

below( W ) = {vertices i of R( A) : there exists JEW such that j = < i }, 

top( W ) = {i E W: JEW, j = < i imply that i = j } . 

(2.7) DEFINITION. A vertex i of R( A) is said to be singular if A ii is 
singular. The set of all singular vertices of R(A) is denoted by S. 

(2.8) NOTATION. Let W be a set of vertices of R(A). We denote by 
A[W] the block matrix (Aij);.jE\\' Also, if b is an n-vector then we denote 
by b[W] the block vector (b)iEW' Finally, if W,., (p), then we denote by 
A( W) and by b( W) the block matrix A [ ( p ) \ W] and the block vector 
b [ ( p ) \ W] respectively. 

Note that A[W] is a principal submatrix of A. 

(2.9) NOTATION. For an n X n matrix A we denote: 

m( A) = the algebraiC multiplicity of 0 as an eigenvalue of A; 
index( A) = the index of 0 as an eigenvalue of A, viz., the size of the 

largest Jordan block associated with 0; 
N( A ) = the nullspace of A; 
E(A) = the generalized nullspace of A, viz. N(A") [note that m(A) 

is the dimension of E(A)]; 
range( A ) = the range of A. 

(2.10) DEFINITION. Let A be an n X n matrix. A sequence (x 1, ... , X m) 
of vectors is said to be a chain (with respect to A) if Ax i = Xi + 1, i = 1, ... , m 
-1. 

(2.11) DEFINITION. Let A be an nXn matrix. A chain (xl, ... ,x m ) of 
vectors is said to be a Jordan chain (with respect to A) if x m ,., 0 and 
Axm =0. 

(2.12) REMARK. As is well known, the generalized nullspace of a given 
square matrix has a basis which is a union of Jordan chains. Such a basis is 
called a Jordan basis for the generalized nullspace of the matrix. 
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(2.13) DEFINITION. Let A be a square matrix and let x E E(A). We 
define the height of x to be the minimal nonnegative integer k such that 
Akx = O. We denote it by height(x). 

3. COMBINATORIAL EXTENSIONS 
OF GENERALIZED NULL VECTORS 

(3.1) DEFINITION. Let A be a square matrix in a block triangular form, 
let x be a vector, and let i be a vertex in R ( A). The vector x is said to be a 
weak i-combinatorial extension of an n;-vector y if Xi = Y and xi = 0 
whenever i =1= < j. The latter condition means that supp( x) ~ below( i ). 

The following Extension Lemma is a major tool in our results. 

(3.2) LEMMA. Let A be a square matrix in a block triangular form, and 
let u be a vector in E( A ii) for some vertex i in R( A). Then there exists a 
vector x in E( A) such that x is a weak i-combinatorial extension of u. 

Proof. If u = 0, then x = 0 is the required vector. So assume that u =1= O. 
Then Aii is singular. Let B = A[below(i)]' and let xl, ... , X lll

(B) be a basis for 
E(B). Observe that x'! E E(A ii ) for all q E (m(B». By performing elemen­
tary operations we may assume that x'! =1= 0 if and only if q E (t), and that 
x}, ... , x: are linearly independent vectors in E( A ii)' Since x'! = 0 for t < q 
~ m(B), it follows that the vectors Xl+l(i), ... , x lll(B)(i) are linearly indepen­
dent vectors in E( B( i», where we recall that x i( i) = xi [below( i)\ { i } land 
B( i ) = B [below( i)\ { i}]. Therefore, we have 

m(B) ~ t + m(B(i)) ~ m(Aii) + m(B(i)) = m(B), 

the last inequality follOwing from the fact that in a block triangular matrix the 
algebraiC multiplicity of 0 as an eigenvalue equals the sum of the algebraiC 
multiplicities of 0 as an eigenvalue of the diagonal blocks. Hence, we must 
have t = m( A ii)' and so x f, ... , x: form a basis for E( A ii)' Thus, we have 

I 

V = " a .xi ~ ] I 

j -1 

for some scalars a l' ... , a I' Since below( i) is an initial set, it follows that by 
adjoining zero components to Xl, ... , Xl we obtain vectors y\ ... , yl in E(A) 
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that are weak i-combinatorial extensions of xL ... , x: respectively. It now 
follows that the vector x in E( A), defined by 

I 

x= L aiyi, 
j=l 

satisfies x = u and supp(x) ~ Uj_l supp(yi) ~ below(i). • 
We remark that in general one cannot replace the generalized nuUspaces 

in Lemma (3.2) by the nuUspaces. In other words, if u is a vector in N( A ii ) 
for some vertex i in R( A), then there does not necessarily exist a vector x in 
N( A) such that x is a weak i-combinatorial extension of u. Note that in the 
proof of Lemma (3.2) we used the fact that the algebraic multiplicity of 0 as 
an eigenvalue of a block triangular matrix equals the sum of the algebraic 
multiplicities of 0 as an eigenvalue of the diagonal blocks. Clearly, this 
property does not hold in general for the geometric multiplicity. 

The follOwing elementary lemma is essentially known; see Lemma 3.1 
in [5]. 

(3.3) LEMMA. Let A be a square matrix in block triangular form, and let 
x be a vector. Then supp(Ax) ~ below(supp(x». 

(3.4) PROPOSITION. Let A be a square matrix in block triangular form, 
let j be a vertex in R( A), and let (y I, ... , y m) be a chain of n [vectors with 
respect to A ji. Let Xl be a weak j-combinatorial extension of yl. Then the 
vector Xi = Ai - IX I is a weak j-combinatorial extension of y i, i E < m >. 

Proof. By Lemma (3.3) we have 

supp( X 2) ~ below( supp{ Xl)) ~ below{below( j )) = below ( j ) . 

Also, since supp( Xl) ~ below(j) we have 

Hence, x 2 is a weak j = combinatorial extension of y2. An inductive 
argument completes the proof. • 
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Motivated by Proposition (3.4), we now define 

(3.5) DEFINITION. Let A be a square matrix in block triangular form, let 
j be a vertex in R( A), and let {3 = (y 1, ... , y m) be a chain of n [vectors with 
respect to A if Let Xl be a weak j-combinatorial extension of yl, and let 
a=(x 1, ••• ,x PII

) be a chain with respect to A, defined by X'=A,-lX \ 

i E (m). Then a is said to be a weak j-combinatorial chain extension of {3. If 
{3 is a Jordan chain with respect to A jj and Xl E E( A), then we call a a 
weak j-combinatorial Jordan chain extension of {3. 

(3.6) LEMMA. Let A be a square matrix in block triangular form, let j be 
a vertex in R( A), and let {3 = (y 1, ..• , y m) be a Jordan chain of n [vectors 
with respect to A if Then there exists a weak j-combinatorial Jordan chain 
extension a of {3. 

Proof. By Lemma (3.2), there exists Xl E E(A) which is a weak j-com­
binatorial extension of y 1. Therefore, the chain a = (x 1, ••• , X m) is the re­
quired one. • 

(3.7) DEFINITION. Let A be a square matrix in block triangular form, let 
j be a vertex in R( A), and let y be a Jordan basis of E( A jj)' A set that 
consists of weak j-combinatorial Jordan chain extensions of the Jordan chains 
in y is said to be a weak j-combinatorial extension of the Jordan basis y for 
E(A jj)' 

4. WEAKLY PREFERRED BASES FOR THE GENERALIZED 
NULLSPACE OF A MATRIX 

(4.1) DEFINITION. Let A be a square matrix in block triangular form, 
and let mi = m(Aii)' Let H be a set of singular vertices in R(A) (that is, H 
is a subset of S). A set of vectors xii, j = 1, ... , m i , i E H, is said to be a 
weakly H~referred set (for A) if 

(4.2) {(xii)i: j E (m;)} forms a Jordan basis for E(Aii)' i E H, 

(4.3) supp(xii) ~ below(i) for all j E (mi)' i E H (i.e. xii is a weak i-com­
binatorial extension of (xii);), 
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and 

( 4.4) 

where the cffs satisfy 

(4.5) ij - 0 Chk -

DANIEL HERSHKOWITZ ET AL. 

whenever i *< h, i, h E H . 

(4.6) REMARK. Observe that a weakly H-preferred set Y is a set of 
linearly independent vectors which span an A-invariant subspace Vof E( A). 
The dimension of V equals Li E Hmi' Therefore, since m( A) = Li E 5mi' a 
weakly S-preferred set forms a basis for E( A). 

In view of Remark (4.6) we define 

(4.7) DEFINITION. Let A be a square matrix in block triangular form, 
and let H be a set of singular vertices in R( A). A weakly H-preferred set Y 
is saId to be a weakly H-preferred basis for span( Y ). 

(4.8) REMARK. The notion of a weakly preferred set generalizes the 
notion of a preferred set defined in [4]. 

(4.9) THEOREM. Let A be a square matrix in block triangular form. Then 
there exists a weakly preferred basis for E( A). 

Proof. Let Yi = {yi j: j E (mi ) } be a Jordan basis for E(A jj ), i E S. We 
now choose the set Yof n-vectors {x ij : j E ( mi ), i E S} such that {x ij : j E 

(m i )} is a weak i-combinatorial extension of the Jordan basis Y; for E(Aii)' 
All we have to show is that Y is a weakly S-preferred set. Note that (4.2) is 
given, that we have (4.3) by Proposition (3.4) and Definition (3.7), and that 
obviously (4.4) holds for appropriate cfrs. We now establish (4.5). Let i E S 
and j E ( m j ) be given. Define the set V = {h: cf.t * 0 for some k E ( m,,) }. 
Then (4.5) asserts that V ~ below(i). Evidently, the latter is equivalent to the 
assertion that top(V) ~ below(i). So let r E top(V). We next argue that 
(Axij)r * O. Assume to the contrary that (Axij)r = O. By (4.4) we have 

(4 .10) 0= (AxijL = L L cf,t(x"kL. 
"eSk=l 
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Since r E tope V), we have c f,t = 0 whenever h - < r. Since, by (4.3), 
supp( x hk) ~ below( h), it follows that (x "k) r = 0 whenever h =1= < r. There­
fore, (4.1O} becomes 

nI, nl, 

(4.11) O=(Axij),= L c:l(x rk )r= L c:lyrk. 
k=l k~l 

The linear independence of y rk, k E (mr >, yields from (4.11) that c:l = 0, 
k E ( mr >, in contradiction to rEV. Therefore, we have (Ax j j) r =1= 0, that is 
r E supp(Ax jj ). Since, by Lemma (3.3) and by (4.3), we have supp(Ax jj ) ~ 
below( supp( x j j» ~ below(below( i» = below( i), it now follows that r E 

below(i). • 

5. THE HEIGHT OF GENERALIZED NULLVECTORS 

(5.1) NOTATION. Let i be a vertex in R(A). We denote by SI the 
maximal sum of indices of diagonal blocks of A along a path in below( i ) \ { i }. 

(5.2) NOTATION. For a vector x in E(A) we denote 

q(x) = max { Si + height(x;}: i E top(supp(x))}. 

Observe that for x E E( A), q( x) = 0 if and only x = O. 

(5.3) LEMMA. Let x be a nonzero vector in E(A). Then q(Ax) < q(x). 

Proof. Let y = Ax. If y = 0, then the result is obvious. So assume that 
y =1= 0 and let i E top(supp(y». We distinguish between two cases: 

I. i E top(supp(x». In this case height(Yj) < height(x j), and hence 

(5.4) Sj +height(yJ < Sj +height(xJ. 

II. i ~ top(supp(x» . Since, by Lemma (3.3), supp(y) ~ below(supp(x», 
there exists k E top(supp( x» with k - < i. Then 

where J.L j = index( A ii)' 
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In either case we have a k E top(supp(x» for which the extreme inequalities 
hold in (5.5), and hence, in view of Notation (5.2), we have q(Ax) < q(x) .• 

We. now have three corollaries. 

(5.6) COROLLARY. Let A be a square matrix in block triangular form, 
and let x E E( A). Then height( x) ~ q( x). 

Proof. Let height(x) = k. If k = 0 then height(x) = q(x) = O. If k > 0 
then, by Lemma (5.3), we have 

q{x) > q(Ax) > ... > q(Ak-1X) > 0, 

which yields that q( x) ~ k. • 
(5.7) COROLLARY. Let A be a square matrix in block triangular form, 

and let x E E( A). Then height( x) is less than or equal to the maximal sum of 
indices of diagonal blocks of A along a path in below(supp(x». 

Proof. In view of Notation (5.2), the assertion follows immediately from 
Corollary (5.6), observing that height(x i ) ~ J.Li· • 

(5.8) COROLLARY. Let A be a square matrix in block triangular form . 
Then the maximal height of a vector in E( A) is less than or equal to the 
maximal sum of indices of diagonal blocks of A along a path in R( A ). 

It is an immediate consequence of a lemma in [6] that the index of a 
matrix in block triangular form is less than or equal to the sum of the indices 
of the diagonal blocks. We improve this result in the following Index 
Theorem for general matrices, which is equivalent to Corollary (5.8). A 
different proof for the Index Theorem may be found in [1], and a special case 
was proved in [9]. 

(5.9) THEOREM (The Index Theorem). Let A be a square matrix in block 
triangular form. Then the index of A is less than or equal to the maximal sum 
of indices of diagonal blocks of A along a path in R( A). 

Corollary (5.8) and Theorem (5.9) raise the natural question of when the 
index of A is equal to the maximal sum of indices of diagonal blocks of A 
along a path in R( A). One equality case, that is for M-matrices, is well 
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known ([8]; see also [II] and [4]). In the following section we shall investigate 
this problem in general. 

(5.10) REMARK. Corollary (5.7) (and thus also Corollary (5.8) and Theo­
rem (5.9» can also be derived from Theorem (4.9). However, the proof is 
more complicated, and requires an analysis of the coefficients Cj/k in (4.4). 

6. EQUALITY CASES IN THE INDEX THEOREM 

(6.1) LEMMA. Let A be a Singular matrix and let index( A ) = p.. Then for 
every x E N(AI')\N(AIL-I) we have x ~ range(A)+ N(AIL-I). 

Proof. Let x E range( A ) + N( AIL - I), and suppose that x E N( AIL) = 

E( A). We have x = Aw + v for some vector w, and where v E N( Ar I). 
Thus, AIL- IX = AlLw. Since x E E( A), it follows that W E E( A) and hence 
AIL-IX = AlLw = O. It now follows that x E N(AIL-I). Therefore, x E N(AIL)\ 
N(AIL-I) implies that x ~ range(A)+ N(AIL-I). • 

(6.2) PROPOSITION. Let 

where A 11 and A 22 are singular, and let 1) I and 1) 2 be positive integers such 
that 

Then 

index{A) ~ 1)1 + 1)2' 

Proof. Suppose that (6.3) holds. Let 

(6.4) Yl E range(Al'I-I) (] N{Au) 
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be such that 

(6.5) 

Obviously, YI =/:- O. It now follows from (6.4) that there exists Xl E E(All) 
such that 

and hence the height of Xl with respect to All is 1/1' By Lemma (3.2), there 
is an X E E(A) which is a weak l-<:ombinatorial extension of Xl' Observe that 

and hence 

(6.6) 

Let 

where z is some vector. Since, by (6.5), A 2l YI + A 22 Z2 is not in N(A~-l), it 
follows from (6.6) that 

Therefore, we have height( x) ~ 1/ 1 + 1/2' and consequently index( A) ~ 

1/1 + 1/2' • 

The converse of Proposition 6.2 is not true in general, as is demonstrated 
by the follOwing example. 

(6.7) EXAMPLE. Let A be the 2 X 2 block matrix 

It is easy to verify that index( All) = index( A 22) = 2, and index( A) = 3. Now, 
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observe that A 21 N( All) consists of the zero vector only. Therefore, if we 
choose 111 = 1 and 112 = 2, then index( A) ;;;, 111 + 112' but (6.3) does not hold. 

However, the converse of Proposition (6.2) does hold in the follOwing 
important case . 

. (6.8) THEOREM. Let 

where A 11 and A 22 are singular, and let fl I and fl 2 be the indices of A 11 and 
A22 respectively. Then 

(6.9) index(A) = fll + fl2 

if and only if 

Proof. Suppose that (6.10) holds. By Proposition (6.2) we have index(A) 
;;;, fll + fl2 · Since by Theorem (5.9) we have index(A).:s;;; fll + fl2' (6.9) now 
follows. 

Conversely, suppose that (6.9) holds. Let x E E(A) be such that 
height( x) = fll + fl2· Observe that (AI'l x h = Alax 1= O. Let YI = Ait -IX I and 
Z2 = (A.1'1 -IX h. Then 

(6.11) 

and, since the height of (Al' l x)2 equals fl2' 

(6.12) 

By Lemma 6.1, it follows from (6.12) that A21 YI (£ range(A 22 )+ N(A~-I). 
In view of (6.11), (6.10) holds. • 

We comment that if All or A22 is nonsinguiar, then clearly index(A) = 
fll + fl2· This case is not covered by Theorem (6.8). 
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We now generalize one direction of Theorem (6.8) to the case that the 
number of diagonal blocks is greater than or equal to 2. We first prove a 
lemma. 

(6.13) LEMMA. Let A be a matrix in lower block triangular form with p 
square diagonal blocks. Let index( A jj) = p. i' i E (p), and let p. be the 
maximal index sum along a chain in R(A). Assume that index(A) = p., and 
let x be a vector in E( A) with height( x) = p.. Then there exists i E 

top(supp(x» such that height(x i) ~ P.i and index(A[below(i)]) = p.. 

Proof. Let 

T = { i E top( supp( x )) : height( Xi) = p. i } . 

Let i E T. Since i E top(supp(x», we have Xi E E(A jj ). By Lemma (3.2) we 
can find a vector y i such that y i E E( A), and y i is a weak i-combinatorial 
extension of Xi. Let 

(6.14) 

Since obviously supp( x) ~ below(supp( x», and since for all i E T we have 
SUpp(yi) ~ below(i) ~ below(T) ~ below(supP{x», it follows from (6.14) that 
supp(z) ~ below(supp(x». Since 

{
a, 

~ -
.... j- xi' 

i E T, 
i E top(supp(x ))\T, 

it follows that for all i E top{supp(x» we have height(=i) < P.i. Therefore, we 
have q(z) < p., and by Corollary (5.6) we have height(z) < p.. Since height(x) 
= J.L, it now follows from (6.14) that for at least one i E T we have 
height(yi) = p.. • 

(6.15) THEOREM. Let A be a matrix in lower block triangular form with 
p square diagonal blocks. Let index(Ajj)=p.i' iE(p), and let p. be the 
maximal index sum along a chain in R(A). If 

index( A) = p., 

then there exists a singular chain i 1 - < i2 - < ... - < it with maximal index 
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sum, such that for every r, 1.;;;; r .;;;; t - 1, we have 

(6 .16) A"" [range( A~';.- I) n N( AM) 1 + 
/ 

,. - < /-< k 

q;, range( Au) + N( A~t -I) , 

where h = ir and k = ir+ I' 

Proof. We prove our assertion by induction on p. If p = 1 then there is 
nothing to prove. Assume that our claim holds for p < m , m > 1, and let 
p = m. Let x be an element of a weakly S-preferred basis for E( A) such 
that height(x) = Jl. By definition, there exists j E top(supp(x» such that 
j E 5, and such that x is a weak j-combinatorial extension of x j' Let s j 
be the maximal sum of indices of diagonal blocks of A along a path in T = 
below(j)\ {n. Observe that Jl = Jl j + s j' Since, by Corollary (5.6), we have 
Jl = height(x) .;;;; q(x) = height(x) + s j' it follows that 

(6.17) height( x j) = Jl j' 

Also, we have height( y) = Jl - Jl j = S j' where y = N'iX . Let T' = supp( y). By 
applying Lemma (6.13) to A[below(j)\ {nJ, we can find i2 E top(T') such 
that 

(6.18) 

and index( A [below( i 2)]) = S j' By the inductive assumption there exists a 
singular chain i2 - < i3 - < ... - < i, with maximal index sum (in 
R(A[below(i2 )])), such that for every r, 2.;;;; r.;;;; t -1, we have (6.16), where 
h = ir and k = i r+ l . Set i l = j, and observe that the chain i l -< i2 -< ... 
- < i, has index sum Jl. In order to complete the proof we have to show that 
(6.16) holds also for h = i l and k = i 2• So, let h = i l (= j) and k = i 2• Let 
w = AI',,-IX (so that y = Aw). By (6.17) we have 

(6.19) . - AI', - 1 ( AI't. - 1 ) N( A ) w" - ,,}. x" E range ",. n ,." . 
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(6.20) z= 
/ 

h -< /-< k 

It now follows from (6.18) that 

By Lemma (6.1) it follows that 

Ak"w" + Z + AkkWk fl range { A kk ) + N( A~i- l ) , 

and so 

Akl,w" + Z fl range { A kk ) + N( A~l-l). 

In view of (6.19) and (6.20) this proves (6.16). • 
(6.21) REMARK. Observe that if a singular chain i l -< i2 -< .. . -< if 

has a maximal index sum, then there do not exist 1 E ( p > and r E (t - 1 > 
such that Allis Singular and ir - < 1-< ir+ l' Therefore, all the 1's in the 
second term on the left hand side of (6.16) correspond to nonsingular blocks 
Au. In particular, in the case that the diagonal blocks of A are all singular, 
(6.16) in Theorem (6.15) can be replaced by 

The converse of Theorem (6.15) does not hold in general, as demonstrated 
by the following examples. 

(6.22) EXAMPLE. We give three examples. First, let A be the 3 X 3 block 
matrix 

o : 0 0 00: 0 
i:-o--6--6--6i-6 
0: 1 0 0 0: 0 
o : 0 0 00: 0 
0: 0 0 1 0: 0 
oi-6--6--6--ii-6 
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Here, III = 113 = 1 and 112 = 2. Clearly, the chain 1 - < 2 - < 3 has maximal 
index sum (Il = 4). It is easy to verify that (6.16) is satisfied (note that 
0° = 1), yet.index(A) = 3. 

Another example, this time of a matrix in Frobenius normal form, is the 
following matrix, which is similar to A: 

o : 000 0: 0 
--3i--=--1----=2---~2--~2i-6 

-1: 1 1 1 1:0 
0: -1 -1 -1 -1:0 

-1: 1 2 2 1: 0 
--0;----1---1----1----2;-6 

We conclude with a matrix that has also a nonsingular diagonal block. 
The matrix 

( ~L~L~l B= 11110 _...1 __ ...1 __ 

1: 1: 0 

satisfies (6.16). However, index(B) = 1, while the maximal index sum along a 
chain in R( B) is 2. 
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