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ABSTRACT 

We consider the pattern of zero and nonzero elements in the sequence Akb, 
where A is an n X n nonnegative matrix and b is an n X 1 nonnegative column 
vector. We establish a tight bound of k < n for the first occurrence of a given 
monomial pattern, and we give a graph theoretic characterization of triples (A, b, i) 
such that there exists a k, k ~ n, for which Akb is an i-monomial. The appearance of 
monomial patterns with a single nonzero entry is linked to controllability of discrete 
n-dimensional linear dynamic systems with positivity constraints on the state and 
control. 
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1. INTRODUCTION 

In the course of investigating a control theoretic question, Coxson and 
Shapiro [1] showed that, for a nonnegative matrix A with a positive diagonal 
and for a nonnegative vector b, an i-monomial pattern consisting of a single 
nonzero entry in the ith position will appear in Akb for some k < n, or it will 
not appear at all. They conjectured that the result holds even without 
restriction on the diagonals of A. 

It is the main purpose of this paper to prove the conjecture of Coxson and 
Shapiro: see Theorem 1 in Section 2. We call a triple (A, b, i) for which there 
exists a k, k ~ n, such that Akb is i-monomial a monophil triple. In Section 3 
we describe some graph theoretic properties of monophil triples, and we 
determine, in Lemma 5, the set of k such that Akb is i-monomial. From these 
properties, we derive a graph theoretic characterization of monophil triples in 
Theorem 2, Section 4, and we pursue some of its consequences. In Section 5 
we show that for monophil triples the bound k < n for the least k such that 
Akb is i-monomial is tight, and we display matrices and vectors for which the 
first i-monomial power is n - 1. A final Section 6 explains the control 
theoretic background. 

Our proofs proceed by means of a translation of combinatorial matrix 
properties into graph theoretic terms. We have structured our paper so as to 
derive Theorem 1 as early as possible. An alternative approach would be first 
to prove the characterization of mQnophil triples contained in Theorem 2 and 
then to derive Theorem 1. 

The investigation of the combinatorial properties of the powers of a 
nonnegative matrix A is classical and of importance in applications to areas 
such as the theory of Markov chains. It is known that there exist a positive c 
and a nonnegative Ko such that Ak+c has the same pattern as Ak for all 
k ~ Ko . Many papers derive bounds for the least such c and the correspond­
ing least Ko; see, for example, [2]-[10]. We do not use these results directly, 
though our paper is in the same spirit and contains theorems of a similar 
type. 

2. THE MAIN RESULT 

A matrix or vector M is nonnegative, denoted M ~ 0, if all of its entries 
are nonnegative real numbers. A nonnegative vector x will be called a 
monomial column if it has precisely one nonzero entry. If the nonzero entry 
of a monomial column is in the ith position, we will refer to it as an 
i-monomial. The following theorem is the focus of this paper. 
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THEOREM 1. Let A be an n X n nonnegative matrix and b be an n X 1 
nonnegative column vector. If there is an i-monomial in the sequence 
{Akb: k = n, n + 1, n + 2, . . . }, then there is an i-monomial in the sequence 
{Akb: k = 0,1,2, ... , n -I}. 

Of course, Theorem 1 implies the conjecture of Coxson and Shapiro [1.] 
which is stated in the first paragraph of the introduction. 

Our proof of this result is based on graph theoretic considerations. The 
(directed) graph of an n X n nonnegative matrix A, denoted C(A), is the 
graph with n nodes having a directed arc from node i to node j if and only if 
the (i, j) entry of A is positive. For our purpose, it will be much more 
convenient to think in terms of the graph C - (A):= C(AT), in which the 
direction of each arc is reversed. 

A (directed) path of C - (A) is simple if it has no repeated nodes. Let S 
be a subset of {l, ... , n}. A path of C - (A) that starts at a node of S is called 
an $-path. If i is a node of C-(A), then an {i }-path is called an i-path. An 
S-path that ends at a node i is called an (S, i)-path. By cycle we shall always 
mean a cycle without repeated nodes, except for the first and last. Two cycles 
with the same arc set are identified. An i-path that , is a cycle is called an 
i-cycle. By the previous remark, an i-cycle is also a j-cycle for every node j 
on the cycle. 

For an n X n nonnegative matrix A and an n X 1 nonnegative column 
vector b, the product Akb has the following interpretation in terms of 
C-(A). Let S= {SI,S2' ... 'Sv} denote the positions of all the nonzero 
entries of b. We call S the support of b, and we write S = supp(b). We 
identify the set S with the corresponding subset of the nodes of C - (A). 
Then the jth entry of Akb is nonzero if and only if there is an (S, j)-path of 
length k in C - (A). Thus we obtain the following key proposition which 
allows us to restate Theorem 1 in graph theoretic terms. It will be used many 
times in our proofs, often without further reference. 

PROPOSITION 1. Let A be a nonnegative matrix, b a nonnegative vector, 
and i a node ofC-(A). Let S = supp(b). ThenAkb is i-monomial ifand only 
if there is at least one (S, i )-path of length k in C - ( A) and every $-path of 
length k ends at i. 

We can now state Theorem 1 in the following equivalent form. 

THEOREM IG. Let A be an n X n nonnegative matrix, and S a subset of 
nodes ofC-(A). For some k, k ~ n, suppose there is an $-path of length k, 
and suppose that every $-path of length k terminates at the ith node of 
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G - (A). Then there is a j < n such that all $-paths of length j also terminate 
at node i. 

Let A be an n X n nonnegative matrix, b a nonnegative vector, and i a 
positive integer, 1 ~ i ~ n. We call the triple (A, b, i) rrwnophil if there exists 
an in~ger k, k ~ n, such that Akb is i-monomial. l 

.1 

LEMMA 1. Let the triple (A,b,i) be rrwnophil, and let S=supp(b). 
Then no $-path can meet a cycle which is not an i-cycle. 

Proof. Suppose Akb is i-monomial, k ~ n, If the S-path P meets a cycle 
which is not an i-cycle, then there is a path of length k which ends on that 
cycle, contrary to Proposition 1. • 

A path augmented (reduced) by a cycle is a path with the same 
beginning and end but covering one more (less) cycle than the original path. 
A path of length 0 is identified with a node. 

Proof of Theorem lG. By assumption there is a k, k ~ n , such that all 
S-paths of length k end at node i, and such that there is at least one S-path P 
of length k which ends at i. Then, by Lemma 1, all cycles that can be 
reached from S must be i-cycles. Since the length of P is greater than n - 1, 
the path P includes a cycle C. Let c denote the length of C. Then c ~ n ~ k. 
We claim that every S-path of length k - c either ends at node i or is disjoint 
from C, for if it contains a node of C it can be augmented to a path of 
length k. 

Now suppose that k, k ~ n, is the minimal integer such that all S-paths of 
that length end at i . Then there is an S-path R of length k - c with endpoint 
other than i. By the above argument, the nodes of C and R are diSjoint. In 
particular, i is not a node of R. Hence, by Lemma 1, R contains no cycle 
and therefore has k - c + 1 nodes. Since C has c nodes, it follows that 
k + 1", (k - c + 1)+ c ~ n, a contradiction. ..", .• 

--i 
The proof of Theorem IG above does not explicitly contain the insights 

into the structure of S-paths in G - (A) which originally led us to a proof. 
Those insights are detailed next in our discussion of the graph theoretic 
properties of monophil triples. We found Lemma 3 and Figure 1 to be 
especially helpful in understanding the result. 
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3. PROPERTIES OF MONOPHIL TRIPLES (A, b, i) 

Lemma 2 follows immediately from Proposition 1 and the definition of a 
monophil triple. 

LEMMA 2. Let the triple (A,b,i) be rrwnophil, and let S=supp(b). 
Then there is an S--path which contains a cycle. 

Let the triple (A, b, i) be monophil. By ko = ko(A, b, i) we shall always 
denote the least integer k for which Akb is i-monomial. If S = supp(b), then 
Pmax will denote the length of the longest S-path which does not meet a cycle. 
If there is no such path, we put Pmax = - 1. The result of Theorem 1 may 
now be stated as ko ~ n - 1. In fact, we have proved more, namely, 
ko ~ Pmax + c, where c is the length of a cycle contained in some S-path. In 
view of the next lemma, this result is of some interest. 

LEMMA 3. If (A, b, i) is rrwnophil, then every ,simple cycle through the 
node i must have the same length c. 

Proof. Let Akb be i-monomial, k > n. Suppose there are two cycles 
containing node i of lengths C1 and C2' with C1 < c2 • By Lemma 1, both 
cycles are i-cycles. All S-paths of length k terminate at node i. Select s in S 
such that there exists a path of length k originating at node s of G - (A). 
Consider the following two paths: 

Path I: Begin at node s in S. At the first occurrence of node i (say after 
P steps), follow the cycle of length c1 until the first return to node i. Then 
follow along the longer cycle until a path of length k has been determined. 

Path 2: Begin at node s, and take the same route as path 1 to reach 
node i for the first time. Now follow the cycle of length C2 and continue to 
cycle until the path has length k. 

At the (p.+ c1)th step, path 1 reaches node i and path 2 arrives at a node 
which is a distance C1 beyond node i on the cycle of length c2• From this 
point on, paths 1 and 2 are always a distance c1 apart on the cycle of length 
c2• In particular, they cannot both terminate at node i as required. Thus, all 
cycles must have the same length, as claimed. • 

By c we shall denote the common length of all i-cycles if (A, b, i) is 
monophil. We now immediately have the following corollary to Theorem IG. 
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COROLLARY l. Let (A, b, i) be nwnophil. Then 

ko ::( Pmax + c ::( n - 1. (3.1) 

We shall investigate the cases of equality in (3.1) in Section 5. 

LEMMA 4. Let (A, b, i) be nwnophil, and let P be a simple (i, j'}path of 
length d. Then d < C. 

Proof. If j lies on an i-cycle, then d < c, since the path is simple. 
Suppose j does not lie on an i-cycle, and suppose that d;;;. c. Since the path 
is simple, the subpath P I of P of length c which also starts at i ends at a 
node j' with j' =F i. Let Q be an (S, i)-path of length k, k ;;;. n. Reduce Q by 
an i-cycle, and then continue the reduced path by adjoining P'. We obtain 
an S-path of length k which does not end at i, contrary to assumption. • 

LEMMA 5. Let the triple (A , b, i) be nwnophil. Then the vector Akb is 
i-monomial if and only if k = ko + me, where m is a nonnegative integer. 

Proof. Suppose Akb is i-monomial. Since by Lemmas 2 and 3 there 
exists an i-cycle of length c, and by Lemma 4 the only i-paths of length c are 
i-cycles, it follows immediately that Ak+cb is i-monomial. Hence, by induc­
tion, Akb is i-monomial if k = ko + me, where m is a nonnegative integer. 

Conversely, suppose that Akb is i-monomial and that 0 < d < c. By 
Lemmas 1 and 3 there exists an i-path of length d along an i-cycle which 
does not end at i. It follows that Ak+db is not i-monomial. The result follows . 

• 
COROLLARY 2. Let A be an n X n nonnegative matrix, b an n X 1 

nonnegative column vector, and i a node ofC-(A). Then either all integers k 
such that Akb is i-nwnomial satisfy k < n, or else there are an infinity of 
integers k such that Akb is i-nwnomial. 

Proof. If there exists a k ;;;. n such that Akb is i-monomial, then (A, b, i) 
is monophil, and the corollary follows from Lemma 5. • 

In the next section, we use these results to specify necessary and 
sufficient conditions for a triple to be monophil. 
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4. GRAPH THEORETIC CHARACTERIZATION OF 
MONOPHIL TRIPLES 
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THEOREM 2. Let A be an n X n rwnnegative matrix, let b be a rwnnega­
tive vector, and let i be a rwde ofC-(A). Then (A, b, i) is monophil if and 
only if the following conditions hold for C - (A): 

(a) There exists a cycle which lies on an S-vath, where S = supp(b). 
(b) Every cycle that can be reached from S is an i-cycle. 
(c) Every i-cycle has the same length c. 
(d) Every simple i-path has length less than c. 
(e) If P and Q are two simple (S, i)-paths of lengths p and q respectively, 

then p == q (mod c). 

Proof. Suppose Akb is i-monomial, where k *" n. Conditions (a), (b), (c) 
and (d) are Lemmas 2, 1,3, and 4, respectively. For (e), note that by (c) and 
Lemma 5 there must exist m and m' such that p + me = q + m'c = k. 

Conversely, suppose that (a)-(e) are satisfied. By (a) and (b) there exists a 
simple (S, i)-path P. Let p be its length, and let m be an integer such that 
k = p + mc *" n. By (c), we can augment P by adjoining m i-cycles to obtain 
a path of length p + mc = k. Thus conditions (a), (b) and (c) imply that there 
is an (S, i) path of length k. Now suppose that R is an S-path of length k 
which is not an (S, i)-path. Since R contains a cycle, by (b) it contains an 
i-cycle and all of its cycles are i-cycles. Thus R is obtained from a simple 
(S, i)-path Q, repeatedly augmenting Q by an i-cycle, and then adjoining a 
simple i-path D not ending at i. Denote the lengths of Q and D by q and d, 
respectively. By (c) we have p + mc = k = q + m'c + d, for some positive 
integer m' , so that p == q + d (mod c). Using the congruence in (e), we 
conclude 0 == d (mod c). But, since D is nonempty, we have d> 0, and from 
(d) we know d <: c, a contradiction. Hence the path R is an (S, i)-path, and, 
in view of Proposition 1, the theorem is proved. • 

From Theorem 2, we see that an S-path Q for monophil (A, b, i) has very 
simple structure, as illustrated in Figure 1. It first traces a route of length p, 
which does not meet any cycle. (For consistency, we define p to be - 1 if 
the initial node of Q is on a cycle.) Then it moves around the various cycles 
through i, all of length c. After the last occurrence of node i, it follows an 
i-path D of length d < C. 

COROLLARY 3. If (A, b, i) is monophil, then (A, ei , i) is monophil, 
where ei is the ith carwnical unit vector. 
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Proof. If (A, b, i) is monophil, then conditions (a)-(e) of Theorem 2 
hold. Note that (c) and (d) are independent of the vector b. Conditions (a) 
and (b) for (A, ep i) follow from (a) and (b) for (A, b, i). Condition (e) also 
holds for S = {i}, since the only simple i-path which ends at i is empty and 
has length O. Hence the result follows from the converse direction of 
Theorem 2. • 

In view of an application in Section 6, it. is of interest to determine 
whether all i-monomials appear among the columns {Akb j : j = 1, ... , m; 
k = 0,1, ... }. By Theorem 1, it is sufficient to consider k ~ n - l. If an 
i-monomial appears in {Akb: k = 0, ... , n - I} we shall say that the triple 
(A, b, i) is submonophil. Every monophil triple is submonophil (Theorem 1), 
but the converse is false. Theorem 3 characterizes the graphs C - (A) and 
corresponding vectors b such that (A, b, i) is submonophil for all nodes i 
(here m = 1). 

THEOREM 3. Let A be an n X n nonnegative matrix, and let b be a 
nonnegative vector. Then the following are equivalent: 

(a) (A, b, i) is submonophil for each i, i = 1, ... , n. 
(b) After a permutation of (1, ... , n), supp(b) = {I} and the set of arcs 

of C-(A) is the union of {(1,2),(2,3), ... ,(n -1, n)} and an arbitrary 
subset of {(n, n),(n, n -1), ... ,(n, I)} (Figure 2). 

1 2 n-l n - -" 
• ~ • ~ ~ • ~ Jf::::."........ , 
~ ~ ~ ~ }JJ J " .......... _- -- - -:;:-/ ./ 

......... -...- "'-- -- .-....- - _.-#~ --- ,.",,'/ 

-----~~---
FIG. 2. 
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Proof. Suppose band G-(A) satisfy condition (b). Then Ai-1b is 
i-monomial, i = 1, ... , n, so that condition (a) holds. 

Conversely, suppose that A and b satisfy condition (a). Since ko(A, b, i) 
< n for each i, it follows that (after permutation of indices) Ai-1b is 
i-monomial, i = 1, ... , n. In particular, supp( b) = {l}. Since Ab is 2-mono­
mial, we see that (1,2) is the only arc beginning at node 1. The result follows 
by a repetition of this argument. • 

COROLLARY 4. Let A be an n X n nonnegative matrix. Then the follow­
ing conditions are equivalent: 

(a) For every node i of G - ( A) there is a nonnegative vector b i such that 
(A, bpi) is rrwnophil. 

(b) G - ( A) consists of a union of dis joint cycles which cover all nodes, 
and b j is a rrwnomial vector whose support is a node on the cycle containing 
node i. 

Proof. Suppose condition (b) holds. Let d j denote the distance from 
supp(b;) to node i, and let Ci denote the length of the cycle containing node 
i. Then Akbi is i-monomial for all k == d i mod Ci and thus (A, bj' i) is 
monophil. 

For the converse, assume condition (a). From Theorem 2(a) and 2(b), it 
follows that every node of G - ( A) is on a cycle. Suppose nodes i and j are 
on the same cycle. Then any i-cycle can be reached from any j-cycle, so 
Theorem 2(b) implies that the cycle through i (and j) is unique and the only 
simple (i, j)-path is the path along this cycle. Now suppose nodes i' and j' 
lie on different cycles. An arc (i', j') would join the i'-cycle to the j'-cycle, 
violating Theorem 2(b) for (A, bi" i'). The result follows. • 

Evidently, if G-(A) is the union of m disjoint cycles, the minimum 
number of distinct bi such that (A, bi' i) is monophil for every node i of 
G - (A) is m. In particular, we have the follOwing corollary. 

COROLLARY 5. Let A be a nonnegative matrix. Then there is a nonnega­
tive vector b such that (A, b, i) is rrwnophil for each i if and only if G - ( A ) 
consists of a single full cycle. 

5. THE BOUND IS SHARP 

The bound ko ';;; Pmax + c .;;; n - 1 is best possible, as illustrated in Figure 
3, where ko = 3 = n - 1. 
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1 2 3 

1 

= {[t] m m m} 
FIG. 3. 

The general structure of a monophil (A, b, i), i = n, having ko = n -1 is 
illustrated in Figure 4 for the case n = lO, Pmax = 6, c = 3. The graph G - (A) 
has precisely one cycle of length c and precisely one cycle free S-path of 
length Pmax which does not meet the cycle. The nodes are numbered 
consecutively, beginning with the initial node 1 of the cycle free path and 
ending with i = n on the cycle. In the matrices A and b, 1's denote positions 
which must have nonzero character. The X character denotes positions 
which may be chosen to be zero or nonzero. The # character denotes 
positions which may be nonzero, but may be forced to be zero if certain X's 

Pmax + 1 
( ) 

0 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 # 

# 1 0 0 o 0 0 0 0 0 # 

# # 1 0 0 0 0 'p __ Q __ Q. X 

A 1 0 0 0 0 0 0 Ie 
b = # x # # 

# x # # 1 0 0 0 0 # # 

# # x # # 1 0 # 0 # x 
x 0 0 x:O 0 x 0 0 1 Ie 

-o-
le 0 x 0 o :x 0 0 1 0 0 0 

0 0 x 0:0 x 0 0 1 0 
... 

FIG. 4. 
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1 2 3 4 5 
• • • • o 

FIG. 5. 

are nonzero. For example, if a S7 =1= 0, then all positions marked # are zero. 
Note that the X's of A all lie on subdiagonals separated by the distance c. If 
all of the X's in the last three rows of A are zero-indicating that the cycle 
and the cycle free path are disjoint-then the single entry marked * in b 
must be nonzero. 

We note that it is easy to construct an example for which the first 
monomial column (of any kind) in the sequence {Akb: k = 0,1,2, .. . } occurs 
when k = n - 1. For example, let G - (A) be given in Figure 5, and let 
supp(b) = {1,2}. 

6. MONOMIAL PATTERNS AND POSITIVE REACHABILITY OF 
LINEAR SYSTEMS 

A discrete single input linear dynamic system is given by 

x(k + 1) = Ax(k) + Bu(k), x(O) = xo, 

x(k)inRn and u(k)inRm
, 

(6.1) 

where A is an n X n real matrix and B is an n X m real matrix. x( k) is a real 
n X 1 column vector, called the state vector, for each k = 0,1,2, ... , and 
u( k) is a real m-dimensional input to the system. For a given initial state 
x(O) = xo' the solution of (6.1) is given by 

k-l 

x(k) = Akxo + L AiBu(k -1- j). 
j=D 

We will be interested in the states x in Rn which can be reached from 
Xo = 0. This set of reachable states is clearly the subspace of Rn spanned by 
the column vectors of {AiB}. For each j ~ n, the Cayley-Hamilton theorem 
provides that AiB can be expressed as a linear combination of {AiB: i = 
0,1, ... , n - 1}. Thus, any state which can be reached in a finite number of 
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steps can also be reached within n steps with an appropriate choice of inputs 
u( i). The reachable set is all of R n if and only if R n is spanned by 
{AiB: j = 0,1, ... , n -I}. 

Next consider a positive discrete linear system, 

x(k + 1) = Ax(k) + BU(k), 

x(k)inR':- and u(k)inR~, 

with A, B, xo, and u(j) constrained to be nonnegative. Under these 
conditions, x( k) will be nonnegative for all k ~ 0. Such nonnegativity con­
straints are an essential feature of a wide range of applications, including 
chemical reaction systems, where the underlying states are masses of chem­
icals which can never be negative. 

Due to the nonnegativity of {AkB} and the input u(k), the reachable set 
of the positive system is contained in the nonnegative orthant R':-. This set is 
denoted by Roo' The subset Rk of states which can be reached within k steps 
is the polyhedral cone generated by the nonnegative columns of {AiB: 
j = 0, ... , k - I}. The Cayley-Hamilton theorem ' again guarantees that Ak B 
can be expressed as a linear combination of {AiB: j = 0,1, ... , n -I}. But 
the coefficients are not necessarily nonnegative, so we cannot conclude, as in 
the unconstrained case, that Roo = Rn' 

R k = R':- if and only if each of the n independent i-monomials of R':- is 
an element of R k. We let ei denote the i-monomial with a 1 in the ith 
position. Since ei is. extremal in R':-, it is possible to obtain 

k-l 

ei = LAiBu(k-l-j) 
i=o 

with u(j) ~ 0, j = 0, ... , k -1, if and only if AiB has an i-monomial column 
for some nonnegative integer j. If AiB has an i-monomial column, then ei 

can be reached in j + 1 steps. 
Thus Theorem 1 applied to each column b of B implies that Roo = R':- if 

and only if R n = R ':-; that is, if all nonnegative states are reachable, then they 
are reachable within n steps (Roo = Rn)' Note, however, that if Roo '* R':-, 
then it is possible that Roo '* Rn' For example, 

and Rk is strictly contained in Rk+l for each k. 
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If Roo = R~, then for each node i of C - (A) there is a column b of B 
such that (A, b, i) is submonophil. For the single input system (B = b, a 
column vector), a characterization of A and b such that Roo = R~ is given in 
Theorem 3. If (A, b, i) is monophil, then i-monomials can be reached 
repeatedly over time. If (A, b, i) is submonophil but not monophil, then 
i-monomials can be reached only in the initial n steps following an input (see 
Corollary 2). A detailed discussion of the reachability problem and related 
control issues for positive systems can be found in Coxson and Shapiro [1]. 

We would like to thank Helene Shapiro for her part in formulating this 
problem and for helpful discussions in the early stages of this work. Richard 
Brualdi made numerous suggestions which improved both the style and 
content of the paper. 
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