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Abstract. Recent results of Neumaier for irreducible matrices on the equality case of a classical matrix
inequality due to Ostrowski are generalized to general matrices. Several graph and number theoretic concepts
are employed in the proof of various further results.
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1. Introduction. Let 4 be a complex n X n matrix and define the absolute value
matrix B = [4| of A by b; = la,l, i, j = 1, - -+ , n. Let p(4) be the spectral radius of 4.

Let 4 be the set of all complex matrices 4 such that p(|4|) < 1. In [7] Ostrowski
proves the now very well known result that, for 4 € %,

(L.1) -4 1= -14D7,

where the inequality is entrywise.
In [6] Neumaier shows that for 4 € #, the set of n X n irreducible matrices 4 € %,

(1.2) (7= A =(1-14D)7",

if and only if

(1.3) all circuit products of 4 are positive.

It is well known ([2], [3]) that for irreducible 4, (1.3) is equivalent to

A is diagonally similar to | 4|, i.e., there exists a diagonal matrix X such

(4 hat 4 = x|4lx

Neumaier also shows in [6] that the condition
(1.5) I—A=(-14]""),, forsomei,j, 1=ij=n,

which is apparently weaker than (1.2), is in fact equivalent to (1.2)-(1.4) for 4 € #. (We
have stated special cases of the results of Ostrowski and Neumaier, from which, however,
the general theorems may easily be derived.)

In this paper we generalize Neumaier’s results in various directions. We consider
the equality (1.2) for general 4 € %, omitting the requirement of irreducibility. We use
the concept of two-twisted chain of the graph G(A4) of 4, which was defined in [5] (see
also § 2 of this paper). Intuitively, a chain in a directed graph is obtained by putting a
pointer at a vertex and moving it either in the direction or against the direction of a
connected sequence of arcs to another vertex. Each change in direction is a twist. A two-
twisted chain (e.g., cycle) is a chain with at most two twists. Thus, a circuit (directed
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2 DANIEL HERSHKOWITZ AND HANS SCHNEIDER

cycle) is a special case of a two-twisted cycle. We show that, for 4 € %, condition (1.2)
is equivalent to

(1.6) all cycle products of A corresponding to two-twisted cycles are positive

(and other conditions). This generalizes (1.3).

If Cis an s X s matrix and A4 is an n X n matrix, where s < n, we generalize both
the Kronecker and Hadamard products in [4] by defining the n X n matrix C XX A, sce
also § 3. Thus, if A is partitioned into s? matrices A, i, j =1, -+- , 5, then C XX 4 is
the matrix whose blocks are ¢;A4;, i, j = 1, -+ , 5. Here we show that if 4 € % is in
Frobenius normal form then A satisfies (1.2) if and only if

A is diagonally similar to CXX|A|, where C is an upper triangular
(1.7) s X s matrix (s £ n) such that |¢;] is 1 or 0, ¢;is 1 or 0, i,j=1, -5,
and zC satisfies (1.2) forO<z< 1.

This generalizes (1.4).

We also generalize (1.5) by defining the concept of a G{A4)-access cover, see also
§ 2. A subset T of (n) X (n), where (n) = {l, - -, n}, is a G(4)-access cover if for each
(i,7) € {(n) X {n) there is an (A, k) € T such that & has access to i in G(4) and j has access
to k in G(A4). We observe that {(i, j)} is a G(A4)-access cover for all (i, j) € (n) X (n) if
and only if A4 is irreducible (or equivalently, G(A) is strongly connected). Thus, if T is a
G(A)-access cover and A € %, then (1.2) is equivalent to

(1.8) (71— 4)"'l;=— 14" for (i,j)€T.

The results above may be found as part of Theorem 5.14.
It is easily seen that (1.2) is equivalent to

z A= 2 4

SEN SEN

(1.9)

for A € %, where N is the set of natural numbers. Since, for all subsets S of NV,

(1.10) 2 A

ses§

= 2 |4l
ses§

it is natural to define Equ (&, T, S) to be the set of all 4 € &7 such that

(1.11) > A= 2 |Al° for(i,j)€T,

s€S SES

where o/ € %, T = (ny X (nyand SS N.

The equivalences stated above, and others, are stated in terms of Equ (%, I, N). It
is clear that Equ (&, I, S) 2 Equ (&, I, N) for S = N. We therefore call a subset S of
N (o, I)-sufficient if Equ (&, T, S) = Equ (&, T, V).

We give conditions equivalent to (£, (n) X (n)}-sufficiency and (¥, (n) X (n))-
sufficiency. The general problem of characterizing (&, I')-sufficient sets and minimal
(o, I'-sufficient sets, for o < % and T = (n) X (n), is open.

Section 2 contains graph theoretic preliminaries. Section 3 contains preliminaries
from combinatorial matrix theory. The basic definitions and results on Equ (&, T, S)
are collected in § 4. Sections 5 and 6 contain our principal results on Equ (<, T, ¥) and
(F, D)-sufficient and (%, I')-sufficient sets.
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2. Graph theoretic definitions and preliminaries.

DEFINITION 2.1. A (simple, directed) graph G = (V, E) is a pair of finite sets with
E c VX V.An element of Vis called a vertex of G, and an element of E is called an arc
of G. Wecall G=(V', E'Ya subgraph of Gif V'€ Vand FE' c E.

DEFINITION 2.2. Let G be a graph. A chain in G of length s from a vertex ij to a
vertex I; of G is a sequence

(23) 7=(i0’el)il;e2yi2,'“,i:—l)e:,i:)

where either e, = 1 and (i, - |, i,) is an arc of G or ¢, = —1 and (i, i,_,) is an arc of G,
p=1,--,s Thearc (i,_y, ip), [(ip, ip-1)], 1 S p= s issaidtolieonyife, =1
le, = —1]. The length of a chain v is denoted by |y|. The chain v is simple if the
vertices iy, - - , s are distinct. The chain v is closed if iy = i;, and v is called a cycle
if it is closed and the vertices i, - -- , i; are distinct. A chain given by (2.3) such that
e, = -+ e; = 1iscalled a path. A path that is a cycle is called a circuit. A closed chain
of form

7=(i0aelail".' ’i.\‘a_e:ai:—l, T a_elaio)

will be called trivial. The empty chain & will be considered a chain of length 0 from any
vertex to itself and is defined to be simple. The set {ig, - - - , im} is called the vertex set
of the chain g given by (2.3).

Thus the empty chain is the only simple circuit.

Intuitively, the chain (i, ¢,j) is a step from vertex i to vertex j along the
arc (i, j) if e= 1 and a step from i to j along the arc (J, i) if e = —1. We normally
write | = j or i < j in place of (j, e, j) accordingly as ¢ = 1 or ¢ = —1. For example,
] >2—=>3—> lisacircuit and 1 = 2 = 3 <« 1 is a cycle. Note also that as a
consequence of the above definition certain chains are cycles that normally are not con-
sidered as such, e.g., 1 = 2 <« 1. It would make no difference to our results to elimi-
nate such cycles from consideration.

DEFINITION 2.4. A vertex | has access to a vertex j in a graph G if there is a path
from i toj in G and we write i >— jor j —< i. If U, W are subsets of the vertex set V of
G, then the notation U >— W indicates that every vertex of U has access to every vertex
of W.

Observe that a vertex i has access to itself since & is a path from i to /.

DEFINITION 2.5. A graph G is strongly connected if every vertex of G has access to
every vertex of G. A subgraph H of G is called a component of G if H is a maximal
strongly connected subgraph of V, viz. H is strongly connected but no subgraph properly
containing H is connected.

DEFINITION 2.6. Let G = (V, E) be a graph and let (i, j), (h, k) € V X V. Then
(i, j) is a G-access cover for (h, k) (or (i, j) G-access covers (h, k)) if i >— h and k >— .
Let I' be a subset of V' X V. Then the set of all (4, k) that are G-access covered by ele-
ments of ' will be denoted by Ag(I'). If A = A5(I'), we shall say that T is a G-access
cover for A (or that I' G-access covers A). If a is a chain in G [G' is a subgraph of G]
with vertex set V', then I' will be called a G-access cover for a [G'] if T access covers
V' X V'. A G-access cover for V X V will be called a G-access cover.

It is easy to show that A considered as an operator from the set of subsets of
V X Vinto itself is a closure operator in the sense of [1, p. 42].

The following lemma is clear:

LEMMA 2.7. Let G=(V, E)bea graph. Then the following conditions are equivalent

(1) G is strongly connected.
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(ii) Every nonempty subset of V X V' is a G-access cover.

(iii) Every pair (i, j) € V X V is a G-access cover.

Remark 2.8. Let G be a graph and let H,, -+ , H, be the components of G with
vertex sets V, - -+, V, respectively. It is possible to order the components of G so that

V,>-V,=>p<q forp,q=1,---,s.

DEFINITION 2.9. (i) Let 8 and 4 be the chains (i, e, - ,es, i) and
(JosS1s =+, fer J), respectively. If i, =j, we define the concatenated chain By by
(io, e, ~~ - , €, i, iy =+, fou jo). (If iy # jo then B is not defined.)

(ii) Let « and 8 be chains. We call « an extension (chain) of 8 (and 8 a subchain
of o) if 8 = 8,8; and a = B,o'8;, where 8,, §,, and o' are chains (which may be empty).
Also, an extension of an extension of 3 is defined to be an extension of 3.

It is easy to see that if « is an extension of 8 then « and § may be written in the
forms 8 = 8:8; +++ B, and a = afiay - Bpa,, where the o, i =0, -+, p, 8,
i=1,+--,parechainsand ;, i = 1, - - -, p — 1 is closed.

DEFINITION 2.10.

(i) Let v be the chain given by (2.3). Then the reverse chain of v is defined to be
(i;, —e5, is_y, -+, —ey, Ip), and is denoted by v*.

(ii) We call ¢, [&] the initial [ final] sign of .

DEFINITION 2.11. Let v be a chain given by (2.3).

(i) Ife, #€,+1, 1 = p < s, then we say that v has a twist at p (or that p is a twist
of 4). If v is a closed chain then we allow p = 0 and we let ¢y, = ;.

(ii) If v has exactly k twists then v is said to be exactly k-twisted and we put
1y) = k.

(iii) If #(y) = m for an integer m then + is said to be m-twisted.

Note that if v is not closed then () is equal to the number of sign changes in the

sequence ¢, - - , €. If v is closed then #{) is equal to the number of sign changes in
the sequence e,, - -, ¢;, ¢,. Also note that a closed chain in form (2.3) may have a twist
atQ, ---,s— | but not at s.

Observe that a chain [cycle] is O-twisted if and only if it is a path [circuit] or a
reversed path [reversed circuit], and that a closed chain has an even number of twists.

LEMMA 2.12. Let G be a graph.

(1) If a is a chain in G and v is a subchain of a then

(2.13) HY)SHa)+ 1.

(i) If, further, o and v are closed then
(2.14) Hy) = a).

Proof. (1) Lety =+, - v,and a = agy,a; "+ a,_1¥,a,. We shall establish a
1 — 1 mapping of the set of twists of v (excluding a possible twist at 0) into the set of
twists of a. Suppose that o] =5, i =0, ---,pand that [y =¢4,i=1, ---, p. Let

1=r=t+ - +1,and suppose that v has a twist at . Then
r=t+ - ++g

whereO=i<pandl =g=t4,.Ifg<tiy thenahasatwistat r+s5+ --- + 5. If
g = ti+, then i < p — | (since v does not have a twist at ¢, + --- + ¢,) and, since the
final sign of v,, and the initial sign of v, ., are inequal, it follows that « must have a
twist at r + 5, + -+ + 5; + ¢ for some ¢’ satisfying 0 = ¢; < s;,,. This proves the
existence of the claimed injection and (i) follows.

(ii) If « and ~ are closed, then /() and f(y) are both even and (ii) follows
from (i). a
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3. Definitions and preliminaries in combinatorial matrix theory.
DEFINITION 3.1. Let ¢ be a complex number. The sign of ¢ is defined by

cfld, ifc#0.
n(c)=
sen () [0, ifc=0.
We call a complex number ¢ a sign if |c| is either 0 or 1. If A € C™, then we call 4
a sign matrix if a;isasign fori, j=1, --- , n.
DEFINITION 3.2, Let 4 € C™,
(i) Then C = |4| € C™is defined by ¢;; = |aj| for i, j=1, -+, n.
(i) The matnix 4 is called nonnegative (A2 0)if a;20,4,j=1,---,n.
DEFINITION 3.3. If A € C"" (the set of n X n complex matrices) then the graph G(A)
of A is defined to be ((n), E) where (n) = {1, -+, n} and (i, j) € E whenever a; # 0.
DEFINITION 3.4. Let 4 € C™ and let « = (i, e, §,, - * , &,, i) be a chain in G(4).

Then we define the chain product T1.(A4) by
q
Ha(A) = H ai‘:_ Vip*®
p=1

We put []x(4) = 1. If « is a cycle (path, circuit) we call the [],(4) a cycle (path,
circuit) product.
Note that if « = (iy, €,, I}, " -, €, i,) is a closed path and

6=(ikaek+1’...1eq1i01el;'..,ik), O§k<q,

then [1(4) = T1«A).

DEFINITION 3.5. Let 4, B€ C™. We say that 4 and B are diagonally similar if there
exists a nonsingular diagonal matrix X such that B = X~ '4X, and we say that 4 and B
are sign similar if there exists a nonsingular diagonal sign matrix X such that B = X' 4X.
We say that 4 and B are permutation similar if there exists a permutation matrix P such
that B = P~'4P. We say that 4 and B are diagonally equivalent if there exist nonsingular
diagonal matrices X and Y such that B = YAX.

DEFINITION 3.6. Let 4, BeC™. We say that 4 and B are c-equivalent if
G(A) = G(B) and for all circuits « in G(4) we have [].(4) = T1(B).

Definition 3.6 and some implications may be found in [2]. In particular, it is well
known that for irreducible matrices A and B, the matrices 4 and B are diagonally similar
if and only if they are c-equivalent (see [2, Thm. 4.1]).

DEFINITION 3.7. If ¥, W < (n) and 4 € C™, then A[V, W] is the submatrix of 4
whose rows are indexed by V and whose columns are indexed by W (in their natural
orders).

DEFINITION 3.8. Let 4 € C™.

(i) The matrix A is called irreducible if G(A) is strongly connected.
(i) The matrix A4 is said to be in Frobenius normal form if A may be written in
the block form

A“ AIZ “e A“
(3.9) a= |9 A2

0 - 0 4,
where A;; is an irreducible square matnix, i = 1, --- , s.

(iii) Let B € C™. The matrix B is said to be a Frobenius normal form of A if B is
in Frobenius normal form and if 4 and B are permutation similar.
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Remark 3.10. Let A € C™. We may obtain a Frobenius normal form of 4 by reor-
dering the vertices of G(A4) so that V), consists of consecutive integers, p = |, -- -, s, and
so that (2.8) holds. It follows from Definition 3.8 that a Frobenius normal form of 4 is
unique up to permutation similarity. The diagonal blocks of a Frobenius normal form
of A will be called the components of A.

In [4, § 4] we introduced the inflation product C XX A4 of two matrices where
C e C¥ A€ C™ and 4 is partitioned into s blocks. In this paper we use the notation
C XX A only in the special case when A4 is in Frobenius normal form and C satisfies
(3.12) below.

DEFINITION 3.11. Let A € C" be in Frobenius normal form (3.9) and suppose that
C € C* satisfies

(3.12) C is a sign matrix,
(3.13) cpisequaltoOQor I, pe(s),
(3.14) Cpg=0<Ap,=0, p,gels).

Then the matrix B=CXX A€ C™ is defined to be the matrix with blocks
By = CpgApg, D, 4 € {5).

4. Preliminaries on equality classes and sufficient sets.
Notation 4.1. We use the following notation:
N =theset {0,1,2,---}
A = the set {(i, 1) : i € {(n)}.
Notation 4.2. Let A € C™.
p(A) = the spectral radius of A.
U, = the set {4 € C™: p(|4]) < 1}.
We normally write % in place of %,.
F = the set of irreducible matrices contained in %.
If G = ({n), E) is a graph, then #(G) is the set {4 € % : G(4) = G}.
Note that for every A € C™ we have cA € 7 for all complex numbers ¢ whose
absolute value is sufficiently small. Let 4 € % and let S < N. Observe that

z A

sES

S22 4P =(-l4A)7"

5e8 seN

(4.3)

Hence the series in (4.3) converge. In order to discuss the cases when the equalities hold
in (4.3) we shall make several definitions. The first of these allows us to discuss the case
of equality in the first inequality in (4.3).

DEFINITION 4.4. Let T < (n)X{n), let SN, and let o < %. Then the
(A, T, S)-equality class is defined to consist of all 4 € o such that

s€S

forall (i, j) € T, and it is denoted by Equ (&, T, S).

The first two parameters in Equ (&, T', S) are optional and default to % and
{n) X {n), respectively. Thus (by convention)

Equ (T, S) = Equ (%, T, S),

Equ (&, §) = Equ (&, (n) X (n), S),

Equ (S) = Equ (%, {n) X {n), S).

We have the following easy but fundamental lemma.

LEMMA 4.6. Leti,je{n)andletS< N. Then the following conditions are equivalent:

4.5) (
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(i) 4 €Equ(()),S).

(ii) sgn (I1.(4)) = sgn (I14(A4)), for all paths a, B from i to j in G(A) such that
led, 181 € S.

Proof. Note that (i) is equivalent to (4.5) by definition of Equ ((i, j), S). The equiv-
alence of (i) and (ii) follows from the conditions for equality in the triangle inequality
and the result that for i, j € (n) and 5 € N we have

4.7 A= 2 Il.A4)
o € P(i,jis)
where P(i, J; 5) is the set of all paths from i to j of length s in G(A4). O
The proof of the following lemma is easy and will be omitted.

LEMMA 4.8. Let o/ = B < ¥ and let T, T, A be subsets of {(ny X {n) such that
FcA Lt S TS N. Then

4.9) Equ (#,T,S)=Equ (#,T,S)N &,
(4.10) Equ (&, TUTI",S)=Equ (&, T,S)NEqu (&, T, S5),
4.10 Equ (%/,A, T)cEqu(4,T,S).

Let S = N. Then by Lemma 4.8 it follows that Equ (&/, T, N) € Equ (&, T, S) for
all o € % and T < (n) X (n). This remark motivates the following definition which
allows us to discuss the case of equality in the second inequality in (4.3).

DEFINITION 4.12. We say that the subset § of N is (&f, I'-sufficient if
Equ (&, T, S) = Equ (&, I', N). We say that S is minimal (A, T)-sufficient if S is
(o, T')-sufficient but no proper subset of S is (&, I')-sufficient. We say that Sis optimal
(A, I)-sufficient if S is an (&, T')-sufficient of minimal cardinality, viz. there exists no
(&, T)-sufficient set of lower cardinality. The two parameters in the term (minimal,
optimal) (&, I')-sufficient are optional and default to % and (n) X {(n), respectively. Thus
S is T-sufficient means that S is (%, T')-sufficient, S is &/-sufficient means that S is
(o, {n) X {n))-sufficient, S is sufficient means that S is (%, (n) X {(n))-sufficient.

Of course, an optimal (&7, T')-sufficient set is minimal (&7, I')-sufficient.

LEMMA 4.13. Lt o/ =« B U, let T < (ny X (n),andlet S T< N.If S is
(B, T')-sufficient then T is (o, T)-sufficient.

Proof. By Lemma 4.8 we have

Equ (#,T,N)cEqu (#,T,T)cEqu (4,T,5).
But by our hypothesis Equ (%, I, S) = Equ (4, T, N) and it follows that
Equ (#,T,T)=Equ(£4,T,N).
Therefore, by (4.9), it follows that
Equ (o, I, T)=Equ (%, T, T)N & =Equ(A,T,N)N =Equ (&, T,N). a

5. The equality class of N. In this section we prove necessary and sufficient con-
ditions for 4 € Equ (T, N) for irreducible and general 4 € 4. In view of Definition 4.4,
A € Equ (T, N) is equivalent to

5.1) [I—A) Y y=U—|AD;' for(i,j)€eT.

THEOREM 5.2. Let i, j€{n), and let A be a subset of (ny X {n) such that
(i, J) € A and (i, j) access covers A. Let A € 4. Then the following conditions are equivalent.

(i) 4 € Equ((i, j), N).
(i) sgn (IT.(4)) = sgn (I15(4)), for all paths a, B from i to j in G(A).
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(iii) sgn (ITa(A)) = sgn (I1s(A)), for all paths a, 8 from h to k in G(A), where
(h, k)€ A. ,
(iv) A € Equ (A, N).

(v) Both
(a) sgn (I15(4)) = sgn (I1,(4)), for all simple paths 8, v from i to j in G(A)
and
(b) If a is a circuit of G(A) which is G(A)-access covered by (i, j) then
[1a(4) > 0.

(vi) All chain products of two-twisted closed chains of G(A) which are G(A)-access
covered by (i, j) are positive.

(vii) All cycle products of two-twisted cycles of G(A) which are G(A)-access covered
by (i, j) are positive.

Proof. We shall show that (i) < (ii) = (iil) = (iv) = (i), (ii) <> (v), and (ii) <
(vi) <= (vii).

(i) <> (ii). This is given by Lemma 4.6.

(ii) => (iii). Suppose (ii) holds. Let (A, k) € A and let @ and 3 be paths from A to k
in G(A4). Since (i, j) is a G(A4)-access cover for (h, k) there exist paths v and § in G(A)
from i to h and k to j, respectively. Since

[T, es(4) = IT,56(4)
by (ii), and since

I, as(4) = TT,(A4) TT(A) TT4(4),
I, 65(4) = T1,(4) IT4(4) IT5(A),

we obtain (iii).

(iii) = (iv). By (4.10) and Lemma 4.6.

(iv) = (i). By (4.11), since (i, j) € A.

(ii) = (v). Suppose (ii) holds. Then obviously we have (a), To prove (b), let
a = (ip, -+, is) be a circuit of G(A4) that is G(A)-access covered by (i, j). Then there is a
vertex k of a for which there exist paths § from j to k& and y from & to j. Without loss of
generality we may assume that k = jy. By (ii) the path products corresponding to the
paths 8y and Say have the same (nonzero) sign. It follows that [1.(4) > 0 and (v) is
proved.

(v) = (ii). Suppose that (a) and (b) hold. Let § be a path in G(A4) from / to j.
Then IT,(4) is a product of [14(4) and factors of type [1.(4), where 8 is a simple path
from i to j and a is a circuit of G(4) for which (4, j) is a G(A4)-access cover. By (b),
sgn (IT,(4)) = sgn (I15(A4)). Hence it follows from (a) that products corresponding to
every pair of paths from i to j have the same sign.

(ii) = (vi). Let a=(ip, e, "+, im) With iy = i, be a two-twisted closed chain
which is G(A)-access covered by (i, j). If t(a) = O then the positivity of [1.(4) follows as
in the proof of (ii) implies (v) with “circuit” replaced by ‘“closed path.” Suppose
t(e) = 2. Let « have twists at p and g, respectively. Without loss of generality we may
assume that p = 0 and ¢, = 1. Observe that ¢,,.; = —1. Let o) = (i, - , i,) and let
ay = (ig, -+, i5)*. Observe that both «, and a; are paths from i, to i,. Since (i, j) is a
G(A)-access cover for a, there exists paths § from i to iy and ¢ from i, to j. By (ii), the
nonzero path products corresponding to do ¢ and dazy have the same sign. Thus the
path products corresponding to @, and a5 have the same sign. Since @ = a;af our claim
follows.
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(vi) = (ii). Let « and 8 be two paths from i to jin G(4). Then af* is a two-twisted
closed chain (possibly trivial). Since

[Tase(4) = [Ta(4A)T1s4)
clearly (vi) implies (ii).

(vi) = (wvii). This is trivial.

(vii) = (vi). Assume that (vii) holds and let a = (ip, - * - , iy), i = i5, be a two-twisted
closed chain which is G{4)-access covered by (i, j). The proof is by induction on the
length s. If s = 1, then « is a cycle and the result holds. So let s > 1 and assume that
I1,(A4) > 0 for every two-twisted closed chain « that is G{A)-access covered by (i, j) and
such that |y| < s. If a is a cycle the result holds. Otherwise, there exist pand ¢, 0 = p <
g < s, such that 6 = (i,, - - , i) is a cycle. Further, 8 = (ip, -~ , i, ig+y, "-* . i) isa
closed chain of length less than s which is G(4)-access covered by (i, j). By Lemma 2.12,
6 and 8 are two-twisted and hence by the inductive assumption the corresponding chain
products are positive. But [1,(4) = T15(4) [144), and hence J1.(4) > 0. We now de-
duce (vi). O

It is easy to construct an example to show that the assumption (i, j) € A cannot be
omitted from the hypothesis of Theorem 5.2. However, we have the following corollary.

COROLLARY 5.3. Let A€C™and let i, j, h, k € (n). Let (i, j) be a G(A)-access cover
Jor (h, k). Then Equ ((i, j), N} < Equ ((h, k), N).

Proof. Let A € Equ((i, j), N). Let a and 8 be paths in G(4) from & to k. Since
(i, j) G(A)-access covers (A, k), there exist paths v from i to # and é from & to j in G(A).
By Theorem 5.2,

H‘ya&(A) = H‘yﬂé(A)
and it follows that

ITa(4) = ITs(A).

Hence, by Theorem 5.2, 4 € Equ ((A, k), N). O
COROLLARY 5.4. Let G = ({n), E)Y be a graph and let T = A € Ag(T") < (n) X
{n). Then

Equ (#(G), A, N)=Equ (%(G), T, N).
Proof. Since T c A, it follows from (4.11) that
Equ (#(G), A, N)c Equ (#(G), T, N).

Hence we need only prove that

(5.5) Equ (#%(G),T,N)< Equ (#(G), A, N).

By (4.10) we have

(5.6) Equ (#(G), T, N)= N {Equ (#(G),(i,j), N):(i,j)€T}.
and similarly

5.7 Equ (%(G), A,N) =N {Equ (¥(G),(h, k), N):(h, k)€ A}.

It follows from the definition of Ag(T") that for each (h, k) € A there exists (i, j))€ T
such that (i, j) G-access covers (h, k). Hence (5.5) now follows from (5.6), (5.7), and
Corollary 5.3. D

As a special case of Theorem 5.2 we obtain the following corollary, which is essen-
tially known.
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COROLLARY 5.8. Let A € U. Then the following are equivalent:

(i) A € Equ (A, N).

(i1) Every circuit product for G(A) is positive.

Proof. (i) = (ii). Let A € Equ (A, N). Since A is a G(A)-access cover for every circuit
it follows by Theorem 5.2, Part (v) that every circuit product is positive.

(ii) = (i). This follows from Theorem 5.2, Part (v), since the only simple paths from
ito i, i€ (n), are circuits. 0

For irreducible matrices there is the following stronger result which is essentially
due to Neumaier [6] and which motivated our investigations.

COROLLARY 5.9. Let T' be a nonempty subset of (n) X (n) and let A € #. Then
the following are equivalent:

(i) A € Equ (N).

(ii) A € Equ (T, N).

(in) All circuit products of G(A) are positive.

(iv) All closed path products of G(A) are positive.

(v) A is sign similar to |4|.

Proof. (i) = (ii). This implication follows from Lemma 4.8.

(i1) = (11). Suppose that (ii) holds. Since G(A) is strongly connected, it follows from
Lemma 2.7 that I is a G(A4)-access cover for {n) and (iii) follows immediately from
Theorem 5.2.

(iii) = (iv). Every closed path product is a product of circuit products.

(iv) = (v). Suppose (iv) holds. Then corresponding circuit products of 4 and |4]| are
equal. Thus, since A is irreducible, as is well known (e.g., [2, Thm. 4.1]), there exists a
diagonal matrix X such that X™'4X = |A|. Let D = | X~'|X. Then D is a diagonal sign
matrix satisfying D™'AD = |A|.

(v)=(i). Let D be a diagonal sign matrix such that D'4D = |A4|. Since
|| = D™'4*D and p(A) < 1, it follows that

D\(I—AY'D=(I- AN

Hence, since D is a diagonal sign matrix, (5.1) holds for I' = {n) X {(n) and (i) is
proved. a

LEMMA 5.10. Let A 2 0 be an n X n matrix in Frobenius normal form and let C
be an (upper triangular) s X s matrix satisfying (3.12)~(3.14). Let B = C XX A. Let
i, j € (n) and suppose that a;; is an element of Ay, where | < p, q < 5. Then for every
path 8 in G(B) from i to j there is a path v in G(C) from p to q such that

(5.11) sgn (IT5(B) = I1.(C).

Conversely, for every path v in G(C) from p to q there is a path 8 in G(B) from i to
J such that (5.11) is satisfied.
Progf- Suppose the rows and columns of the component A4,, of 4 are indexed by

the subset V, of (n), r = 1, --- , s. Since 4 and B are in Frobenius normal form, there
existp, t=0, -,k 1 =p Sswithpy=pandp, =qgandi,jinV,, t=0, -k
with i, = i and j; = j, such that

(5.12) B8=10500.81""" B,

where 8, is a path from i, to j, in G(B,,,),t =0, --- ,kand §, = ji-y > i, t =1, -,
k.SincedZ20and ¢, =10r0,2=1, -+, kand ¢, = 0 if and only if B, , is a zero

1 X 1 block in which case 8, is empty, we have [15(B) > 0 and [1,(B) = ¢,,,. Hence
if we define

(5.13) Y =po—> -+ = pi,
then v is a path in G(C) from p to ¢ such that (5.11) holds.
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Conversely, let B = C XX |A| and let « given by (5.13) be a path in G(C) from

p to g. We may choose i, j, € V,, 1 =10, --- , k and paths 8, from i, to j, in G(B,),
t=0, -,k If§ is again defined tobe j,_, = i, 2 =1, ---, k and B is defined by
(5.12) then (5.11) holds, since ¢,, 20, p =1, - - -, 5. O

We now apply Theorem 5.2 to obtain the final result in this section.
THEOREM 5.14. Let A € ¥ andlet T be a G(A)-access cover. Then the following are
equivalent.
(1) A € Equ (T, N).
(i) sgn (I1a(4)) = sgn (I14(A4)), for all paths a, B in G(A) from i to j, where
(i, j)eT.
(iii) sgn (I1a.(4)) =sgn (I1s(A4)), for all paths a, B in G(A) from i to j, where
(i, )) € {n) X {n).
(iv) A4 € Equ (N).
(v) Both
(@) sgn (I15(4)) = sgn (I1,(A4)), for all simple paths B8, v in G(A) from i 1o ],
where (I, j) € T,
and
(b) T1.(4) > 0 for all circuits a of G(A).
(v') Both
(@) sgn (I15(4)) = sgn (I1,(A)), for all simple paths B, v in G(A) from i to j,
where (i, j) € {n) X {(n),
and
(b)) T1.(4) > O for all circuits « of G(A).
(vi) All chain products of two-twisted closed chains of G(A) are positive.
(vi1) All cycle products of two-twisted cycles are positive.
(viii) If A is in Frobenius normal form (3.9) then there exists an s X s sign matrix
C such that zC € Equ (%, N), for0 < z < 1 and A is sign similar to C XX |A|.
Proof. The equivalence of conditions (i)~(vii) follows immediately from the equiv-
alence of the correspondingly numbered conditions in Theorem 5.2 and the fact that

Equ (T, N) =N {Equ (i, j), N): (i,/)€ T}

by (4.10). The equivalence of conditions (v) and (v') is easily derived by means of Con-
ditions (iv) and (v) of Theorem 5.2. So it suffices to prove the equivalence of Conditions
(1v) and (viii).

(iv) = (viii). Suppose that (iv) holds. Since A4, is irreducible, p = 1, ---, 5, by
Corollary 5.9 there exist diagonal sign matrices X, that satisfy X ;'AX, = |4, |, p=1, -+ -,
sletX=X,®--- ®X;andlet B= X"'4X. Then |B| = |4|and B,,20,p= 1, - - -,
5. We shall show that B = C XX | 4|, where C is a suitably chosen sign matrix satisfying
conditions (3.12)-(3.14).

Let | £i,j, h, k = nand suppose that both b;; and b are nonzero elements of By,
where 1 = p, ¢ = 5. Since B, and B, are irreducible, there exist chains a and v in G(B,,)
from i to A and in G(B,,) from k to j, respectively. Since By, 2 0 and By, = 0, the products
I14(B) and [1.(B) are positive. Let B, § be chains A — k and i — j of length 1, respec-
tively. Then afy and & are paths from i to j in G(B). Since 4 € Equ (V) we also have
B € Equ (N) and it follows from (ii) of Theorem 5.2 that

sgn (HaB‘y(B)) = sgn (HJ(B))

We deduce that sgn (by) = sgn (by).
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Thus we may define

0 if Byg=0
C =
" [sgn (by) if B,y #*0, where by is any nonzero entry of By,.
Then c,, is equal to O or | since B,, 2 0,p =1, -+, s Thus C € C¥ is an (upper

triangular) matrix that satisfies conditions (3.12)—(3.14). Further, B = C XX | Al.

We must still show that zC € Equ (%, N) for0 < z < 1. Let p, g € {s) and let y be
a chain from pto g in G{(C). Let i and / be elements of the sets ¥, and V, (which index
the corresponding components), respectively. Then by Lemma 5.10 there exists a chain
from i to j in G(B) such that (5.11) holds. It follows that path products corresponding to
any two paths from p to g in G(B) have the same sign. Let 0 < z < 1. Since p(zC) < |,
we now obtain zC € Equ (V) by Theorem 5.2.

(viii) = (iv). Suppose that (viii) holds and put B = C XX |A4|. Let i, j € {n) and let
a, 8 be paths from / to j in G(B). It follows from Lemma 5.10 that there exists a path v
in G(C) such that

sgn ([1(B)) =sgn (I1,(C)) = sgn (I14(B)).

Hence B € Equ (V) by Theorem 5.2. Since A4 is sign similar to B we obtain (iv). a
For the terminology and definitions employed in the following remark see [5].
Remark 5.15. (i) Our proof of (vii) = (v1) of Theorem 5.2 shows that every algebraic

two-twisted chain in a graph G is an integral linear combination of algebraic two-twisted

cycles.

(ii) Suppose that 4 € % and let W be the subspace of the flow space of G{A4) which
1s spanned by the algebraic two-twisted closed chains of G(4). Let X be an integral spanning
set for W. If the chain products corresponding to the closed chains in X are positive,
then all chain products corresponding to chains in W are positive. Hence (vi) of Theorem
5.14 holds, and it follows that 4 € Equ (N). However, this conclusion does not follow
for arbitrary (nonintegral) spanning sets as one may see from Example 5.2 in [8]. A
similar remark may be made concerning (vi) of Theorem 5.2.

6. Sufficient sets. We begin this section with some applications of Corollary 5.4.

COROLLARY 6.1. Let G = ({n), E) be a graph. Let T < A < {(ny X {n) and sup-
pose that T is a G-access cover for A. Let S = N. If S is (U(G), T')-sufficient then S is
(%(G), A)-sufficient.

Proof. By (4.11) we have

6.2) Equ (%(G), A, S)< Equ (#(G), T, S).
By assumption,

(6.3) Equ (%(G), T, S) = Equ (%(G), T, N),

and by Corollary 5.4,

(6.4) Equ (%(G), T, N) = Equ (%(G), A, N).

It follows from (6.2)—(6.4) that

Equ (#(G), A, S)< Equ (%(T), A, N).
But hence by (4.11) we obtain

Equ (#(G), A, S)=Equ (%(T'),A,N)

which proves the corollary. a
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Example 6.5. Let (n) = 4 and let G be given by Fig. 1. Let S, = {2, 3}. Then S,
1s (#(G), (1, 4))-sufficient but not (#(G), (2, 4))-sufficient. Since (1, 4) is a G-access cover
for (2, 4), this shows that the condition T' = A cannot be omitted in Corollary 6.1.

Next let S; = {0} and let T' = {(3, 4)}. Then S; is (¥(G), I')-sufficient but not A-
sufficient if (2, 4) € A = (n) X (n). By choosing {(2, 4), (3, 4)} < A, we obtain an
example with S, is (#(G), I'-sufficient but not (#(G), A)-sufficient even though
I' < A, and thus the condition that T is a G-access cover for A cannot be omitted in
Corollary 6.1. Finally, observe that S| is (%(G), A)-sufficient for any set A such that
(1,4) € A = (n) X {n). Choosing {(1,4),(2,4)} < A and putting T = {(2,4)} it fol-
lows from our previous remarks that S, is (%(G), A)-sufficient, but not (Z(G), T')-suffi-
cient. Note that I' = A. Thus there appears to be no simple relation in general (with-
out the condition that T" is a G-access cover for A) between (%(G), I')-sufficiency and
(%(G), A)-sufficiency when I' < A.

We shall give two proofs of our next corollary. The first is an application of Corollary
6.1 and the second is based directly on Lemma 4.6,

COROLLARY 6.6. LetT'c A = (n) X {n)y whereT' # &. Let S N. If Sis (F, T)-
sufficient then S is (¥, A)-sufficient.

First proof. Let A € Equ (£, A, S). Then A € Equ (%(G(A)), A, S). Since

UG < £,

it follows from Lemma 4.13 that S is (#(G(A)), T')-sufficient. But since G(A) is strongly
connected it follows from Lemma 2.7 that I' is a G(A)-access cover for A. Hence, by
Corollary 6.1, S is (#(G(A)), A)sufficient. It follows that

A€EqQu(%(G(4)), A,N)S Equ(F,A,N).

The result follows.

Second proof. Let A € Equ (F, A, S). Then, by Lemma 4.6, for all (i, j) € T,
sgn J].(4) = sgn I14(A4), for all paths @, B from i to j in G(A) such that |a], |8 € S.
Hence, since S is (#, T')-sufficient, it follows that 4 € Equ (#, I, N) and consequently
sgn J1.(4) = sgn [14(A) for all paths e, 8 from i to j in G(A4), where (i, j) € T, without
restriction on the lengths of @ and 8. Hence, also, sgn I1,(4) = sgn [144) for all paths
v, & from h to k in G(A), where (h, k) € A, since, by Lemma 2.7, these paths can be
extended to paths a, 8, respectively, from i/ to j with (i, j) € I'. But this proves that S'is
(#, I')sufficient. 0

Of course, the most interesting case of Corollary 6.6 arises when

{i,)} =T = A =(n)x<m).
DEFINITION 6.7. Let S be a nonempty subset of V. Then we define

D(S)={s—t:s5,t€Sands>(},
ged (S) = the greatest common divisor of the elements of S,
CS)={ged (7): TS S, T# &),



14 DANIEL HERSHKOWITZ AND HANS SCHNEIDER

CI(S) = C(IXS)),
D)=LD) =d.
Observe that S < ((S). For example, if S = {3, 9, 13, 18} then

D(S)={4,5,6,9,10,15}

and CIXS)={1, 2, 3, 4, 5, 6,9, 10, 15}. Note also that C(C(S)) = C(S). Since
C(CD(S)) = CIXS), it follows that every element of CIXS) is a multiple of the minimal
element of CIX(S).

LEMMA 6.8. Let S < N and let A € Equ (S). Then for a closed path a in G(A) with
length s € CIXS) we have [],(4) > 0.

Proof. Let

a=ig=> > _ | >l

We first show [[.(4) > 0 for s€ IXS). Then s =v — u, where u, ve S. Write
u = as + t, where a and ¢ are nonnegative integers and ¢ < s. Thenv = (a + 1)s + . We
take B[vy] to be the path from i, to j, of length «[v} obtained by repeating a[a + 1] times
the path o and adjoining ip = - - - — i,. Since 4 € Equ (S), it follows from Lemma 4.6
that the nonzero path products [15(4) and [1,(4) = [1s(4)[1.(4) have the same sign.
Hence []1.(4) > 0.

We now consider the general case of s € CIXS). Then there exist s, 53, - -, Sx in
D(S) whose gcd is s. As is well known, there exist integers a;, i = 1, -+, &, such that
k
6.9) $= 2 as;.

Without loss of generality, assume that a; = 0 if and only if | =/ = g. Let w; be the
closed path from iy to iy obtained by repeating s,/s times the path a. By the first part
of the proof, w; has a positive path product. Let u[r] be the closed path from i, to iy ob-

tained by repeating |a; times the path w;, i= 1, -+- ,t[i=t+ 1, -+, k]. By (6.9), v is
obtained by adjoining « to u. Since u and v have positive path products it follows that
[Ta(4) > 0. a

COROLLARY 6.10. If A € Equ (S) then A € Equ (A, CIXS)).

Proof. Immediate by Lemmas 6.8 and 4.6. O

The converses of Lemma 6.8 and Corollary 6.10 are false if n > | even for irreducible
matrices. In fact, we shall give an example of an irreducible matrix 4 and a set S, for
which every closed path of length s € CD(S) has positive path product, yet the matnix 4
is not even in Equ ((/, i), S), for any i € (n).

Example 6.11. Let 4 be the n X n matrix with all entries on and above the diagonal
equal to 1 and all entries below the diagonal equal to —1. Let S= {1,2} and let
i, j € (n), i #j. Observe that the circuit product corresponding to i — i is positive
while the circuit product corresponding to i —= j — i is negative. Hence, by Lemma 4.6,
A € Equ ((i, i), S). However CIXS) = {1} and all circuit products of length 1 are posi-
tive. Hence 4 € Equ (CIXS)), by Lemma 4.6.

THEOREM 6.12. Let S be a subset of N. Then the following are equivalent.

(i) S is A-sufficient.

(ii) Sis (F, A)sufficient.

(iii) S is #-sufficient.

(iv) CIXS) contains {n).

(v) Forall A € Equ (S), all circuit products of A are positive.

(vi) Forall A € Equ (S), A is diagonally similar to a matrix B such that all irreducible
diagonal blocks in the Frobenius normal form of B are nonnegative.
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Proof. (1) = (ii) is obvious.

(ii) = (iii). By Corollary 6.6.

(iii) = (iv). Let k € (n) and let X be a nonzero complex number. Suppose that
k € CD(S). We shall prove the claimed implication by constructing an irreducible
n X n matrix A(k, A\) such that, for suitable A, A(k, A\) € Equ (¥, S)\Equ (#, N). If
k = 1, we let A(k, A\) be the n X n matrix all of whose entries are . If k € {2, - - - , n}
we define A(k, \) = A by

ai,i+l=la i=l)“"k—27
ak—l,j:':A, j:k,...’n,
aj.l=l) .}=k1 '.')ny

aij = O, otherwise) i’je <n>’
eg,forn=>5and k =4

01000
001 00
Ak,\)= |0 0 0 X A
1 0 00 0
1 00 00

Note that for all kK € (n) the matrix A(k, ) is irreducible and the length of every closed
path of A(k, \) is a multiple of k and, provided that k Z 2, every circuit product of
A(k, \) equals \. For all k € (n), it follows that for every closed path & of G(A(k, \)) we
have

(6.13) T1a(A(k, N) = N, where || = hk.

We now choose A depending on two cases.

(a) No multiple of k lies in CD(S). Then let A = —1.

(b) Some positive multiple of k is in CID(S). Then let pk be the smallest such multiple
and X be a primitive pth root of unity. Since k € CD(S) we have p > 1.

Let i, j € (n) and let a and 8 be paths from i to j in G(A4). Suppose that |a| and |8
belong to .S and assume without loss of generality that |a| 2 [8]. Let d = |a| — |8]. Let v
be a path from j to / in G(A(k, A)), which exists since A(k, A) is irreducible. Observe that
avy and By are closed paths and hence d = |ay| — |8/ is divisible by k.

Suppose first that 4 = 0. Then ay and B+ are closed paths of the same length. It
follows from (6.13) that the closed path products corresponding to ay and By are equal.
Suppose now that d > 0. Then d € I(S) = CD(S). Hence (b) above holds. We recall that
C(CIXS)) = CD(S). Hence, since pk is the minimal multiple of k in CIXS), it follows
that 4 must be a multiple of pk. But (6.13) then again implies that the closed path
products corresponding to ay and 8~ are equal. Hence, in either case, [1.(4) = T]4(A4).
Since i, j are arbitrary in (n), it follows from Lemma 4.6 that 4 € Equ (S).

On the other hand, since A(k, ) has a circuit a of length k and J1.(4(k, \)) is not
positive, we have by Theorem 5.2 that A(k, \) € Equ (N). The implication (iii) = (iv) is
proved.

(iv) = (v). Immediate by Lemma 6.8.

(v) = (vi), By Fiedler and Ptak [3] or Engel and Schneider [2] an irreducible matrix
that satisfies (v) is diagonally similar to a nonnegative matrix. By applying this result to
the Frobenius normal form of 4 we obtain (vi) from (v).

(vi) = (i). Let 4 € Equ (4, S) and let B be a matrix diagonally similar to 4 and
such that B has nonnegative diagonal blocks in a (and therefore every) Frobenius
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normal form. Since the diagonal blocks of B are clearly in Equ (4, N) it follows that
B € Equ (A, N). Hence 4 € Equ (A, N) and (i) follows from (vi). a
THEOREM 6.14, Let SS N.
L. If n £ 2, then the following are equivalent.
(i) S is sufficient,
(i) {(n) = CIXS).
Il. If n2 3, then (i) is equivalent to
(iii) (a) {n — 1, n} = CIXS).
and
) (n-1)cS.

Proof 1. Letn = 2.

(1) = (ii). Since S is sufficient, it is also A-sufficient and the result follows from
Theorem 6.12.

(ii) = (i). Let (n) = CIXS). Suppose 4 € Equ (S). Then, by Lemma 6.8 all circuit
products of 4 are positive. Since, for i, j € (n) there is at most one nonempty simple
path from / to j in G(A), the conditions of Theorem 5.14, Part (v) are satisfied for all
i,je <n> Hence, by Theorem 5.14, A € Equ (N) and the implication (ii) = (i) follows.

II: (i) = (iii), Part (a). With the same proof as in Part I, we have (n) < CIXS).

(i) = (iii), Part (b). Let 2 = k = n — 1. To prove this implication it is enough to
construct a matrix B(k) € Equ (S)\Equ (%) if either 1 € Sor k ¢ S. We let the arc set of
G(B(k)) consist of | -k + l,andi— i+ 1,i=1, .-,k We define the (1, k + I)-
element of B(k) to be —1 and all other nonzero elements to be 1. For example, if k = 2
and n = 4, then

B(k)=

cooo
OO = —
cooo

1
0
0
0

Let i, j€ (n). Ifeither | € S or k € S then there is at most one path from i/ to j in G(B(k))
whose length lies in S. Hence, by Lemma 4.6, we have 4 € Equ (S). But there are two
paths from | to k in G(B(k)) whose corresponding products have different signs. Hence,
again by Lemma 4.6, A € Equ (N).

(iii) = (i). Suppose that (iii) holds. Let 4 € Equ (S). Let i, j € (n). Let « and
8 be simple paths in G(A4). Since |a| < n, and |8] < n, we have by Lemma 4.6 that
[1aA) = [14(4). Since {n) = CIXS), it follows from Lemma 6.8 that all circuit prod-
ucts of A are positive. Hence the conditions of Theorem 5.2, Part (v) are satisfied. By
Theorem 5.2 we now obtain 4 € Equ (N) and (iii) = (1) is proved. a

We note that, for n 2 3, neither of the conditions (iii}(a) or (iii}b) of Theorem 6.14
alone implies that S is sufficient, or even that S'is A-sufficient. This is clear from Theorem
6.12 since neither condition implies that (n) = CIXS).

COROLLARY 6.15. Letn2 3. Let S N.

1. If S is sufficient then |S| Z n.

1. The following conditions are equivalent:

(i) S is sufficient and |S| = n.
(i) S={1,---,n— 1, m}) wheren+1=m=2n-2.
(i) S is optimal sufficient.

Proof.

1. This is obvious by Theorem 6.14,

II. (i) = (ii). By Theorem 6.14 we have S = {1, ---, n — 1|, m}. If m = 0 or
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m = n then n € CI(S) and S is not sufficient by Theorem 6.14. Hence m > n. Suppose
that m > 2n — 2. Then it follows that

(6.16) DS)={1,--- ,n=2,m—-n+1,--- ,m—1}

Let p, g € D(S) where p < g. Then, by (6.16), eitherp <n — 1 0or g — p <n — 1. Hence,
ged (p, @) < n — 1. It follows that ged (T) < n — 1 for any subset T of IXS) with
|T|> 1. Since n — 1 € IXS) and just one positive multiple of » — 1 belongs to IXS) we
also have n — 1 € CID(S), which contradicts Theorem 6.14. The implication is now
proved.

(if) = (iii). By Theorem 6.14, S is sufficient. The optimal sufficiency of .S follows
from Part [.

(iii) = (i). Let S be an optimal sufficient set. Then clearly S is sufficient. By Theorem
6.14the set T = {1, ---,n— 1, n+ 1) is sufficient with |T| = n. Hence, by Part I we
have |S| = n. a

We now use Corollary 6.15 to show that a minimal sufficient set is not necessarily
an optimal sufficient set.

Example 6.17. Let n 2 3andlet S={l,---,n—1,2n — 1, 3n — 2}. Then
{n) € CD(S)and so, by Theorem 6.14, Sis sufficient. Let S" be a subset of S of cardinality
n. Observe that S’ cannot satisfy condition (ii) of Corollary 6.15. Hence, by Corollary
6.15, S' is not sufficient. Thus, Sis a minimal sufficient set, but, again by Corollary 6.15,
S'is not an optimal sufficient set.

It is clear that our definitions and results raise a number of interesting questions.
Some are purely number theoretic, others involve a mixture of matrix and number
theory. A general problem is to characterize the (&7, I')-sufficient [minimal (&7, T')-
sufficient, optimal (&, I')-sufficient] sets for given &/ € % and ' € (n) X {(n).

In view of Theorem 6.12 the following open questions are of interest.

Open Questions 6.18.

(i) Characterize subsets S of N such that CIXS) = (n).

(ii) Characterize subsets S of N which are minimal with respect to the property
CIXS) 2 {(n).

Remark 6.19. In Definition 4.4 the restriction to A € % (viz. A € C™ such that
p(|A]) < 1) and the use of power series with all coefficients equal to 1 are technicalities.
Alternatively, we could have considered throughout arbitrary 4 € C"" and nonnegative
sequences

<C> = (cl, Cy, "t o )

such that X;cn ¢ Al° converges. In this approach one then defines the equality class
Equ (o, T S) to consist of all 4 € & such that for some nonnegative sequences (C)
with ¢, # 0 if and only if 5 € S, 2;en ¢5|A° converges and

= 2 (cldP)r.

seN

Z (CSA:)F

seN

Since the proof of our fundamental lemma, Lemma 4.6, is unchanged, our results
go through to this more general situation and reduce to the previous results for 4 € ¥.
The concept of sufficiency remains unchanged. We illustrate by means of an example.

Example 6.20. Let n = 10. If S = {3, 9, 10, 13, 18} then CIX(S) = (10) U {15}
and hence, by Theorem 6.12, Sis (#, {n))-sufficient. In other words, let 4 be an irreducible
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n X nmatrix, n = 10, and let ¢, be positive, s = 3, 9, 10, 13, 18. Then the equality
lesA® + cod® + 104" + 134" + 1A'
= 3| AP + o5l AP + c10l A" + 13|41 + 1] 4]
implies that for all nonnegative d;, s € N, we have
2 dA| = X dlAl,

se€N seN

provided that the second series converges. In particular, if p(|4]) < 1, then
(-4 =d—-[4)™"

REFERENCES

[1] P. M. COHN, Universal Algebra, Harper and Row, New York, 1965.

[2] G. M. ENGEL AND H. SCHNEIDER, Cyclic and diagonal products on a matrix, Linear Algebra Appl., 7
(1973), pp. 301-335.

[3] M. FIEDLER AND V. PTAK, Cyclic products and an inequality for determinants, Czechoslovak Math. J., 19
(1969), pp. 428-450.

[4] S. FRIEDLAND, D. HERSHKOWITZ, AND H. SCHNEIDER, Matrices whose powers are M-matrices or Z-matrices,
Trans. Amer. Math. Soc., 300 (1987), pp. 343-366.

[5] D. HERSHKOWITZ AND H. SCHNEIDER, On 2k-twisted graphs, European J. Combin. (1o appear).

[6] A. NEUMAIER, The exiremal case of some matrix inequalities, Arch. Math., 43 (1984), pp. [37-141.

[7] A. OSTROWSKI, Uber die Determinanten mit iiberwiegender Hauptdiagonale, Comment. Math. Helv., 10
(1937), pp. 69-96.

(8] B.D. SAUNDERS AND H. SCHNEIDER, Flows on graphs applied 1o diagonal similarity and diagonal equivalence
Jfor matrices, Discrete Math., 24 (1981), pp. 205-220.



