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1. INTRODUCTION 

Let R = (ri' r 2 , ... ) be a finite or infinite (strictly increasing) sequence of positive 
integers and let (Wi' W2 , ••• ) be a sequence of wedges in the complex plane. Consider 
the following problem: Characterize those complex numbers c for which 

(Ll) 

for k = 1,2, .... 
It is shown in [1 J and [4J that, under certain assumptions on the wedges and on the 

density of the sequence R, the set of all complex numbers satisfying (1.1) for k = 

= 1, 2, ... is finite. The set itself is not identified there. 
In this paper we assume that 

W= WI = W2 = ... , 

where W is the open wedge W( ct ) (the closed wedge W[ ct J) of width 2ct symmetrically 
located around the nonnegative real axis. We then discuss the set S(R, ct, n) 
(S[R, ct, nJ) of nonzero complex numbers c which satisfy (Ll) for k = 1, ... , n, 
where n is either a positive integer or 00. 

Section 2 is devoted to the case of finite n. Let W = W(ct). Obviously, W(ct/rn) £; 

£; S(R, ct, n). We prove a necessary condition (Proposition 2.14) and a sufficient 
condition (Proposition 2.22) for 

(1.2) W(ct/rn) = S(R, ct, n) . 

These results are then combined to obtain a characterization of the case (1.2) 
(Theorem 2.29). In the case that (1.2) does not hold, we give a necessary condition 
(Proposition 2.39), a sufficient condition (Proposition 2.53) and a characterization 
(Theorem 2.63) for 

(1.3) S(R, ct, n) £; W(ct/rn-I). 

*) The research of this author was supported in part by NSF grants DMS·8320189 and 
DMS-8S21S21. 
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Our conditions involve a and two or three consecutive terms of R. Similar results 
hold for closed wedges. 

Let T be a subset of the set C of complex numbers. In Section 3 we introduce the 
concept of(T, a)-forcing ((T, a)-semiforcing) sequence. A sequence R with cardinality 
IRI is said to be such a sequence if W = W[aJ (W = W(a)) and if S nTis contained 
in the positive real axis, where S = S(R, a, n) (S = S[R, a, nJ). We prove several 
sufficient conditions for R to be (T, a)-(semi)forcing (Theorems 3.4, 3.10, 3.11, 3.14; 
Corollaries 3.15, 3.16, 3.28; Proposition 3.27). Section 3 is concluded with a discus
sion of an interesting relation between (semi)-forcing sequences and continued 
fractions. _ 

Examples of (C, rt/2)-forcing sequences are (k, k + 1, k + 2, ... ), where k is 
a positive integer, (1,2,3,8, ... ) and (1,3, 10, 31, 94, ... ). Examples of (C,1t/2)-
semiforcing (but not forcing) sequences are (1,3,9,27, ... ) and (1,3,4,8, 16, ... ). 
Additional examples are given in Section 4, which also contains examples pertaining 
to the results in Section 2. 

Applications of forcing and semiforcing sequences to linear algebra are contained 
in [3]' These applications motivated the present investigations. In view of the results 
presented here and their applications it would be of interest to characterize forcing 
and semiforcing sequences. 

2. WEDGES 

In this paper we shall use the notation (ri' r2 , ••• ) for an infinite sequence of in
tegers and the notation (ri' r2 , ••• , rt ) for a sequence of integers which is finite if t 
is a positive integer and is the infinite sequence (ri' r2 , • •• ) if t = 00 . Further, 
"sequence of positive integers" will always mean "strictly increasing sequence of 
positive integers". 

The cardinality of a set (or sequence) R is denoted by IRI. The set of all complex 
numbers is denoted by C. We assume that the argument of a nonzero complex 
number is chosen in the half open interval ( -rt, rt]' 

Definition 2.1. Let -1t ~ a, 13 ~ 1t. If a ~ 13 then we define the closed wedge 
(excluding 0) W[ a, f3J of width 13 - a to be the set 

{CE c: c =1= 0, a ~ arg(c) ~ f3} . 

If 13 < a then we define the closed wedge W[ a, f3J of width 21t + 13 - a to be the set 

{CEC: C =1= 0, a ~ arg(c) ~ 1t or -1t ~ arg(c) ~ f3}. 

Remark 2.2. Consider the rays la nad lp which form angles a and 13 respectively 
with the nonnegative real axis. Observe that W[ a, f3J is the wedge coyered when we 
move from la to lp counter-clockwise. 

Definition 2.3. Let -rt ~ a, 13 ~ rt. We define the open wedge W(a,f3) to be the 
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interior of the closed wedge W[ IX, P] in the Euclidean topology. The width of W( IX, P) 
is defined to equal the width of W[ IX, P]' 

Remark 2.4. (i) By Definition 2.1 we have W[ IX, P] = c '- {O} if and only ifIX = -n 
mdP=~ . 

Oi) By Definition 2.3, for every IX and p, -n ~ IX, P ~ n, we have W(IX, P) fF 
fF C,-{O}. 

Notation 2.5. For 0 ~ IX ~ n we denote: 

w[ IX] = W[ IX, IX J, 
W(IX) = W(IX, IX) • 

Notation 2.6. Let R = (rl' r2 , .•• , rt ) be a sequence of positive integers. Let n be 
either a positive integer or 00, where n ~ t, and let 0 ~ IX ~ n. We denote: 

S[R, IX, n] = {c E C: crk E W[IX], k = 1, ... , n} , 

S(R, IX, n) = {c E C: crk E W(IX), k = 1, ... , n} . 

Notation 2.7. Let 0 ~ IX ~ n and let n be a positive integer. We denote: 

Qn[ IX] = {c E C: cn 
E W[ IX]} , 

Qn(lX) = {c E C: cn E W(IX)} . 

Let n be a positive integer and let m be the largest nonnegative integer such that 
m ~ (n - 1)/2. Let 0 ~ IX ~ n. It is easy to verify that 

m 

(2.8) Qn[ IX] = ( U W[(2nk - IX)/n, (2nk + IX)/n]) u W* , 
k=-m 

where 

(29) W* _ {0 , n odd, 
. - W[n - IX/n, -n + IX/n] , n even. 

Also, Qn(lX) is the interior of Qn[lX]. 
For example, the sets Q4[ n/3] and Qs[ n/4] are the darkened areas in the figures 1 

and 2 on page 141. 

The following observation is immediate. 

Observation 2.10. Let R = (rl' r2 , ••• ) be a seqUence of positive integers, let n 
be a positive integer and let 0 ~ IX ~ n. Then 

n 

S[ R, IX, n] = n Qrk[ IX ] 
k=1 

and 
n 

S(R, IX, n) = n Qrk(lX) . 
k=1 

, Since R is an increasing sequence we now qbtain from (2.8) and Observation 2.10 
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that for 0 ~ IX ~ 1t, 

(2.11) 

and similarly 

(2.12) 

J 

We now find a necessary condition and a sufficient condition for equality of the 
sets in (2.11) and (2.12). We prove our assertions for open wedges. The results in 
the case of closed wedges are similar, and will be stated later. 

The case n = 1 is easy. 

Q,/11 / 3J 

Figure 1 

Figure 2 
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Theorem 2.13. Let R = (r1, r2 , ••• ) be a sequence of positive integers and let 
o < a ~ n . Then 

W(a/rt) = S(R, a, 1) 
if and only if r1 = 1. 

Proof. In view of (2.8) and Observation 2.10, the set S(R, a, 1) consists of the 
single wedge W(a/r1) if and only '1 = 1. 0 

Proposition 2.14. Le t R = (r1' T2 , •• • ) be a sequence of positive integers, let n 
be a positive integer, n > 1, and let 0 < a ~ n. If 

(2.15) 

then 
(2.16) 

Proof. Observe that 

(2.17) 

Assume that 
(2.18) 

or equivalently, 

S(R, a, n) = S(R, a, n - 1) n QrJa) . 

(2n - a)/rn < a/rn- 1 . 

Let f3 = min {(2n + a)/Tm a/rn- 1}, and let W = W((2n - a)/rm f3). By (2.8) we have 
W ~ Qrn(a). Also, by (2.12), 

W ~ W(a/rn_ 1) ~ S(R, a, n - 1). 

Therefore, it follows from (2.17) that 

W~ S(R, a, n). 

Since f3 > a/rn it follows that W $ W(a/rn) and we now have a contradiction to 
(2.15). Hence, our assumption (2.18) is false and we have proved (2.16). 0 

Remark 2.19. Inequality (2.16) is equivalent to 

(2.20) a ~ 2nrn- 1/(rn- 1 + Tn) . 

Therefore, in view of Proposition 2.14, the equality (2.15) yields an upper bound 
on a. In particular, since rn ~ rn -1 + 1, it follows from (2.20) that 

a ~ 2nrn- 1/(2rn -1 + 1) . 
The converse of Proposition 2.14 is in general false, as demonstrated by Example 

4.1 . 
In order to prove a sufficient condition for (2.15) in terms of (2.16) we introduce 

the following notation. 

Notation 2.21. Let T ~ C, T, {O} =F 0. 
We denote: 

}leT) = sup {Iarg (c)l: c E T, c =F .O} . 
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Proposition 2.22. Let R ~ (rl' r2' ... ) be a sequence of positive integers, let n 
be a positive integer, n > 1, and let 0 < IX ~ 1t. If 

(2.23) Jl.(S(R, IX, n)) ~ lX/rn - 1 , 

and if 

(2.24) 

then 
W(IX/rn) = S(R, IX, n) . 

Proof. It is easy to verify, by (2.8), that if (2.24) holds then 

(2.25) W[IX/r"-lJ (\ Qrn(lX) = W(IX/rn) . 

Our assertion now follows from (2.23) and (2.25). 

The following corollary clearly follows from Proposition 2.22. 

D 

Corollary 2.26. Let R = (rl' r2 ' . . . ) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 < IX ~ 1t. If 

(2.27) 

and if 

then 

(2.28) 

S(R,IX, n -1) = W(IX/rn- 1) , 

S(R, IX, n) = W(IX/rn) . 

The converse of Corollary 2.26 is not true in general. Example 4.2 demonstrates 
that (2.28) does not imply (2.27). Example 4.2 also shows an application of Corollary 
2.26. 

Propositions 2.14 and 2.22 yield the following theorem. 

Theorem 2.29. Let R = (rl' r2, ... ) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 < IX ~ 1t. Then 

(2.30) 

if and only if 

(2.31) Jl.(S(R, IX, n)) ~ IX/rn-l 
.' and 

(2.32) IXrn ~ (21t - IX) rn-l 

Proof. Obviously, (2.30) implies (2.31). The implication (2.30) => (2.32) is proved 
in Proposition 2.14. Inequalities (2.31) and (2.32) imply (2.30) by Proposition 2.22. 

D 
For a sequence R = (rl' r2, ... ) of positive integers and for 0 < IX ~ 1t, (2.12) 

implies that 

(2.33) Jl.(S(R, IX, n) ~ IX/rn , 
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Furthermore, by (2.8) and Observation (2.10) equality in (2.33) holds if and only if 
(2.15) holds. 

We now assume that strict inequality holds in (2.33) and we seek an upper bound 
for the left hand side of (2.33) under additional conditions. 

We start with the case n = 2. 

Theorem 2.34. Let R = (rt> r2, ... ) be a sequence of positive integers, and let 
o < a ~ n. Then 

(2.35) 

if and only if 

and 
ar 2 > 2n - a . 

Proof. If r1 = 1 then by Theorem 2.13 

j1(S(R, a, 2)) ~ j1(S(R, a, 1) = ajr1 . 

Furthermore, if ar2 > 2n - a, it follows from Proposition 2.14 that 

(2.36) 

Conversely, assume that (2.35) holds. Since we now have (2.36), in view of the right 
hand inequality in (2.35) it follows from Proposition 2.22 that 

(2.37) ar2 > (2n - a) r1 . 

By (2.8), every open wedge of width greater than (2n - 2a)jr2 has a nonempty 
intersection with Qr2(a). Observe that Qrl(a) is a union of r1 wedges, each of width 
2ajr1' By (2.37) we have 2rxjr1 > (2n - 2a)jr2' and hence, each of the r1 wedges 
contained in Qr,(a) has a nonempty intersection with Qr2(a) . By the right hand 
inequality of (2.35), only the wedge W(ajr1) has such a nonempty intersection, and 
hence we necessarily have r1 = 1. D 

Notation 2.38. Let T £; C and let m be a positive integer. We denote by T m the set 
{cm

: C E T}. 

Proposition 2.39. Let R = (r1' r2 , .. . ) be a sequence of positive integers, let n 
be a positive integer, n > 2, and let 0 < a ~ n. If 

(2.40) ajr" < j1(S(R, a, n)) ~ ajrn - 1 , 

then either 

(2.41) 

or 

(2.42) 
2nk+a. < <2n(k+1)-a 
--- I n - 1 = rn = rn- 2 , 
2n - a a 

for some positive integer k. 
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Proof. Let (2.40) hold. By Proposition 2.22, the two inequalities in (2.40) yield 
that 
(2.43) arn > (21t - a) rn-1 • 

We assume that (2.41) is not satisfied, namely 

(2.44) (21t - a)/rn -1 < a/rn-2, 

and we shall prove (2.42). Assume first that 

(2.45) (21t + a) rn-1 ~ a/rn-2. 

By (2.8) and Observation 2.10 we now obtain 

(2.46) W = W((21t - a)/rn _ h (21t + a)/rn -1) £; 

£; S(R, a, n - 2) n Qrn_,(a) = S(R, a, n - 1). 

It now follows from the right hand inequality in (2.40) and from (2.46) that 

(2.47) Wrn n W(a) = 0 . 

Observe that Wrn is an open wedge of width d = 2arn/rn-1 if d ~ 21t and Wrn = C 
if d > 21t. Hence it follows from (2.47) that d ~ 21t - 2a and so (1t - a) rn-t ~ arn, 
which contradicts (2.43). Therefore, our assumption (2.45) is false and consequently 
we deduce that (21t + a)/rn- t > a/rn-2. In view of (2.44) we now have 

v = W((21t - a)/rn-h a/rn -2) £; S(R, a, n - 2) n Qrn_,(a) = S(R, a, n - 1). 
As before 

(2.48) Vrn n W(a) = 0. 

Let k be the integer such that 

(2.49) 21tk - a < arn/rn -2 ~ 21t(k + 1) - a. 

Observe that since rn > rn-1 it follows from (2.44) that k ~ 1. By (2.48) and the 
lefthandinequaity of (2.49) we have 

(2.50) (21t - a) rn/rn-1 ~ 21tk + a. 

Inequalities (2.42) now follow from (2.49) and (2.50). D 

We remark that (2.40) implies neither (2.41) nor (2.42), as demonstated by Examples 
4.3 and 4.4. 

Remark 2.51. As in Remark 2.19, we note that (2.40) yields some upper bound on a. 
The precise computation of such a bound in general might be tedious. However, 
to demonstrate our assertion we now show that if (2.40) holds with r1 = 1 and n = 3 
then a < 31t/4. By Proposition 2.39, (2.40) implies either (2.41) or (2.42) for some 
positive integer k. If (2.41) holds then, since r2 ~ 2, we have 2a ~ (21t - a), or, 
equivalently, a ~ 21t/3. If (2.42) holds and if we assume that 

(2.52) a ~ 31t/4 
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then we obtain 

16k + 6 < 2 21tk + ct < 21t(k + 1) - ct < 8k + 5 
5 = 21t - " ct = ct .' = 3 ' 

which implies that k ~ 7/8, in contradiction to the fact .that k is a positive integer. 
Thus, our assumption (2.52) is false and we have ct < 31t/4. 

The converse of Proposition 2.39 is false in general as demonstrated by Example 
4.1 in which (2.41) is satisfied for n sufficiently large. Another example which in
volves (2.42) is Example 4.7. 

If we add an additional hypothesis then we obtain the following converse to 
Proposition 2.39. 

Proposition 2.53. Let R = (rl' r2' ... ) be a sequence of positive integers, let n 
be a positive integer, n > 2, and let 0 < ct ~ 1t. If 

(2.54) 

and if either 

(2.55) 

or 

(2.56) 

J1.(S(R, ct, n)) ~ ctlrn-2' 

21tk + ct < < 21t(k + 1) - ct 
--- rn- 1 = rn = rn- 2 
21t - ct ct 

for some positive integer k, then 

Proof. Let 

(2.57) 

J1.(S(R, ct, n)) ~ ctlrn-1 . 

C E S(R, ct, n) , 

and let p = arg (c). We have to prove that 

(2.58) IPI ~ ctlrn- 1 . 
By (2.54) we have 

(2.59) IPI ~ ctlrn-2 . 

If (2.55) holds then by (2.59) we obtain 

(2.60) IPrn-ll ~ (21t - ct) IPrn-21lct ~ 21t - ct. 

Since prn - 1 = arg (c) (up to addition or subtraction of 21t), it now follows from (2.57) 
and (2.60) that IPrn-11 < ct and (2.58) follows. 

Suppose that (2.56) holds. By (2.57) we deduce that either 

(2.61) IPrn-11 < ct, 
or 
(2.62) IPrll - 1 1 > 21t - ct. 

If (2.61) holds then (2.58) follows. To complete the proof we show that (2.62) leads 
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i to a contradiction. Observe that (2.56), (2.59) and (2.62) yield 
! 
f 2nk + (X ~ (2n - (X) rn/rn- t < l.8r,,1 ~ 2n(k + 1) - (X l.8rn-21 ~. 2n(k + n - '~, 

. (X 

which means that crn ¢ W((X), in contradiction to (2.57). o 
Propositions 2.39 and 2.53 yield the following theorem 

Theorem 2.63. Let R = (r1' r2, ... ) be a sequence of positive integers, let n· be 
a positive integer, n > 2, and let 0 < (X ~ n. Then 

(2.64) 

if and only if 

(2.65) 

(2.66) 

and either 
(2.67)" 

01' 

(2.68) 

/leSeR, (x, n)) ~ (X/rn - 2 , 

21tk + (X rn-
1 
~ rn ~ 21t(k + 1) - (X r,,-2' 

2n - (X . . (X 

for some positive integer k. 

Proof. Obviously, (2.64) implies (2.65). The implication (2.64) => (2.67) or (2.68) 
is proved in Proposition 2.39. In view of Proposition 2.22, the two inequalities in 
(2.64) imply (2.66). Conversely, by Proposition 2.53, (2.65) and (2.67) or (2.68) 
imply the rIght hand inequality in (2.64). The left hand inequality in (2.64) follows 
from (2.66) by Proposition 2.14. 0 

In the case of closed wedges we have the following similar theorems. The proofs 
are essentially the same as the proofs of the corresponding theorems for open 
wedges. 

Theorem 2.69. Let R = (r1 ' r2, . . . ) be a sequence of positive integers and let 
o ~ (X ~ n. Then 

W[ (Xfrt] = S[R, (x, 1] 
if and only if r1 = 1. 

Theorem 2.70. Let R = (1'1' r2, .. . ) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 ~ (X ~ 1t. Then 

if and only if 

and 

S[R, (x, n] = W[(X/rn] 

/l( S[ R, (x, n]) ~ (X/r,, _1 

(Xr" < (2n - (X) r,,-l . 
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Theorem 2.71. Let R = (rl' r2, ... ) be a sequence of positive integers, let n be 
a positive integer, n > 2, and let 0 < a ~ 1t. Then 

if and only if 
ajrn < /leSeR, a, n]) ~ ajrn-l' 

/leSeR, a, n]) ~ ajrn- 2 , 

arn ~ (21t - a) rn- 1 , 

and either 

or 
21tk + a 21t(k + 1) - a 
--- rn- 1 < rn < rn - 2 
21t - a a 

for some positive integer k. 

For a = 0 we also have the following immediate theorem. 

Theorem 2.72. Let R = (r1o r2, ... ) be a sequence of positive integers and let n 
be a positive integer. Then 

S[R, 0, n] = W[O] 

if and only if the greatest common divisor-of rl' r2' ... , rn is 1. 

Proof. Notice that, for a positive integer m, the set Qm[O] consists of all positive 
multiples of the m-th roots of unity. Our assertion now follows from Observation 
2.10. 0 

3. FORCING AND SEMIFORCING SEQUENCES 

Let IR + [IR~] be the set of all positive [nonnegative] numbers. 

Definition 3.1. Let T £; C, let R be a (finite or infinite) sequence of positive integers, 
and let 0 ~ a ~ 1t. 

(i) The sequence R is called a (T, a)-forcing sequence if 

Tn S[R, a, IRI] £; IR+ . 

(ii) The sequence R is called a (T, a)-semi forcing sequence if 

Tn S(R, a, IRI) £; IR+ . 

(iii) The parameters T and a in definitions (i) and (ii) are optional, where the 
defaults are C and 1tj2 respectively. Thus for example: 

a-forcing sequence = (C, a)-forcing sequence, 
T-forcing sequence = (T, 1tj2)-forcing sequence, 

forcing sequence = (C, 1tj2)-forcing sequence, 

and similarly for semiforcing sequences. 
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Remark 3.2. (i) Clearly, every sequence is (T, (X)-(semi)forcing if T S; UiP~. 

(ii) If T $ UiP~ then there exists no (T, 1t)-forcing sequence. 
(iii) Let n be an odd positive integer. If Tcontains a number c which is a nonreal 

n-th root of some positive number, and if (X ;:;; 1t(n - 1)jn [(X > 1t(n - 1)jn] then 
there exists no (T, (X)-forcing [(T, (X)-semiforcing] sequence, since all the powers 
of c are in W[ (X] [We (X)J. In particular there is no a-forcing [a-semiforcing] for 
(X ;:;; 21tj3[ a > 21tj3J. However, it is easy to verify that the sequence (1,2, ... ) is 
a-forcing [a-semiforcing] whenever a < 21tj3 [a ~ 21tj3J. 

(iv) Let T $ UiP~. If Tcontains no nonreal odd root of a positive number then there 
exist (T, a)-(semi)forcing sequences whenever 0 ~ (X < 1t. An example for such 
a sequence is (1,2, ... ): Let c E T. If arg (c) is an irational multiple of 1t then the 
observation follows from Kronecker's theorem, e.g. [2, p. 375, Theorem 4.38J. 
Otherwise, c is a root fo a negative number and so some power of c is negative. 

(v) Let T S; C and let 0 ~ P < a ~ 1t. Observe that every (T, a)-semiforcing 
sequence is (T, p)-forcing . 

. Notation 3.3. Let T £ C, T $ UiP~. We denote: 

veT) = inf{larg(c)l: CE T"UiP~}. 

The following assertion follows from the results of the previous section. 

Theorem 3.4. Let 0 < a ~ 1t and let R = (rl' r2, ... ) be a sequence of positive 
integers with 

(3.5) 

and such that for every m, m = 3,4, ... , either 

(3.6) 

or 

(3.7) _21t_k_+_(X r
m

-
l 
~ rm ~ 21t(k + 1) - (X r

m
-2 

21t - (X a 

for some positive integer k (which depends on m). Then R is an a-semiforcing 
sequence. 

Furthermore, let T S; C, T $ UiP~, be such that veT) > 0, and suppose that t is the 
(smallest) positive integer such that 

(3.8) r t veT) ;:;; a . 

Then the sequence (rl' r2, ... , rt+l) is (T, (X)-semijorcing. 

Proof. By Theorem 2.13 and Proposition 2.53, it follows from (3.5) and (3.6) 
or (3.7) that 

(3.9) jJ.(S(R, a, m) ~ (Xjrm-l, m = 2,3, .... 

Clearly, it follows from (3.9) that S(R, (x, co) S; UiP+, which proves that R is a
semiforcing. 
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Now let T ~C, T $ IR~, be such that veT) > 0. By (3.8) and (3.9) we have 
S(R, a, t + 1) ~ W(v(T)), and by the definition ofv(T) we obtain Til S(R,a, t+ 1) ~ 
~ IR +, which proves the second part of our theorem. 0 

We remark that for the secpnd part of Theorem 3.4 it is enough to assume that 
(3.6) or (3.7) are satisfied for m = 3,4, ... , t + 1. A similar remark holds for Theorem 
3.11 below. 

An application of Theorem 3.4 is demonstrated in Example 4.9. 
We remark that condition (3.5) cannot be omitted from Theorem 3.4, as demon

strated by Examples 4.1 and 4.7. Another example will be given later in this section. 
If in Theorem 3.4 we have (3.6) for every m, m = 3,4, ... , then we can strengthen 

the second part of the theorem. 

Theorem 3.10. Let T ~ C, T $ IR~, be such that veT) > 0, let ° < a ~ n and let 
R = (rt> r2' ... , rt) bea finite sequence of positive integers such that rt veT) ~ a. 
Suppose that r1 = 1 and that 

arm -1 ~ (2n - a)rm -2' m = 3,4, ... ,t + 1 . 

Then R is a (T, a)-semiforcing sequence. 

Proof. The proof is essentially the same as for the previous theorem using 
Corollary 2.26 instead of Proposition 2.53. Here we obtain the equality 

S(R, a, m) = W(ajrm) ' m = 1,2, ... , 

which is stronger than (3.9) and which yields the better result. 0 

Example 4.10 shows applications of Theorem 3.10. 
For forcing sequences one can similarly prove the following. 

Theorem 3.11. Let ° ~ a ~ n and let R = (r1' r2, ... ) be a sequence of positive 
integers with r1 = 1 and such that for every, m, m = 3, 4, ... , either 

(3.12) 
or 

(3.13) 2nk+a . 2n(k+1)-a 
--- rm - 1 < rm < rm-2 
2n - a a 

for some positive integer k (which depends on m). Then R is an a10rcing sequence. 
Furthermore, let T ~ C, T $ IR~, be such that veT) > 0, and suppose that t is 

the (smallest) positive integer such that r t veT) > a. Then the sequence (r1' r2' ... 
.. . , rt +1) is (T, a)-forcing. 

Theorem 3.14. Let T ~ C, T $ IR~, be such that veT) > 0, let ° ~ a ~ n and let 
R = (r1' r2, . .. , rt) be a finite sequence of positive integers such that rt veT) > a. 
Suppose that r1 = 1 and that 

arm-1 < (2n - a) rm-2' m = 3,4, ... , t + 1. 

Then R is a (T, a)-forcing sequence. 
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;1'. The conditions inC Th)eobr~m 3.1

li
l canndot be weakednebd bEY replalci4ng8 an arbitrary 

I strict inequality in 3.12 y equa ty, as emonstrate y xamp e .. 
! Let 0 ~ a ~ 1t and let T £ C, T $ IR~. If veT) > 0 then the theorems above 
, show that there are finite (T, a)-(semi)forcing sequences. On the other hand, if 

veT) = 0 then it easy to prove that every (T, a)-(semi)forcing sequence is infinite. 
The following is a corollary to Theorems 3.4 and 3.11. 

Corollary 3.15. Let p be a positive integer, p > 1. The sequence R = (1, p, p2, . . . ) 
is a-forcing [a-semiforcing] if and only if a < 21t/(p + 1) [a ~ 21t/(p + 1)]. 

Proof. Let c be a nonzero complex number such that arg (c) = 21t/(p + 1), and 
let m be a nonnegative integer. Since p + 1 divides pm - 1 [pm + 1] when m is 
even [odd] , it follows that 

ar (c<pm») = { 21t/(p + 1) , m even, 
g -21t/(p + 1), m odd. 

Thus, if a ~ 21t/(p + 1) [a > 21t/(p + 1)] then c E S[R, a, 00] [c E S(R, a, 00)], 
and so R is not an a-forcing [a-semiforcing] sequence. 

Conversely, notice that if a < 21t/(p + 1) [a ~ 21t/(p + 1)] then R satisfies (3.12) 
[(3.6)] for every m, m = 3, 4, . . . , and hence, by Theorem 3.11 [3.4], R is a-forcing 
[ a-semiforcing]. 0 

Another interesting Corollary to Theorem 3.11 is: 

Corollary 3.16. Let p be a positive integer, p ~ 3, and let the sequence R = 

= (rl' r2' ... ) be defined by r l = 1, r2 = p, and rm = prm-I + 1, m = 3,4, .... 
Then R is a 21t/(p + l)-forcing sequence. 

Proof. Since p ~ 3 we have 

(3.17) p2 = pr2 < r3 = p2 + 1 < (p2 + p - 1) r l = p2 + p - 1 

and 

(3 .18) prm- I < rm = prm-I + 1 = p2rm_2 + p + 1 < (p2 + p - 1)rm-2' 

m = 4,5; .... 

Observe that inequalities (3.17) and (3.18) are exactly (3.13) for a = 21t/(p + 1), 
choosing k = p - 1. Therefore, by Theorem 3.11, R is a 21t/(p + l)-forcing se
quence. 

In view of Corollary 3.15, Corollary 3.16 is somewhat surprising. The i-th element 
and the ratio between the i-th and the (i - l)-th elements of the sequence in Corol
lary 3.16 are greater than the corresponding quantities in Corollary 3.15 for i > 2 
(the first two elements are identical in both sequences). But still, the sequence in 
Corollary 3.15 is only 21t/(p + l)-semiforcing while the one in Corollary 3.16 is 
21t/(p + l)-forcing. 

We now observe that the fact that in theorem 3.4 [3.11] we have either (3.6) 
(3.12)] or (3.7) [(3.13)1 for every mmay limit the selection of the k's possible in 
(3.7) [(3.13)]' 
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Observation 3.19. (i) Assume that (3.7) is satisfied for m = nand m = n + 1, 
namely 

(3.20) 

and 

(3.21) 

where k and k' are positive integers. 

It follows from (3.20) and (3.21) that 

(3.22) 

where 

2nk + ct < < 2n - ct 
--- rn-l = rn = -- j(k') r 2n - ct ct n-l , 

j(X) = 2n(x + 1) - ct . 
2nx + ct 

Inequalities (3.22) imply that 

(3.23) 2nk + ct ~ (2n - CC)2 j(k'). 
ct 

Since ct ~ n, the function j(x) is a monotonic decreasing function for x > ° and 
hence, (3.23) yields 

(3.24) k ~ (2n - ct)2 j(1) _!!:... = (2n - ct)2 (4n - ct) _ !!:-.. 
2nct 2n 2nct( 2n + ct) 2n 

For example, for ct = n/2 we obtain from (3.24) that k ~ 2.9, so the possible values 
for k in (3.20) are 1 and 2. For ct = 2nl3 we obtain k ~ 413, so the only possible 
value for kin (3.20) is 1. 

(ii) Assume that (3.7) is satisfied for m = n while (3.6) is satisfied for m = n + 1, 
namely, we have (3.20) and 

(3.25) ctrn ~ (2n - ct) rn-l • 

It now follows from (3.20) and (3.25) that 

2nk + ct < < 2n - ct 
--- rn-l = rn = -- rn-l' 
2n - ct ct 

which implies that 

(3.26) k :=:;; (2n - ct)2 _!!:.... 
- 2nct 2n 

Since ct ~ n, we have (4n - ct)/(2n + ct) ~ 1, and so (3.26) yields (3.24). Thus, in 
this case too we have (3.24). 

(iii) It follows from (i) and (ii) above that if we have either (3.6) or (3.7) for every m, 
m = 3,4, ... , then (3.24) provides an upper bound for the k in (3.7). 
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(iv) If one replaces (3.6) and (3.7) in the discussion above by (3.12) and (3.13) 
respectively, then one can obtain the upper bound (3.24) for k with the weak ine
quality replaced by strict inequality. 

Another sufficient condition for (semi)forcing sequences is the following 

Proposition 3.27. Let 0 ~ a ~ 1t and let R = (rl' r2' ... ) be an a-forcing [tx
semi/orcing] sequence. Let p be a positive integer and let R* be a (T, a)-forcing [(T, a)
semi/orcing] sequence, where T is the set 0/ p-th roots 0/ unity. Then the sequence 
(obtained by reordering)(prl,pr2,"') u R* is an a-forcing [a-semi/orcing] sequence. 

Proof. We give the proof for forcing sequences. Denote by pR the sequence 
(prl' pr2' .. . ), and by R' the sequence pR u R*. Clearly, S[R', a, IR'I] = S[pR, a, 
IRI] n S[R*, a, IR*I]. Let c E S[pR, a, IRI]. Since R is an a-forcing sequence, it 
follows that cP > O. Without loss of generality we may assume that Icl = 1, and hence 
c E T. Since R* is a (T, a)-forcing sequence, it now follows that if c E S[R*, a, IR*I] 
then c > O. I~ 

As mentioned in Remark 3.2. (iv), there exists no 21t/3-forcing sequence. However, 
for a < 21tJ3 we obtain the following, using Proposition 3.27. 

Corollary 3.28. Let p be a positive integer and let 0 ~ a < .21t/3 [0 ~ a ~ 21t/3]. 
Then the infinite sequence (p, p + 1, p + 2, ... ) is an a-forcing [a-semi/orcing] 
sequence. 

Proof. Observe that by Theorem 3.11, the sequence R = (1,2, ... ) is a-forcing 
[a-semiforcing]. Thus, we may assume that p > 1. Let c be a nonpositive p-th root 
of unity. Since 0 ~ a < 21t/3 [0 ~ a ~ 21t/3], some k-th power of c, 1 ~ k ~ p - 1, 
is outside W[ a] [W(a)]. Hence, since cP = 1, the sequence R* = (p + 1, p + 2, '" 
... ,2p - 1) is a (T, a)-forcing [(T, a)-semiforcing] sequence, where T is the set of 
p-th roots of unity. The result follows from Proposition 3.19. D 

We remark that Corollary 3.28 can be proved directly using arguments similar 
to those in parts (ii) and (iv) of Remark 3.2. 

We conclude the section with a discussion of an interesting relation between 
(semi)forcing sequences and continued fractions. For a real number d we shall use 
the notation ~dll for the distance between d and the nearest integer, viz. Ildll = 

= min {Id - kl: k an integer}. Let (2,3,5,8,13, ... ) be the sequence of Fibonacci 
numbers (omitting 1) obtained by setting r 1 = 2, r2 = 3 and recursively rk = 
= rk - 2 + rk - 1 , k = 3,4, .... Then it is well known that the rk are the denominators 
of the regular continued fraction for d = (.J5 - 1)/2, [5, p. 125]. Hence, by a theo
rem due to Lagrange, see [6, p. 37, Formula (9) and Satz 2.10]or [5. p. 74, Theorem 
3.8], we have 

(3.29) Ihdll < 1/rk' k = 1, 2, ... , 

and hence 
(3.30) 

153 



for k = 3,4, .... Since d = .6180 .,. , we also have (3.30) for k = 1, 2 and hence 

(3.31) C'k E W(n/2) , k = 1,2, ... , 

where c = e2ltid
• Thus, the Fibonacci sequence satisfies condition (3.6) for m = 

= 3,4, ... where IX = n/2, but is not forcing (nor even semiforcing). (This is another 
example showing that condition (3.5) cannot be omitted from Theorem 3.4). More 
generally, by [6, p. 3 and p. 33, Satz 2.6J, [5, p. 21, Theorem 1.3J, a sequence 
(rI' r2' ... ) of positive integers is a sequence of regular denominat~rs of a continued 
fraction expansion of some irrational number d if and only if 

(3.32) (rk+ 2 - rk)h+ 1 is a positive integer, k = 0, 1, 2, .. , , 

where ro = 1. Therefore, no sequence satisfying (3.32) and r1 ~ 4 can be a semi
forcing sequence for then, by (3.29), we have (3.30) for k = 1, 2, ... , and hence 
(3.31) holds for c = e211id

• 

4. EXAMPLES 

This section contains examples to illustrate the results of the previous sections. 
The relevant assertions are referred to in each example. 

Example 4.1. (for Proposition 2.14, Proposition 2.39 and Theorem 3.4). Let 
R = (2, 4, 6, ... ) and let IX be any ilUmber ° < IX < n. Then for n sufficiently large 
we have IXrn ~ (2n - IX)lrn-I' However, 

-1 E S(R, IX, n)" W(IX, rn), n = 1,2, ... . 

Example 4.2. (for Corollary 2.26). Let R = (2,3,6,18, ... ) where rm = 2(3m
-

2
), 

m = 3, 4, ... , let IX = n/2 and Jet n = 3. Observe that 

S(R, IX, n - 1) = W(nI6) u W(3nI4, 5n/6) u W( - 5n16, -3nI4) $; W(IXlrn_l) ' 
but 

S(R, IX, n) = W(n/12) = w(IXlrn). 

Furthermore, applying Corollary 2.26 repeatedly we obtain 

for all m, m ~ 3. Thus, R is a semiforcing sequence. 

Example 4.3. (for Proposition 2.39). Let IX = ' n/2, let n = 3, and let ri = 1, r2 = 3, 
. r3 = 12. Observe that 2n - IX = 3IX. By Theorem 2.13 and Corollary 2.26 we have 

S(R, IX, 3) ~ S(R, IX, 2) = W,CIXlr2)' 

Further, since r3 > r2 it follows from Proposition 2.14 that 
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Hence, (2.40) is satisfied. Clearly, (2.41) holds. However, there exists no integer k 

such that 
2nk + 0: 2n(k + 1) - 0: 

4k + 1 = r2 ~ r3 = 12 ~ r1 = 4k + 3. 
2n - 0: 0: \ 

Example 4.4. (for Proposition 2.39). Let 0: = nj2, let n = 4, and let rl = 1, r2 = 3, 
r3 = 10, r4 = 31. By Theorem 2.13 and Proposition 2.22 we have 

(4.5) f1(S(R, 0:, 4)) ~ f1(S(R, 0:, 2)) = o: jr2 . 

Also observe that (2.41) does not hold. Nevertheless, (2.42) holds for k = 2: 

(4.6) 30 = 2nk + 0: r3 ~ r4 = 31 ~ 2n(k + 1) - 0: r2 = 33. 
2n - 0: 0: 

By Theorem 2.53 it follows from (4.5) and (4.6) that (2.40) holds. 

Example 4.7. (for Proposition 2.39 and Theorem 3.4). Let 0: = nj2 and let R = 

= h, r2' . .. ) be defined by 
rl = 4, 

r m = 3r",_1 + 2 , m = 2, 3, ... . 

Since 2n - 0: = 30: it follows that for every n, n > 2, (2.41) doe's not hold. However, 
(2.42) does hold for every n, n > 2, choosing k = 2: 

_ 2nk + 0:. < _ < 2n(k + 1) - 0: _ 
3rn- 1 - 1n - l = rn - 9rn-2 + 8 = rll -2 - llrll _2' 

2n - 0: 0: 

Since rk is always even, it follows that 

-1 E S(R, 0:, n), n = 1, 2, ... , 

so (2.40) does not hold in this case. 

Example 4.8. (for Theorem 3.4 and 3.11), Let T = C and let 0: = nj2. The sequence 
R is defined by r 1 = 1, r2 = 3, and rm = 2m -I, m = 3,4, .... Notice that (3.13) 
is satisfied for m = 4, 5, . . . and that equality holds for m = 3. This sequence is not 
forcing since i E S[R, nj2, 00]' However, the sequence R is semiforcing by Theorem 
3.4. 

Example 4.9. (for Theorem 3.4). Let 0: = 2nj3 and let R = (1,2,4,9, 19, . .. ), 
where rm = 2rm - 1 + 1, m = 4, 5, .. .. It is easy to verify that inequalities (3.7) 
are satisfied for m = 3, 4, ... , choosing k = 1. Hence, by Theorem 3.4, R is a 2nj3-
semi forcing sequence, Also, by Remark 3.2. (v), R is a p-forcing sequence whenever 
o ~ P < 2nj3, 

Example 4.10. (for Theorem 3.10). Let T be the set of all 150-th roots of unity. 
By Theorem 3.10, the finite sequence (1, 5, 25) is (T, nj3)-semiforcing and the se
quence (1, 3, 9, 27, 81) is T-semiforcing. 
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