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MATRICES WITH SIGN SYMMETRIC DIAGONAL SHIFTS
OR SCALAR SHIFTS*
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Abstract. We generalize the concepts of sign symmetry and weak sign symmetry by defining k-sign symmetric
matrices. For a positive integer k, we show that all diagonal shifts of an irreducible matrix are k-sign symmetric
if and only if the matrix is diagonally similar to a Hermitian matrix. A similar result holds for scalar shifts, but
requires an additional condition in the case k = 1. Extensions are given to reducibie matrices.
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1. Introduction. A square complex matrix is said to be sign symmetric (weakly sign
symmetric) if it has nonnegative products of symmetrically located minors (almost prin-
cipal minors) (for detailed definition see Definition 2.11).

Weakly sign symmetric matrices were studied first by Gantmacher and Krein [8, p.
111] and by Koteljanskii [13]. That is why these matrices are also called GKK-matrices,
e.g., Fan [5]. One reason for the interest in these classes of matrices is that they contain
the important classes of the Hermitian matrices, the totally nonnegative matrices and
the M-matrices. Another reason is the strong linkage between weak sign symmetry and
the Fischer-Hadamard determinantal inequalities. This connection is studied in Gant-
macher and Krein (8], Koteljanskii [12], Carlson [1], Green [9] and Hershkowitz and
Berman [10].

A sufficient condition for positivity of the principal minors of a weakly sign symmetric
matrix in terms of leading principal minors is given by Koteljanskii [13].

Relations between weakly sign symmetric matrices and w-matrices are discussed in
Engel and Schoeider [4] and in Hershkowitz and Berman [11].

Sign symmetry and weak sign symmetry are also related to stability. It was proved
by Carlson [2] that sign symmetric matrices whose principal minors are positive are
stable, i.e., their spectra lie in the open right half plane. The same result is conjectured
to hold for weakly sign symmetric matrices too.

In this paper we generalize the concepts of sign symmetry and weakly sign symmetry.
We define k-sign symmetric matrices, where k is a nonnegative integer (see Definition
2.11). In view of our definition an n X n sign symmetric matrix is a k-sign symmetric
matrix whenever ¥ 2 (n — 1)/2. The 1-sign symmetric matrices are those weakly sign
symmetric matrices whose principal minors are real, Since reality of principal minors is
assumed in all the results on weakly sign symmetric matrices quoted above, one may as
well consider those as assertions on 1-sign symmetric matrices.
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After giving graph theoretic preliminaries in § 3, we characterize in § 4 the matrices
all of whose diagonal shifis are k-sign symmetric, that is matrices A such that 4 + D is
k-sign symmetric for every real diagonal matrix D. Given a positive k, we show that an
irreducible matrix satisfies this condition if and only if it is diagonally similar to a Her-
mitian matrix. Thus, a matrix satisfies the above shift condition for some positive k if
and only if it satisfies the condition for every positive k.

For k 2 2, we prove in § 5 a similar result foramamanllofwhouamla:shxﬁs
A + tI, where { is real, are k-sign symmetric. If k = 1 then we need an additional graph
theoretic hypothesis, namely the reversibility of the chordless directed circuits of even
length in the directed graph of A.

The extensions of our results to reducible matrices follow from a theorem in § 6
that a matrix A4 is k-sign symmetric if and only if every diagonal block in the Frobenius
normal form of A is k-sign symmetric.

2. Definitions and notation.
Notation 2.1. We denote

|a|: the cardinality of a set a.

R: the field of real numbers.

C: the field of complex numbers.

[x]: the maximal integer which is less than or equal to the real number x.

Notation 2.2, For a positive integer n we denote

(n): theset{1,2,---,n}.
F™".  the set of all n X n matrices over a field F.

Notation 2.3. For a (nondirected, simple) grapb I' we denote

V(T): the vertex set of I'.
E(T): the edgesetof T.
[i,j]: an edge between i and j, i, j € V(I'). Observe that [i, j] = [J, i].

DEFINITION 2.4. Let T be a graph. A sequence of edges in I' which leads from i to
51 [P, p2), - s [Pm— 1> Pm)s [Pms ], is called a path in T between i and j and is
denoted by [i, py, P2, *** , Pm, J]. A path [i, - -+, §j] in I is said to be a closed path if
i = i,. A closed path [i;, '+, i, ;] is said to be a circuit if i;, - - - , i, are distinct. A
circuit is said to be of length k, or a k-circuit, if it consists of k edges.

Notation 2.5. For a (simple) directed graph (or digraph) A we denote

V(A): the vertex set of A.
E(A): the arc set of A.
(i,j): an arc from i to J, i, j, € V(A). Observe that (i, j) = (J, i) if and only if
i=j.
DEFINITION 2.6. Let A be a digraph. A sequence of arcs in A from i to J, (i, p)),
(P1, P2, s (Dm - 1> Pm)> (Pm ), is called a directed path in A from i to j and is denoted
by (i, 1, P2, " , Pm, J). A directed path (i,, - -+ , i) in A is said to be a closed directed
path if i; = i,. A closed directed path (i,, - -+, ), §)) is said to be a directed circuit (or
dicircuit)if i,, - - - , iy are distinct. A dicircuit is said to be of length &, or a k-dicircuit, if
it consists of k arcs.
DEFINITION 2.7. A digraph A is said to be strongly connected if either |V (A)|=1 or
for every i, j € V(A) there exists a directed path in A from i to J.
DEFINITION 2.8. A dicircuit (i), - - , iy, #;), k £ 3, in a digraph A is said to have a
chord if E(A) contains an arc (i;, i;) where
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(I-1,1+1}, 1<I<k
£ {2,k}, I=1,
{k—1,1}, I=k.

A dicircuit of length greater than 2 in A is said to be chordless if it has no chord.
DEFINITION 2.9. (i) A directed path a = (ij, *- -, i) in a digraph A is said to be
reversible in A if (iy, - -- , i;) is also a directed path in A. In this case we denote the
directed path (i, -« - , i;) by a®*.
(ii) A digraph A is said to be reversible or symmetric if every directed path in A is
reversible. Observe that A is reversible if and only if

(.)€ E(8)= (J, )€ E(A).
Notation 2.10. Let A be an n X n matrix and let a, 8 < (n), a, 8 # ¢. We denote

Alalf]: the submatrix of A whose rows are indexed by a and whose columns
are indexed by g in their natural orders.

Ala] = Alala],
A(alB) = A[{n)\al(n)\8],
Ala) = A(ala).

DEFINITION 2.11. (i) Let A € C*" and let a, 8 < (n), |la| = [B] > 0. The submatrix
A[alB] of A is said to have dispersion k whenever k = |a| — |a N 8] (see also [12)).
Submatrices with dispersion 1 are called a/most principal submatrices.

(i1) Let k be a nonnegative integer. A square matrix A is said to be k-sign symmetric
if it satisfies
2.12) det A[«|B] det A[Blx]2=0

for all submatrices A[a|8] of A with dispersion less than or equal to k. The set of all
k-sign symmetric matrices in C™" is denoted by SS%.

(iii) A square matrix is called sign symmetric if (2.12) holds for all square submatrices
AfalB] of A (see also [13]). The set of all signh symmetric matrices in C*”" is denoted
by SS(,. .

(iv; A square matrix is called weakly sign symmetric if (2.12) holds for all submatrices
Afalf] of A with dispersion exactly 1 (see also [13]). The set of all weakly sign symmetric
matrices in C*” is denoted by WSS,.

Remark 2.13. (i) Observe that for nonnegative integers k and m, the inequality
m > k implies SS7, S SS¢y .

(i) Leta, 8 (n), la] = |8] > 0, and let k = |a| ~ |« N B]. Since

lal + 18] = laN Bl = |aUBl=n

and since k < |af it follows that k < n/2. Thus, the dispersion of a square submatrix of
an n X n matrix cannot exceed n/2. It now follows that for a nonnegative integer m,
me (n- l)/2 we have SS'&) = SS(.).

(iii) Since submatrices of a given matrix have dispersion 0 if and only if they are
principal submatrices, it follows from Definition 2.11(ii) that the 0-sign symmetric matrices
are just the matrices all of whose principal minors are real. Also, a k-sign symmetric
matrix has real principal minors for every positive integer k.

(iv) Observe that SS}, is the set of those matrices in WSS,y that have real principal
minors, :
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DEFINITION 2.14. Let A be an n X n matrix. The graph I(4) of A and the digraph
A(A) of A are defined by
V(T'(A)) = V(A(A)) = (n),
EX(A) = {[i,j},i,j€{n):a;*0 or a;* 0},
E(A(A)) = {('»J)’ i’je <n>: a(i* 0}‘
DEFINTTION 2.15. Let 4 be an n X n matrix and let a = (i}, * * * , i) be a directed
path in A(A). The corresponding path product is defined to be

k-1
H"(A)= H aij‘)-ol'
/=1

DEFINITION 2.16. An n X n matrix A4 is said to be combinatorially symmetric if
A(A) is reversible.

DEFINITION 2.17. Let A.B. € C™". The matrices A and B are said to be diagonally
similar if there exists a nonsingular diagonal matrix D such that

B=D"'AD.

The matrices 4 and B are said to be permutationally similar if there exists a permutation

matrix P such that
B=P74P.

DEFINITION 2.18. (i) A square matrix A is said to be in Frobenius normal form if
A may be written in the block form

Ay Ap - Ay
0 Ap
A= . .

0 Y 0 A&

where A;; is an irreducible square matrix, i = |, . k.

(ii) Let A, Be C™". Thematan:ssmdtobcaFrobemusnonnanbnnofA ifBis
in Frobenius normal form and if 4 and B are permutationally similar.

Remark 2.19. Observe that by Definition 2.18 the Frobenius normal form of a
square matrix A4 is unique up to permutation similarity, and so Frobenius normal forms
of A have the same diagonal blocks up to permutation similarity. Also, since, as is well
known, a square matrix is irreducible if and only if its digraph is strongly connected, it
follows that the diagonal blocks of the Frobenius normal form of A are the principal
submatrices of A4 that correspond to the maximal strongly connected subgraphs (com-
ponents) of A(A).

DEFINITION 2.20. Let A € C™. A diagonal shift of A is a matrix A + D where D is
a real diagonal n X n matrix. A scalar shift of A is a matrix 4 + (I where ¢ is a real
number.

3. Reversible digraphs.

PROPOSITION 3.1. Let A be a digraph. Then every dicircuit in A is reversible if and
only if every chordless dicircuit in A is reversible.

Proof. The “only if” part is trivial. Conversely we prove our assertion by induction
on the length of the dicircuits. Clearly, all dicircuits in A of length 1 and 2 are reversible.
Also all 3-dicircuits are chordless and bence reversible. Assume that all dicircuits in A
of length less than n (n > 3) are reversible, and let @ = (i), - - - , iy, #;) be an m-dicircuit
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in A. If « is chordless then it is reversible by the conditions of the proposition. Assume
that a is not chordless. Without loss of generality we may assume that (i}, i) € E(A)
where [ # 1, 2, n. Observe that 8 = (i, ij, i1+1, *** , In, I,) is & dicircuit in A of length
less than n and therefore, by the inductive assumption, g is reversible. Thus we have

3.2) (ix, i - Y E E(A), k=1+1,---,n,
3.3) (i, ) € E(A),

and

(3.4) (i, )€ E(B).

By (3.4), y = (iy, -, i1, I1) is also a dicircuit in A. Since the length of v is less than
n, it follows from the inductive assumption that + is reversible. Hence we have

(3-5) ' (i, k-1 )EEL),  k=2,---,1L

It now follows from (3.2), (3.3) and (3.5) that the dicircuit « is reversible. O

COROLLARY 3.6. Let A be a strongly connected digraph. Then A is reversible if and
only if every chordless dicircuit in A is reversible.

Proof. The “only if”" part is again trivial. Conversely, since A is strongly connected
it follows that every arc (i, j) of A lies on some dicircuit a in A. By Proposition 3.1 the
dicircuit « is reversible and hence (J, i)} € E(A). O

COROLLARY 3.7, Let A € C™, Then every diagonal block in the Frobenius normal
Jorm of A is combinatorially symmetric if and only if every chordless dicircuit in A(A) is
reversible.

Proof. Our claim follows immediately from Corollary 3.6 and Remark 2.19. ]

4. Irreducible matrices with sign symmetric diagonal shifts.

LEMMA 4.1. Let A € C™ be diagonally similar to a Hermitian matrix. Then A €
SS% for every nonnegative integer k.

Proof. Let D be a diagonal matrix and B be a Hermitian matrix such that

A=D"'BD.
For all a, 8 = (n), la| = |8] > 0 we have
det A[a|8] det A[B|a]
= det D{a] det Bl«|8] det D™'[B] det D{B] det B{Bla] det D~'[a]
= det Blal8] det B{g|a] = det Bla|f] det Blal6) 20. o
LEMMA 4.2, Leta, beC and let
p(O)=(t+aXt+b).

(@) If p(2,), p(t2) € R for two distinct real numbers t, and t, then either a = b or
a beR.

(ii) Ifb> athen p(f) <O forallt, —b <t < —a.

Proof. (i) If p(t;), p(t;) € R for two distinct real numbers ¢; and ¢, then necessarily
a + b, ab € R. Therefore, p(?) is a polynomial with real coefficients. Since the roots of
p(t) are —a and —b our claim follows.

(ii) Immediate, since for —b <t <—gwehavet+a<0and?¢+ b>0. O

COROLLARY 4.3. Leta,beC.If(t+a)(t+ b)= O0forallt€R thena = b.

Proof. By Lemma 4.2(i) we have either a = b or a, b € R. In the latter case, by
Lemma 4.2(ii) we have a = b. Hence, in each case, a = b. O
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In the following results we discuss k-sign symmetric matrices, k 1. As observed
in Remark 2.13(iii), a matrix A is 1-sign symmetric if and only if A4 is weakly sign symmetric
matrix with real principal minors. Note that a matrix 4 € C™” may have nonreal principal
minors even if all its diagonal shifts are in WSS,,,. This assertion can easily be verified
for n = 1, 2. However it holds for higher orders 100 as demonstrated by the following
irreducible 3 X 3 matrix

010

A=|1 i 1
010

The following theorem relates weakly sign symmetric matrices to 1-sigh symmetric
matrices.

THEOREM 4.4. Let A € C* be a weakly sign symmetric matrix and suppose that
all the principal submatrices of A of order less than or equal 1o n — 2 are nonsingular.
Then A has real principal minors if and only if the diagonal entries of A are real.

Proof. The “only if™ direction is obvious. Conversely, assume that 4 is a weakly
sign symmetric matrix with real diagonal entries and nonsingular principal submatrices
of order less than or equal to n — 2. We prove that the principal minors A4 are real by
induction on the order of 4. The claim is clear for matrices in WSS, and WSS,,.
Assume it holds for weakly sign symmetric matrices of order less than n, n & 3, and let
A € WSS,,. Since every pnncipal submatrix of a weakly sign symmetric matrix is also
weakly sign symmetric, it follows from the inductive assumption that all principal minors
of A of order less than 7 are real. Thus, all we have to prove is that det A is real.

Let a; = (n)\{n} and a; = (n)\{n — 1}, and define a 2 X 2 matrix B by

b= det Alajay], ij=1,2.

Since 4 € WSS, it follows that B € WSS,y. Furthermore, b,; and b,, are principal
minors of A of order n — 1, and hence &,, and b,, are real by the inductive assumption.
Therefore, the determinant of B is real. By Sylvester’s identity, e.g., [7, Vol. I, p. 33], we
have

(4.5) det B= det A[(n—2))] det A.

Since det A[(n — 2)] ¥ 0 and by the inductive assumption det A[{n — 2)] is real, it now
follows from (4.5) that det A is real. O

The assumption of nonsingularity of the principal minors of 4 cannot be dropped
from Theorem 4.4 as demonstrated by the matrix

0 1 1
A= 1 0 i
2 =i 0

It is easy to verify that 4 € WSS;). However, det A4 = i.
LEMMA 4.6. Let A € C™, n & 3. Assume that a is an n-dicircuit in A(4) and that
T(A) consists of a single circuit. If A + D € 5S4, Jor all real diagonal matrices D then

I1.(4) = I1.-(4).

Proof. Without loss of generality assume that o = (1, ---, n, 1). Notice that I'(4)
consists of the single circuit [1, - -+, n, 1]. Since 4 + D € 85S¢, for all real diagonal
matrices D, it follows that
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@7 (D)= [det (4 + DX12)]det (4 + DX2|1)]
= [a3,Z(D) + (1) " 2aq pllai22(D) + (- 1)~ 2a1xq] 20
where
2(D) = det (4 + DX1,2),
n—1
p= H Qjj+1s

j=2

and

=1
qa=1I1 g+ 1y-
j=2
Since a is a dicircuit in A(A), it follows that

a12,PD, Gn1 *0.

Since, as observed in Remark 2.13(iii), 4 has real principal minors, it follows that z(D)
attains every real value for suitable choices of D. Therefore, if a;, = 0 then for an ap-
propriate choice of D we have y(D) < 0, which contradicts (4.7). Thus we have a5, * 0.
Similarly we show thata;+,;#0,j=1, .-+, n— | and a,, * 0. Since 4 € SS},, we now
have a,,a,;, > 0. Dividing (4.7) by a,,a;,, we obtain

(4.8) [z2(D) + (—1)Y"~2ay, p/an)[2(D) + (—1)" " 2a,9/a12] 2 0.
Since z(D) attains every real value, it follows from (4.8) and Corollary 4.3 that
4.9) an p/ax = a,/a;.

Notice that since a,,a;; > 0 we have a,,a,, = @,,d;,. Hence, by multiplying the left and
the right sides of (4.9) by a,,4,, and a};a;;, respectively, we obtain

TTud) = TTr(A). o
LEMMA 4.10. Let A € C™ have real diagonal entries and assume that
4.11) a;a;€R forallije{n), i*j.
If the equality
4.12) T1.A4) = TLAA)

holds for all chordless dicircuits a in A(A) then it holds for all dicircuits a in A(A).

Proof. Since A has real diagonal entries, it follows that (4.12) holds for 1-dicircuits.
Also it follows from (4.11) that (4.12) holds for 2-dicircuits. Assume by induction that
(4.12) bolds for dicircuits of length lessthan m,m & 3, and let a = (i;, - - , im, §;) bE
an m-dicircuit in A(A4). If a is chordless then by the lemma’s conditions (4.12) holds. If
a is not chordless, then necessarily m > 3, and without loss of generality we may assume
that (i), i) € E(A(A)), where [ % 1, 2, m. Since A = A(A[i}, * - - , i]) is strongly connected
and since by the conditions of the lemma every chordless dicircuit in A is reversible, it
follows from Corollary 3.6 that A is reversible. Hence, (i), i;) € E(A(A4)) and hence 8 =
Gy, dny il+h ey dmy il)and Yy=0, i ll)mdjmtsm A(A)Withknsth less
than m. By the inductive assumption we have

(4.13) ITs(4) =1 =(A4),
and

(4.14) M =TT.@.
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Observe that

(4.15) I1.4) = I1,(DI1 (A)/ a0,

and

(4.16) I1ea(4) = T1 po( ] (A)/ a0,

Since we have (4.11), it now follows from (4.13), (4.14), (4.15) and (4.16) that

I1A4) =I1(4). (]

We remark that Lemma 4.10 may be generalized. One can similarly prove the same
conclusion under the assumptions that (4.11) holds and that (4.12) holds for all the
dicircuits in an integral basis for the flow space of A(A), see [14].

THEOREM 4.17. Let A € C™" be an irreducible matrix and let k be a positive integer.
Then the following are equivalent.

(i) A + D € SS%, for all real diagonal matrices D.

(ii) The matrix A is diagonally similar to a Hermitian matrix.

Proof. (i) = (). In view of Remark 2.13(i) it is enough to show this implicatior
for k = 1. Assume that 4 + D € SS¢,, for all real diagonal matrices D. Observe that since
A is irreducible, the digraph A(A) is strongly connected. Let a = (i}, **, in, i) be a
chordless m-dicircuit in A(A4). By Definition 2.8 we have m 2 3. Let B = A[i}, - - , iy].
Notice that I'(B) consists of a single circuit. By Lemma 4.6 we have

(4.18) T12(A) = T1.(A).

It now follows from (4.18) that the chordless dicircuit a is reversible. By Corollary 3.6
the strongly connected digraph A(A4) is reversible. Thus, since 4 is in SSi, it
follows that

4.19) a;*0=a;a;>0 forallije(n).
Furthermore, by Lemma 4.10 we have
(4.20) I1u(4) = T1(4),

for every dicircuit in A(A4). Therefore, by Corollary 4.20 of [3] it follows from (4.19) and
(4.20) that A is diagonally similar to a Hermitian matrix.

(ii) = (i). Assume that A4 satisfies (ii). Since A + D is diagonally similar to a Hermitian
matri)’f for all real diagonal matrices D, it follows by Lemma 4.1 that 4 + D is
in SS¢n- O

5. Irreducible matrices with sign symmetric scalar shifts. In this section we discuss
matrices A all of whose scalar shifts are k-sign symmetric. Although the condition here
is weaker than 4 + D € SS%,, for all real diagonal matrices D, the results are similar to
those of the previous section.

The following lemma is well known and may be found in [8, p. 79, Remark 6°].

LEMMA 5.1. Let A € C™" be a tridiagonal matrix such that

ai,'ER, i= l,"',n,
and
a,',-+|a,-+|.,>0, i=l,"',n"l.
Then A has distinct real eigenvalues. Furthermore, if A\, < -- - < ), are the eigenvalues
ofAand p, < - -+ < u,_, are the eigenvalues of A(n) or of A(1), then

X|<p|<kz<--'<n,,_|<k,,.
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An easy well-known consequence of Lemma 5.1 is:
LEMMA 5.2. Let A € C™" be a tridiagonal matrix such that

aiieR’ i=l,.“’nv
and
a,-,,~+,a,-+._,~20, i=1,---,n—1.

Then A has real eigenvalues.

LEMMA 5.3. Let A€C™ n 2 3, and suppose that if n is even then A is combinatorially
symmetric. Assume that a is an n-dicircuit in A(A4) and that T(A) consists of a single
circuit. If A + tI € SSi,, for all t € R then .

I1.4) = T1.~(4).
Proof. Without loss of generality assume that a = (1, - - -, n, 1). Notice that I'(4)
consists of the single circuit [1, - - -, n, 1]. Since 4 + tI € SS(,, for all £ € R, it follows

that

(5.4) A= det (A+1IX1]2) det (4 +:IX2]1)
= [a2:8()+ (—1)" " *aupllag(t) + (1Y "2a,g] 20 forall t€R,

where
g()= det (A+1tIX1,2),
n—1
P= H Qj+1s
j=2
and
n—1
q= H Qi1
i=2

Observe that since 4 has real principal minors, if 7 is odd then g(f) attains every real
value and our proof follows as the proof of Lemma 4.6 where (5.4), fir) and g(r) replace
(4.7), y(D) and z(D), respectively. If n is even then, since a,, ¥ 0 and since A4 is combi-
natorially symmetric 1-sign symmetric matrix, it follows that a,,a;, > 0. Dividing (5.4)
by a,;a,;, we obtain

(5.5) [e()+a)lg()+b]20 forallteR
where
-
az,
and
p=31
ar

Since g(7) attains infinitely many real values, it follows from Lemma 4.2(i) that
either

(5.6) a=5,
or
5.7 a beR.

If (5.6) holds, then we have (4.9) and we complete our proof as we do for Lemma 4.6.
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If (5.6) does not hold, then we have (5.7) where a # b. Without loss of benmﬁw we may
assume that
(5.8) b>a.

Observe tnat if g(?) attains the value x then g(7) attains every value which is greater than
x. Thus, it follows from (5.5), (5.8) and Lemma 4.2(i1) that

(5.9) g2 —-a>—b forallzeR.
Given that A + tI € SS{,, for all 1 € R we have
(5.10) h(1) = [det (A + tIX1|n)}{det (4 + tIXn|1)]

= [aur(t) +axglla,r(t)+a2p}20 forall t€R

where
r(t)= det (A +tIX1, n).

Dividing (5.10) by the positive number a,,4,;, we obtain

(5.11) [r()+cllr(+d]120 forall 1eR
where
c=2d
ap;
and
=222
aln

Observe that (5.8) implies that

(5.12) c>d.
As before, by Lemma 4.2(ii) it follows from (5.11) and (5.12) that

(5.13) r()e—d>—c forall teR.

Observe that (4 + 1) (1, 2) and (4 + tI) (1, n) are tridiagonal matrices which satisfy
the conditions of Lemma 5.1. Hence by Lemma 5.1 their eigenvalues are simple. Thus,
for appropriate choices of ¢, the determinants of these matrices, which are g(7) and r(7)
respectively, attain negative values. Hence, it follows from (5.9) and (5.13) that

(5.14) a,b,c,d>0.
Let a; = (n)\{1, n} and a; = (n)\{1, 2}, and define a 2 X 2 matrix B by
b= det(A+tNlalay),  ij=1,2.

Observe that
(5.15) by=r(t), bn=g(), by=p, bn=gq
By Sylvester’s identity we have
(5.16) det B=[det (4 +t/X1,2,m)]{det (A +X1)] forall t€R.

By Lemma 5.1 let A be the minimal eigenvalue of A(1, 2, n), and choose £, = —A. Thus
G det (A+1,1X1,2,m)=0.
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Furthermore, by Lemma 5.1 we have

(5.18) r(to), (1) <O0.

By (5.9), (5.13), (5.14) and (5.18) we now obtain

(5.19) r(to)g(t) <ac=pg.

On the other hand, by (5.15),(5.16) and (5.17) we obtain

rto)g(to) = py,

which is a contradiction to (5.19). Therefore, our assumption that (5.6) does not hold is
false, and our proof is completed. O

Lemma 5.3 does not hold for even n when we omit the combinatorial symmetry
requirement as demonstrated by the following example.

Example 5.20. Let

- o O O

0
0
1
0

©C O O -
S O = O

Let a, B < (4), la| = [8] = | N B] + 1. To see that
(5.21) det (4 + tN[alB] det (4 + tN[Bla]Z0 for all teR,

observe that the left side of (5.21) is equal to zero whenever |a| £ 2, and is equal to 72
whenever |a| = 3.

We remark that it is possible that a condition which is somewhat weaker t \an
combinatorial symmetry will do in Lemma 5.3.

However, for matrices with k-sign symmetric scalar shifts, k > 1, we do not need
to state the condition of combinatorial symmetry.

LEMMA 5.22. Let A € C™, n 2 3, and let k be a positive integer, k > 1. Assume
that a is an n-dicircuit in A(A) and that T(A) consists of a single circuit. If A + tl €
SS%u Jor all t € R then a is reversible in A(A).

Proof. Without loss of generality assume that a = (1, - - - , n, 1). Thus I'(4) consists
of the single circuit [1, - - - , n, 1]. Assume that « is not reversible. Without loss of generality
we may assume that g,, = 0. In view of Lemma 5.3 it is enough to consider the case
where n is even. Hence we may assume that n 2 4. Recall that

(5.23) A+1€SS¢,, forallteR
yields that A has real principal minors. Also, it follows from (5.23), that
h(t) = det (A+ tIX1|n) det (A+ tIXn|1)
=[p+amr®}§20 forallzeR

where
r(t)=det (A +tIX1,n),
n
p= H a1t
j=2
and
ﬁ-_- H aj.. 1,j°

j=2
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Observe that A(f) is a polynomial in ¢ of degree n — 2. Since it is nonnegative for all
1 € R it follows that the leading coefficient g,,;§ must be nonnegative. In fact, since a is
- a dictrcuit in A(4) we have

(5.24) amG@>0.

We distinguish between two cases:
Case 1. n= 4. By (5.23) we have

Sy = det (A +1IX1[2) det (4+ 1IX2|1)
(5.25) = [a2; 8(1) + aya23a34)a,28(1)

=[a,,a,,8(1) + a,Glg()20 for all 1€ R
where
g()=det(4+1X]1,2).

If a4y # 0 then, since a3, * 0, g(1) attains also negative values (for example for 1 = —as3).
Thus, in view of (5.24) we can choose £, such that g(z) < 0 and

la2a,28(t0)| < @i§.

But then f{1y) < 0 in contradiction to (5.25). Therefore we must assume that g,; = 0.
Since k > 1 we now obtain by (5.23) that

det (4 +1IX1,3]2,4) det (4 +11X2,4|1,3) = —a4,0:3012a4 2 0,

which is a contradiction to (5.24).
Case2. n> 4. By (5.23) we have

A= det A+ X1, n—1|2,n)det (A+tIX2,n|1,n—1)
(5.26) =[a218nn- 18(1) — Gn1G/G12Gn - 1,2)131280 - 1 xE(1)]

'-'[0120210..-uan.n—lg.(’)-anl‘ng([)zo for all reR
where
g)=det(A+1IX1,2,n—1,n).

By Lemma 5.2 g(r) attains every nonnegative value. Thus, in view of (5.24) we can
choose £ such that () > 0 and

18128215 - 1 43n 0 - 18(t0)]| <@m§.

But then f{z,) < 0 in contradiction to (5.26).
In each case we obtain a contradiction, which means that our assumption that « is
not reversible is false. O
We now state the theorem for the irmeducible case.
THEOREM 5.27. Let A € C™ be an irreducible matrix and let k be a positive integer,
k & 2. Then the following are equivalent.
(i) A+ eSSy forallteR.
(i) A + tI € 5SS, for all t € R and every chordless dicircuit in A(A) is
reversible.
(iii) 4 + tI € S8, for all t € R and every chordless dicircuit of even length in A(4)
is reversible.
(iv) The matrix A is diagonally similar to a Hermitian matrix.
Proof. (1) = (ii). Lemma 5.22 yields that every chordless dicircuit in A(A) is re-
versible. The rest of the implication is trivial.
(i) = (iii). Obvious.
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(iii) = (iv). The proof follows exactly as the proof of the part (i) = (ii) in Theorem
4.17, where D is replaced by ¢/, and where Lemma 5.3 is used instead of Lemma 4.6.

(iv) = (i). Since 4 + i/ is diagonally similar to a Hermitian matrix for all 1 € R, it
follows by Lemma 4.1 that 4 + ¢ € SS%,,. ] '

6. Reducible matrices with sign symmetric shifts.
THEOREM 6.1. Let A € C™" have the block form

A= Ay A
0 Ap

where A,, and Ay, are square, and let k be a nonnegative integer. Then A is k-sign symmetric
ifand only if A,, and A, are k-sign symmetric.

Proof. Clearly, if A is k-sign symmetric then so are 4, and 4,,. Conversely, assume
that 4, and A2, are k-sign symmetric and let a, 8 < (n) be such that ¢ = |a| =[] > 0
and

6.2) g—lanBi=k.
We shall show that
6.3) det A[a|B] det A[Bla] 2 0.

Let m be the order of 4;,. Denote by
a’'=aN{m), a"=a\a’, f'=N(m), B"=\f".

Observe that

(6.4 la’l +a*| = 181 +16"] = g,
and hence

(6.5) la’| + 6%+ |8 + "l = 2q.

In view of (6.5) we need to consider only the following two cases.
Case 1. |a'| + |B"| > g or |a”| + |8'| > g. Assume that
(6.6) la’ + 1671 > q.
By (6.4) we have ||, |8°] > 0. Since A[8"]a"] = 0it follows from (6.6) by the easy direction
of the Frobenius-K&nig theorem [6] that A[S]a] is singular and hence
det A[a|B8] det A[Sla] =0.

Case 2. |a'| + |B"] = |a"] + |8'] = ¢. If |a’| = g [I8”| = ¢] then |a”| = 0 [|8'] = 0]
and hence |8'| = ¢ [|a"] = ¢]. In this case A[«|B] and A[S|a] are submatrices of 4;, [42:]
and (6.3) follows. If |a'|, |8*] < ¢ then observe that A[a|8] and A[S|a] are reducible.
Furthermore, we have

6.7) det A[a|f] = det A, [a’|8] det Ay5[a"|6"]
and
(6.8) det A[Bla] = det 4,,[8'la] det A22[B"|a”].

By (6.2), the sets a’ and «” contain at most & indices which are not in 8’ and 8°, respectively.
Hence, since A4;; and A4,, are k-sign symmetric, inequality (6.3) follows from (6.7)
and (6.8). 0 .
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In view of Remark 2.13(ii) we obtain the following immediate corollary to
Theorem 6.1.

COROLLARY 6.9. Let 4 € C*" have the block form

A
4=[4n Ay
0 A,

where A\, and A,, are square. Then A is sign symmetric if and only if A;; and A,, are
sign symmetric.

We remark that the “only if” part of Theorem 6.1 holds trivially also when we
replace “k-sign symmetric’’ by “weakly sign symmetric.” On the other hand, weak sign
symmetry of 4;, and A,; does not imply in general the weak sign symmetry of A for
matrices with nonreal principal minors, as demonstrated by the following example.

Example 6.10. Let

S = O

i 0
A=(0 O
0 1

where 4,,is a | X | matrix. Obviously, the matrices 4, and 4., are weakly sign symmetric.
However, the matrix 4 is not in WSS,, since

det A(3]2) det A(2]3)=-1.

Since the class SS(‘,.> is invariant under permutation similarity, the following is a
corollary to Theorem 6.1.

COROLLARY 6.11. Let k be a nonnegative integer. A square matrix A is k-sign
symmetric if and only if every diagonal block in the Frobenius normal form of A is k-sign
symmetric.

Let A be a square matrix. Observe that every dicircuit in A(4) is a dicircuit in A(B)
where B is some diagonal block in the Frobenius normal form of 4. Thus, the following
theorem for the general case follows directly from Theorems 4.17 and 5.27 and Corollary
6.11.

THEOREM 6.12. Let A € C™" and let k and m be positive integers, m & 2. Then the
Jollowing are equivalent.

(i) A + D € SS}u, for all real diagonal matrices D.

(i) A+ t1€ SST, for allt€R.

(i) 4 + ¢I € SS,y for all t € R and every chordless dicircuit in A(A) is

reversible.

(iv) A + tl € SS,, for all t € R and every chordless dicircuit of even length in A(A)

is reversible.
(v) Every diagonal block in the Frobenius normal form of A is diagonally similar
to a Hermitian matrix.
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