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ABSTRACT 

Two common properties of Z-matrices and Hermitian matrices are considered: (1) 
The eigenvalue interlacing property, i.e., the two smallest real eigenvalues of a matrix 
are interlaced by the smallest real eigenvalue of any principal submatrix of order one 
less. (2) The positive GLP property, i.e., if a matrix has a positive sequence of 
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generalized leading principal minors, then all the principal minors of the matrix are 
positive. The relationship between these properties as well as related properties is 
examined in general. 

1. INTRODUCTION 

The study of common properties of certain classes of matrices such as 
Z-matrices, Hermitian matrices, totally nonnegative matrices, and weakly 
sign symmetric matrices (see Section 2 for definitions) has been the subject of 
many papers. In this paper we shall concentrate on two common properties 
that are shared by Z-matrices and Hermitian matrices, and their relation to 
each other. 

Let A be a complex square matrix. The two properties are: 

(1) The eigenvalue interlacing property. Every principal submatrix of A 
has a real eigenvalue, and the two smallest real eigenvalues of a matrix are 
interlaced by the smallest real eigenvalue of every principal sub matrix of 
order one less. (For precise definition see Definition 2.14.) 

(2) The positive GLF (generalized leading principal minors) property. 
Either some generalized leading principal minor of A is nonpositive or all 
principal minors of A are positive. (For precise definition see Definition 6.2.) 

The eigenvalue interlacing property for Hermitian matrices follows from 
the well-known Cauchy interlacing theorem [2] proved in 1829 (at least for 
symmetric matrices). In 1908 Frobenius [6] proved a result that implies 
eigenvalue interlacing for Z-matrices, which were introduced by Ostrowski 
[17] in 1937. The result was stated explicitly by Hall and Porshing [9] in 
1968. The positive GLP property for Hermitian matrices is well known, e.g., 
Gantmacher and Krein [8, p. 40]. (We do not know to whom this result is 
due.) The corresponding result for Z-matrices is a consequence of a result of 
Koteljanskir [14], who proved in 1953 that weakly sign symmetric matrices 
have the positive GLP property. The explicit statement for Z-matrices is a 
part of a theorem by Fiedler and Ptak [4] in 1962. A relation between 
eigenvalue interlacing and the positive GLP property for Z-matrices was 
proved by Koteljanskll [13] in 1953. 

A research problem by Taussky [19] in 1958, which asked for a unification 
of the theory of Hermitian positive semidefinite matrices, totally nonnegative 
matrices, and M-matrices, has motivated a series of papers (for a list see [18]). 
In 1977, Engel and Schneider [3] introduced the class of w-matrices, defined 
by eigenvalue monotonicity (see Definition 2.12), which contains the three 
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classes mentioned in [19]. They posed the question whether w-matrices have 
the positive GLP property. This question was answered negatively by 
Hershkowitz and Berman [10] in 1984. The w-matrices in general also do not 
have the eigenvalue interlacing property. However, in a paper by Mehrmann 
[15] in 1984 it was essentially shown that the matrices in a subclass of the 
w-matrices, namely the R-matrices (see Definition 2.16), including the Z
matrices and the Hermitian matrices, have the eigenvalue interlacing prop
erty. This property does not hold in general for totally nonnegative matrices. 

We now describe the contents of our paper in more detail. 
In Section 2 we introduce some of the notation used in the paper and give 

some definitions. 
In Section 3 we introduce the concept of principal multiplicity for an 

eigenvalue of a given matrix, and define a principal eigenvalue to be an 
eigenvalue for which the principal multiplicity equals the algebraic multiplic
ity. We mainly concentrate on properties of such eigenvalues that are to be 
used in the following sections. Nevertheless, some of the results in this section 
are of independent interest. 

Section 4 discusses the relation between eigenvalue monotonicity and 
eigenvalue interlacing. In particular we show (Theorem 4.32) that for a given 
matrix A, if A + D is an w-matrix for all positive diagonal matrices D, then 
A has the eigenvalue interlacing property. 

The cases of strict eigenvalue monotonicity and strict eigenvalue interlac
ing are characterized in Section 5. We also discuss the interrelations between 
the two properties. 

In Section 6 we study the relations between the eigenvalue interlacing 
property and the positive GLP property. We also discuss the stronger 
semipositive and nonnegative GLP properties, and their interrelations. In 
particular we show (Theorem 6.11) that a matrix A has the eigenvalue 
interlacing property if and only if A is an w-matrix and every principal 
submatrix of A has the semipositive GLP property. A similar result holds for 
strict eigenvalue interlacing (Theorem 6.15). The paper is concluded with 
some open problems. 

2. NOTATION AND DEFINITIONS 

NOTATION 2.1. We denote 

lal = the cardinality of a set a; 

IR = the field of real numbers; 
C = the field of complex numbers. 
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NOTATION 2.2. For a field F and a positive integer n, we denote 

(n)=the set {1,2, ... ,n}; 
F n, n = the set of all n X n matrices over F. 

NOTATION 2.3. Let A be an n X n matrix and let a, f3 ~ (n), a, f3 *- 0. 
We denote 

A[alf3]=the submatrix of A whose rows are indexed by a and whose 
columns are indexed by f3 in their natural orders; 

A[ a] =A[ ala]; 
A(alf3)=A[(n) " al(n)" f3]; 

A(a)=A(ala); 
a( A) = the spectrum of the matrix A. 

NOTATION 2.4. Let A be an n X n matrix and let i, j E (n). We denote 

A[ilj] = A[{i}I{j}]; 
A[i] =A[ili]; 

A(ilj) =A({i}I{j}); 
A(i) =A(ili); 

Eij = the n X n matrix all of whose entries are zero except for the one in 
the (i, j) position, whose value is 1. 

DEFINITION 2.5. Let A E C n, n, and let A 1 ~ A 2 ~ . .. ~ A k be the real 
eigenvalues of A (repetitions are possible), where k = 0 if a( A) n ~ = 0. We 
define the numbers l( A), s( A), and h( A) by 

l(A) = {AI' k>O, 

00, k=O, 

s(A) = {A 2 , 
k'?2, 

00, k < 2, 

and 

h(A) = min {l(A(i))}. 
i E (n) 

Note that l(A[ 0]) = s(A[ 0]) = 00. We also define det A[ 0] = 1. 
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OBSERVATION 2.21. In view of Definitions 2.19 and 2.20, an eigenvalue 
A of A is a principal eigenvalue of A if and only if the following statement 
holds: If the sums of all principal minors of order k vanish for k» m, then 
all principal minors of A of order k, k» m, are zero. 

3. PRINCIPAL EIGENV ALOES 

In this section we make a few observations concerning principal eigenval
ues. We mainly concentrate on properties that are to be used in the sequel. 

Let A be a square matrix. It is easy to prove that 

(3.1) n{A) ~ p{A) ~ m{A). 

We remark that if A has the principal submatrix rank property as defined 
in [11], then 

n{A) = p{A) ~ m{A). 

OBSERVATION 3.2. Let A E a( A). If the elementary divisors of A as an 
eigenvalue of A are linear, then A is a principal eigenvalue of A. 

Proof. If the elementary divisors of A as an eigenvalue of A are linear, 
then 

n{A - AI) = m{A - AI). 

Our claim now follows from (3.1) and Definition 2.20. • 
COROLLARY 3.3. If A is a Hermitian matrix, then every eigenvalue of A 

is a principal eigenvalue. 

DEFINITION 3.4. A set S of complex numbers is said to be of single sign 
if there exists a ray (half line) from the origin which contains all the elements 
of S. 

PROPOSITION 3.5. Let A E en, n be a singular matrix. If for every k, 
n - m(A)+1 ~ k ~ n, the set 

Sk= {detA[a]:a~<n>, lal=k} 

is of single sign, then 0 is a principal eigenvalue of A. 
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Proof. Let 

n 

det(A - AI) = L a j ( - A)j 
j ~ O 

be the characteristic polynomial of A. As is well known, 

(3.6) j=O, ... ,n-l, 

Clearly, 

(3.7) 

Since S k' k = n - m( A) + 1, ... ,n, are of single sign, and since by (3.7) 
a o = ... = a m (A) - l = 0, it follows from (3.6) that 

detA[a] =0 \fa~ ( n > , la l> n-m(A)+l. 

By Definition 2.19 we now have p(A) > m(A), and by (3.1) we thus have 
p(A)= m(A). • 

COROLLARY 3.8. Let A be singular PO-matrix. Then 0 is a principal 
eigenvalue of A . 

Proof. Observe that here Sl"'" Sn are all of single sign. • 
COROLLARY 9.9. Let A E w ( n ) ' Then l(A) is a principal eigenvalue of A . 

Proof. 
(3.8). 

By [3], A1(A) is a PO-matrix. Our claim now follows from Corollary 

• 
REMARK 3.10. By the well-known Perron-Frobenius theory concerning 

the spectral properties of nonnegative matrices, it follows from Corollary 3.8 
that the spectral radius of a nonnegative matrix A is a principal eigenvalue 
of A. 



EIGENVALUE INTERLACING 381 

PROPOSITION 3.11. Let A E C n,n, and let A be a principal eigenvalue of 
A of multiplicity m, m ~ 2. Let k be a positive integer, k < m, and let 
a ~ (n), lal = n - k. 

Then A is an eigenvalue of A[a] of multiplicity at least m - k. 

Proof By Definitions 2.19 and 2.20 the order of the largest nonzero 
principal minor of A - AI is n - m. Thus the order of the largest nonzero 
principal minor of (A - AI) [a] is at most n - m, and by Definition 2.19 we 
have 

p(A-AI)~m-k, 

and our assertion follows by (3.1). • 
We remark that in Proposition 3.11, A is not necessarily a principal 

eigenvalue of A [ a], as demonstrated by the following example. 

EXAMPLE 3.12. Let 

A= [ ~ 
-1 

1 
2 

-1 
!]. 

-2 

Observe that 0 is a principal eigenvalue of A of multiplicity 2, since 
n(A) = p(A) = m(A) = 2. However, 0 is not a principal eigenvalue of B = 
A[{2,3}], since n(B)=p(B)=l, but m(B)=2. 

We conclude this section with an elementary observation. This will not be 
used in the sequel, but is given here for the sake of completeness. 

OBSERVATION (3.13). Let 

o 

where A ii is square, i = 1, .. . , k, and let A E a( A ). Then A is a principal 
eigenvalue of A if and only if for every i, 1 < i < k, either A is a principal 
eigenvalue of Aii or Aft. a(Aii)' 
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Proof. The assertion follows immediately on observing that 

k 

p(A-AI)= LP(A-AI) 
i ~l 

and that 

k 

m(A - AI) = L m(A - AI). • 
i~l 

COROLLARY 3.14. Every diagonal element of a triangular matrix A is a 
principal eigenvalue of A. 

4. EIGENVALUE INEQUALITIES 

Before we examine the eigenvalue inequalities for various classes of 
matrices we list a few observations and known relationships between these 
classes. 

Observe that 

(4.1) R(l) = W(l) = 1(1) = R(i) = w(i) = 1(~) = ~1,1, 

(4.2) R(2) = W(2) = 1(2) = {A E C 2
,2: all' a 22 E~, a 12a 21 ~ O}, 

and 

(4.3) R(2) = Wt2) = 1(~) = {A E C 2
,2: a ll ,22 E~, a 12a 21 > O}. 

It is known that 

(4.4) 

and 

(4.5) 

but 

(4.6) 

see [3] and [16]. 
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By Definition 2.14, we have 

Also, for n > 2 we have 

(4.7) 

as demonstrated by the following example, taken from [3, p. 174]. 

EXAMPLE 4.8. Let 

Then A E 7( 3 ) ~ w(3) ' and a(A) = {I, k(5± V5)}. But s(A) = i(5 - V5) < 2 
= l(A[ {2,3}]). Thus, A$. I(3 )' By using direct sums, we now obtain (4.7) for 
all n > 2. 

LEMMA 4.9. Let A E w(n) and let t E~. 1ft < l(A) then det At > O. 

Proof. By [3], all principal minors of A are real. Since lim t -> _ 00 

det At = 00 and since l(A) is the least real eigenvalue of A, we have 
det At> 0 whenever t < l(A). 

PROPOSITION 4.10. LetAEw(n), n;?;2. Ifs(A)=l(A) then 

'tfiE ( n ) . 

Proof. Our claim follows from Corollary 3.9 and Proposition 3.11. • 

PROPOSITION4.11. LetAEw(n), n;?; . Ifl(A)<s(A) then 

h(A) = min {l;(A)} < s(A) . 
i E ( n) 

Proof. Assume that 

(4 .12) h(A) ;?; s(A). 
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Observe that 

( 4.13) 
d n 

-detA = - L detAt(j)· 
dt t j = 1 

By Lemma 4.9 it follows from (4.12) and (4.13) that 

d 
dt detA t < 0, l(A) ~ t < s(A), 

in contradiction to Rolle's theorem. Therefore, our assumption (4.12) is false . 

• 
As a Corollary to Proposition (4.11) we obtain the following characteriza

tion of 3 X 3 w-matrices. 

THEOREM 4.14. Let A E C 3•3. Then A E w(3) if and only if 

(4.15) 

(4.16) 

and 

(4.17) det[A - h(A)I] ~ O. 

Proof. If (4.15) and (4.16) hold, then by (4.2) every 2x2 principal 
sub matrix of A is an w-matrix. If, further, (4.17) holds, then l( A) < 00 and by 
Lemma 4.9 we have leA) ~ h(A), and thus by Definition 2.5 we have 

( 4.18) i E (3). 

Therefore A E w (3) ' 

Conversely, if A E w(3)' then (4.15) and (4.16) hold by (4.2). By Proposi
tions 4.lO and 4.11 we have leA) ~ h(A) ~ seA), and hence, in view of 
Lemma 4.9, we have (4.17). • 

The following theorem provides a sufficient condition for a kind of 
"local" interlacing. 
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THEOREM 4.19. Let A E cn,n and let i E (n). If 

(4.20) Vd E~, d>O, 

then 

(4.21) l(A) ~ li(A) ~ s(A). 

Proof. Let A satisfy (4.20), and assume that (4.21) does not hold. 
Hence, since A E w(n)' it follows that 

(4.22) s(A) < l;{A). 

In view of Proposition 4.10 we have 

(4.23) l(A) < s(A), 

and by Lemma 4.9, it follows from 4.22 and 4.23 that 

(4.24) t~s(A), 

and 

(4.25) det At < 0, l(A) < t < s(A). 

Observe that 

(4.26) det(A + dEii)t = det At + d det At(i). 

By (4.24) it now follows that 

(4.27) Vd>O. 

Observe that in view of (4.24) and (4.26), by increasing d we elevate the 
graph of det(A + dEi;)t between leA) and seA). Furthermore, let 

a= -
min {det At} 

tE[I(A),s(A)] ° 
{ 

> . 
min detAt(i)} 

t E [1(A), s(A)] 
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Then, by (4.26) we have 

(4.28) det(A + dE;;)t > 0, t E [l(A), s(A)], 'Vd > a. 

Therefore, by continuity arguments it follows from (4.24), (4.25), (4.26), 
(4.27), and (4.28) that for some b> 0 the matrix B = A + bE;; satisfies 

(4.29) min { det Bt } = O. 
t E[/(A),s(A)] 

Observe that by (4.27) a point t where the minimum (4.29) is attained has to 
satisfy l(A) < t < s(A). Thus necessarily 

(4.30) l(A) < l(B) = s(B) < s(A). 

By (4.20) we have BE w(n) and hence, by (4.30) and Proposition 4.10, we 
have 

li(A) = l;(B) = l(B) < s(A), 

which contradicts (4.22). Therefore, our assumption that (4.21) does not hold 
is false. • 

The converse of Theorem 4.19 does not hold in general. The following 
example shows that (4.21) does not imply (4.20), even if A is given to be an 
I-matrix. 

EXAMPLE 4.31. Let 

Observe that 

~ i]. 
1.1 0.1 

a(A) = { -1.4,0, 3.5}, 

a(A(l)) = { -I,Ll}, 

a(A(2)) = { - 0.6536725, 2.7536725}, 

a( A(3)) = { - 0.0954451, 2.0954451}. 
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Hence we have A E 1(;) . However, for 

we have 

2 
o 
1.1 

h(B) = 11(B) = - 0.6342719 

and 

det[B - h(B)I] = 0.604602 > O. 

Thus, by Theorem 4.14 we have B $. w ( 3) ' 

387 

As a corollary to Theorem 4.19 we obtain the following sufficient condi
tion for a matrix to be an I-matrix. 

THEOREM 4.32. Let A E en, n. If A + dE;; E W( n ) for all nonnegative 
numbers d and all i E ( n ) , then A E l ( n )' 

Observe that in particular if A + D E w ( n) for all nonnegative diagonal 
matrices D , then A E l ( n )' 

The follOwing corollary to Theorem 4.32 is mostly known. The result for 
Hennitian matrices is a special case of Cauchy interlacing theorems in [2] (at 
least for symmetric matrices). The result for Z-matrices follows essentially 
fonn Frobenius [6], and is stated explicitly in [9]. 

COROLLARY 4.33. The classes Z(n)' R ( n ) and the class of all n X n 
Hermitian matrices are contained in l(n)' 

Proof. Observe that the class of all n X n Hermitian matrices and Z n ) 

are invariant under addition of real diagonal matrices. The same is true ~or 
R ( n ) by [15]. • 

Example 4.31 shows that l ( n ) is not invariant under addition of diagonal 
matrices. This class is also not closed under multiplication by (even positive) 
diagonal matrices. 
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EXAMPLE 4.34. Let 

Here 

~ ~l· 8 27 

a(A) = {0,5 .31142,30.68857}, 

a(A(1)) = {4.76226,30.23773}, 

a( A(2)) = {0.69586,27.30413} , 

a(A(3)) = {0,9} . 

Thus, A E I (3)' However, for B = diag(1, 1, if) A we obtain 

a(B) = {0,0 .6454,9 .355} 

and 

a(B(1)) = {0.7695,8 .231}, 

so B ft I (3) ' 

We remark that the matrix B in Example 4.34 is totally nonnegative. So it 
shows that for n > 2, T ( n ) rt I (n) ' 

We conclude the section with two observations concerning further eigen
value inequalities satisfied by classes we have discussed. 

OBSERVATION 4.35. Let A E Z (n) ' n ;,. 3. It is known (e.g. [13, p. 14]) 
that ifs(A) then there exist < 00 i, j E ( n ), i * j, such that leA) < Ii/A) < 
s( A). This property does not hold in general, either for R-matrices or for 
Hermitian matrices, as demonstrated by the matrix 

1 
1 
1 n 

We have a(A) = {0,2 - 12,2+ V2}, so seA) < 1. However, all the diagonal 
elements of A are greater than or equal to 1. 
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OBSERVATION 4.36. Consider the Cauchy interlacing property for a 
Hermitian matrix. Such a property does not hold in general for R-matrices, 
nor for Z-matrices A , even if the spectra of all principal submatrices of A are 
granted to be real. 

To see this consider the matrix 

A= [ ~ 
-1 

-1 
2 

-1 -H 
which is discussed in [5]. We have 

o(A) = {O.8851,3.254,4.861} 

and 

o(A(I)) = {l,3}, 

so 

s(A(I)) ~ s(A). 

5. STRICT EIGENVALUE INEQUALITIES 

In this section we discuss the cases where the eigenvalue inequalities are 
strict. We start with a characterization of w0) ' which is of the same manner 
as the characterization of w ( n ) given in [3]. 

THEOREM 5.1. Let A E en, n, n» 2, have real principal minors. Then 
the following are equivalent: 

(i) A E wt;, ); 
(ii) det A t[lLl < det A t[1L \ v] det At[v] Vv, IL, 0 =t- v f IL ~ (n). 

whenever At [IL] is a pO-matrix; 
(iii) det A t[lL] < det A t[IL\{j}]det AtU] Vj, IL, jEll ~ (n), IILI > 1, 

whenever At [IL] is a pO-matrix; 
(iv) A E w(n)' and for every IL ~ ( n), IILI» 2, we have 

det A/(A[/L])[,u\{ i }11L\ {j}] =t- 0 for all i, jEll, i =t- j. 
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Proof. (i) = (ii): Let A E w0. ) and 0 =f- P S J.L c:::;; ( n ) . By Theorem 3.6 in 
[3] the matrix At [J.L] is a pO-matrix if and only if t ~ l( A [J.L]). In this case, by 
Theorem 3.12 in [3] we have 

(5.2) 

where, by Theorem 4.3 there, equality holds for some t ~ l( A [J.L]) if and 
only if 

l(A[J.LJ) = min { l(A[p)), l(A[J.L\ p J)}, 

which contradicts (i). Hence, the inequality in (5.2) is strict. 
(ii) = (iii): Obvious. 
(iii) = (i): Assume that (iii) holds. By Theorem 3.12 in [3] we have 

A E w ( n )' Hence l(A[J.L]) ~ l(A[J.L\ {j}) for all j, J.L, j E J.L c:::;; ( n ) , IJ.LI > 1. By 
(iii) we now have 

for t = l( A [J.L]). Thus, we have the inequality 

for all j E J.L, which implies (i). 
(i) = (iv): Let A E w (";..) . Then clearly A E w ( n)' Let J.L c:::;; ( n ) , IJ.LI ~ 2, and 

let i, j E J.L , i =f- j. By Sylvester's identity (e.g. [7, p. 33]) we have (for a 
general matrix A) 

det At [ J.L \ { i } ] det At [J.L \ { j } ] 

- det At [J.L\ {i} IJ.L\ {j}] det A t [J.L\ {j} IJ.L\ { i}] 

= det At [ J.L \ { i, j } ] det At [J.L ] . 

In particular for to = l(A[J.L]) we obtain 

(5.3) det AtJJ.L\ {i}] det AtJJ.L\ {j}] 

= det A to [J.L \ { i } I J.L \ { j } ] det A to (J.L \ { j } I J.L \ { i } ] . 
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Since A E Wt~, ) , it follows that 

and hence, by Lemma 4.9, the left-hand side of the equality (5.3) is positive. 
Our claim follows. 

(iv) = (i): Let A satisfy (iv), let Il ~ < n ), 11l1;;;. 2, and let i , jEll, i =1= j . 
For to = l(A[Il)] we have (5.2). Since the right-hand side of (5.3) is now 
nonzero, it follows that necessarily 

• 
We remark that the condition A E w ( n ) cannot be dropped from state

ment (iv) in Theorem 5.1, as demonstrated by Example 7.2 in [3]. Let 

2 1] 
5 2. 
1 5 

As shown in [3], the matrix A is not in W( 3 ) ' However, we have l(A) = 8, and 
it is easy to verify that all almost principal minors of A are nonzero. 

We note that in statement (iv) of Theorem 5.1 we do not necessarily have 
detAJIl\ {i}IIl\{j}] =1=0 for all t~l(A), even if A is given to be a 
Hennitian I < -matrix. This is shown in the following example. 

EXAMPLE 5.4. Let 

We have 

[

43 

A= ~ 3~ ~] . 
6 31 

a(A) = {26.5597,36,47.440} , 

a(A(l)) = {27,40}, 

a(A(2)) = {30.917,43.083}, 

a(A(3)) = {32.553,46.446}. 
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Hence, A is a Hermitian I <-matrix. Nevertheless, we have 

det A(312) = det A(213) = o. 

Observe that in statement (iv) of Theorem 5.1 we actually have 

for to = l(A[J.L]). This follows, by Lemma 4.9, from the fact that A E w ( n ) ' 

and from (5.3). Applying (5.5) for sets J.L of cardinality 2, we obtain from 
Theorem 5.1 that if A E w(: ) then aija ji > 0 for all i, j E ( n ), i =fo j . This, 
was already observed in (4.3). 

As a corollary to Theorem (5.1) we obtain the following: 

PROPOSITION 5.6. Let A E Z ( n)' Then A E w0,) if and only if 

(5.7) Vi, j E ( n) , i =fo j. 

Proof. Let A E Z ( n) ' If A E w(: ) ' then by Theorem 5.1 we have (5.7). 
Conversely, if (5.7) holds, then it follows from the Perron-Frobenius Theorem 
(e.g., [1, p. 27]) that A E w(: )' 

REMARK 5.B. If A is a Hermitian n X n matrix, then the condition (5.7) 
is not sufficient for A E w (: ) ' To see this , consider the matrix 

which is not in w0,)' 
The following theorem provides a sufficient condition for a matrix A to be 

in I(~ ) . 

THEOREM 5.9. Let A E en,n. If A + dEii E w(:) for all nonnegative 
numbers d and all I E (n), then A E I(~). 

Proof. By Theorem 4.32, a matrix A which satisfies the conditions of our 
theorem is in I (n ). So, choosing i E ( n ), we have 

(5.10) l(A) < l;(A) ~ s(A). 
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Assume that 

(5.11) l;(A) = s(A). 

By (4.26) it now follows from (5.11) and Lemma 4.9 that for positive d 
we have 

(5.12) l(A) < l(A + dE;;) ~ s(A), 

and also 

(5.13) 

Since A E w 0.) it follows that 

'tfjE(n), jif=i. 

Therefore, since 

d n 

-d detA(i)t=- LdetAt({i,j}), 
t j=l 

j*i 

it follows from (4.26) and Lemma 4.9 that for positive d sufficiently large we 
have 

(5.14) l(A) ~ t ~ s(A). 

Together with (5.12) and (5.13), (5.14) yields that 

l(A+dEii)=s(A). 

Since A + dE;; E w0.)' it now follows that 

which contradicts (5.11). Hence, our assumption (5.11) is false and so we 
have 

l(A) < l;(A) < s(A). • 
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COROLLARY 5.15. Let A E Z (n)' Then A E I(~ ) if and only if (5.7) 
holds. 

Proof. Let A E I(~). Then A E w(")' and (5.7) follows by Proposition 
5.6. Conversely, if A satisfies (5.7), then A + dE i i satisfies (5.7) for all real 
numbers d and all i E (n ). Thus, by Proposition 5.6 we have A + dE ii E w(" )' 
and our assertion follows from Theorem 5.9. • 

The converse of Theorem 5.9 holds for n ~ 2 by (4.3), but does not hold 
in general for n > 2, as demonstrated by Example 4.31. That example shows 
that although A E I(~ ) , the matrix A + E33 is not even in w (3) ' The following 
example shows that even if we restrict ourselves to symmetric matrices, the 
converse of Theorem 5.9 still does not hold. 

EXAMPLE 5.16. Let J be an n X n matrix all of whose entries are 1, and 
let 

A = J + diag( d l' ... , d n ), 

where d 1" .. , d n are distinct. Let k E (n). Subtracting any row but the kth 
one from the others, one can obtain that 

(5.17) 
n 

det At = (d k - t) det At (k ) + TI (di - t) . 
i=1 
i*k 

It now follows from (5.17) that an eigenvalue A of A is also an eigenvalue of 
A(k) if and only if A E {d 1, ... , d n } \ {d k } . It is easy to verify that if n = 2, 
then A does not have a common eigenvalue either with A(I) or with A(2). 
Hence, using induction one can prove that 

(5 .18) a(A) (I a(A(k)) =0 VkE(n). 

Since A is symmetric, we have A E I ( n ) ' and with (5.18) we obtain A E I(~ ) . 
However, if . 

and 

d . = min {d;} 
J i E(n ) 

dk = min {d;}, 
i E (n) 
i*j 
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then 

since for any l E (n)\{k, j} we have 

l( B [{ j, k, l} l) = l( B [{ j, k } l) = dk - 1. 

REMARK 5.19. In Example 5.16 we discussed a Hermitian matrix A in 
It:.) such that A + D $ wtn) for some real diagonal matrix D. We remark 
that there exist Hermitian matrices A such that A + D E w(:) for all real 
diagonal matrices D. As an example for such a matrix consider 

i 

° -i 

It is easy to verify that whenever B = A + D, we have 

det B1;(B) < 0, i = 1,2,3, 

and hence BE w(:) ' 

6. EIGENVALUE INTERLACING AND GENERALIZED LEADING 
PRINCIPAL MINOR SEQUENCES 

In [3] the authors posed the question whether an w-matrix which has 
positive leading principal min~rs is a T-matrix. This question was answered 
negatively in [10]. In order to treat this question for the classes of matrices 
discussed above, we introduce the following definitions and notation. 

DEFINITION 6.1. Let A E en, n, and let (ii'"'' in) be a permutation of 
(1, ... , n). The sequence 

det A [ { i 1 } 1 ' det A [ { ii' i2 } 1 ' ... , det A 

is called a GLF sequence (generalized leading principal minor sequence) of 
A. A GLP-sequence of A is said to be nonnegative [positive] if all its 
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elements are nonnegative [positive]. If the first n - 1 elements of the 
sequence are positive and the nth one is nonnegative, then the sequence is 
said to be semipositive. 

DEFINITION 6.2. Let A E en, n. The matrix A is said to have the 
rwnnegative [semipositive] (positive) GLP property if the following state
ment holds for A: For all t E IR, if At has a nonnegative [semipositive] 
(positive) GLP sequence, then At E Ptn)' 

It is proved in [14] that the weakly sign symmetric matrices have the 
semipositive GLP property (it is claimed there only that these matrices 
have the positive GLP property, but the proof actually shows the above). The 
semipositive GLP property is also shared by Z-matrices, as proven in [4], and 
by Hermitian matrices, e.g. [7, p. 337]. The latter two results also follow from 
Theorem 6.11 below. 

PROPOSITION 6.3. Let A E en. n. Then the following are equivalent: 

(i) .A has the positive GLP property; 
(ii) For all t E IR, if At has a positive GLP sequence, then A E p(n)' 

Proof (i) => (ii): Let A E IR be such that At has a positive GLP se
quence. By continuity argument, for £ > 0 sufficiently small the matrix 
A - (t + £)1 has a positive GLP sequence too. Thus, by (i) we have B = A -
(t + £)1 E p(~)' and hence At = B + d E p(n)' 

(ii) => (i): Obvious. • 

An interesting relation between the positive and the semipositive GLP 
properties is given in the following theorem. 

THEOREM 6.4. Let A E en. n, and assume that all the real eigenvalues of 
A are principal eigenvalues. Then A has the positive GLP property if and 
only if A has the semipositive GLP property. 

Proof The "if" part is obvious. Conversely, assume that A has the 
positive GLP property. Let tEIR, and let (i1, ... ,in ) be a permutation of 
(1, ... , n) such that 

(6.5) k=I, ... ,n-l, 
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and 

(6.6) det At;;' O. 

We have to show that 

(6 .7) 

If the inequality (6.6) is strict, then, since A has the positive eLP property, 
(6.7) follows from (6.5) and (6.6). So we can assume that det At = O. By the 
conditions of the theorem, t is a principal eigenvalue of A. Since by (6.5) we 
have det Alin ) > 0, it follows that t is a simple eigenvalue of A. Therefore, 
choosing f > 0 sufficiently small, we have either 

(6.8) detA t _( > 0 

or 

(6.9) det At+( > O. 

Suppose that (6.8) holds. By continuity arguments, it follows from (6.5) that 
for f sufficiently small we have 

(6.10) k=l , .. . , n-l. 

Since A has the positive eLP property, it follows from (6.8) and (6.10) that 

for all f > 0 sufficiently small. Our assertion (6.7) now follows using continu
ity arguments. In case (6.9) holds, the proof is similar. • 

The semipositive eLP property is related to eigenvalue interlacing. Such 
a relation is expressed in the following characterization for I (n ). 

THEOREM 6.11. Let A E en, n. Then the following are equivalent: 

(i) A E I ( n ) ; 

(ii) A E w ( n)' and every principal submatrix of A has the semipositive 
GLP property. 
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Proof. (i) = (ii): Let A E l ( n ) ' We prove (ii) by induction on n. For 
n < 2 the claim is easy. Assume that our assertion holds for n < m, and let 
n = m > 2. Since l(n) <;::; w(n)' we have A E w ( n ) ' Also, by the inductive 
assumption, every proper principal submatrix of A has the semipositive GLP 
property. Therefore, all we have to prove is that if A t has a semipositive GLP 
sequence, then AtEP(~). So, let (i1, ... ,in ) be a pennutation of (l, ... ,n) 
such that 

(6.12) k=1, .. . , n - 1, 

and 

(6 .13) 

Assume that 

(6.14) 

Then At $ 'T( n ) and hence l(At) < O. By (6.13) we have sCAt) < O. Since 
A E l ( n ) ' it now follows that 

(6.15) ViE(n). 

However, by the inductive assumption we have AtCin) E p (on )' and hence 
AtCin) E'T(n)' which means that l;JA t );:" O. Furthermore, it follows from 
(6.12) that l;(At) > 0, in contradiction to (6.15). Therefore, our assumption 
(6.14) is false~ 

(ii) = (i): Let A satisfy (ii). Clearly, it is enough to show that 

(6 .16) l(A) < l;(A) < s(A) Vi E ( n ). 

Assume that (6.16) does not hold, namely that there exists j E ( n ) such that 

(6.17) s(A) < l/A). 

Let (i1, ... ,in ) by any pennutation of (l, ... ,n) such that in=j. Since 
A E w ( n ) ' it follows from (6.17) and Lemma 4.9 that 

(6.18) k=1, ... ,n-1, 



EIGENVALUE INTERLACING 399 

and 

(6.19) det A s(A) = O. 

By (ii), (6.18) and (6.19) yield that As(A ) E Ptn )' Thus, by (6.19) we have 
l(As(A)) = 0, and hence 

(6.20) l( A) = l( A S(A) ) + s( A) = s( A) . 

By Proposition 4.10 it now follows from (6.20) that lj(A) = s(A), in con
tradiction to (6.17). Therefore, our assumption (6.17) is false and (6.16) 
fullows. • 

We remark that condition (ii) in Theorem 6.11 cannot be weakened by 
requiring that only A (and not necessarily the proper principal submatrices of 
A) have the semipositive GLP property, as demonstrated by the following 
example. 

EXAMPLE 6.21. Let 

r

- 4 

A= 0 
o 
o 

o 
1 
1 
2 

o 
12 
1 
8 

As shown in [10], we have A(I) E W(3 ) ' but A(I) does not have the 
semipositive GLP property. Hence, by Theorem 6.11, A $.1 (4)' However, 
the matrix A has the semipositive GLP property. To see this, observe that At 
might have a semipositive GLP sequence only for t.;;; - 4. But since l( A ) 
= - 4, it follows then that At E T( n ) and hence At E Ptn ) ' 

We remark that by Corollary 4.33 it follows from Theorem 6.11 that 
R-matrices, Z-matrices, and Hermitian matrices have the semipositive GLP 
property. 

Similarly to Theorem 6.11, we obtain the following characterization for 

l(~ ) . 

THEOREM 6.22. Let A E e n •
n

. Then the following are equivalent: 

(i) AEI(~); 
(ii) A E w(";,), and every principal submatrix of A has the nonnegative 

GLP property. 
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Proof. The proof is very similar to the proof of Theorem 6.11. Neverthe
less, it is presented here in detail because of some differences. 

(i) = (ii): Let A E I(~). We prove (ii) by induction on n. For n <::; 2 the 
claim is easy. Assume that our assertion holds for n < m, and let n = m > 2. 
Since I(~) ~ w(: ) ' we have A E w(:) ' Also, by the inductive assumption every 
proper principal submatrix of A has the nonnegative GLP property. There
fore, all we have to prove is that if At has a nonnegative GLP sequence, then 
A t E p(On )' So, let (i l , .. . , in) be a permutation of (1, ... , n) such that 

(6 .23) k=1 , ... ,n-1. 

Assume that 

(6.24) 

Then At $. T(n) and hence l(At) < O. By (6.23)(for k = n) we have s(A t) <::; O. 
Since A E I (:) , it now follows that 

(6 .25) "iii E ( n ) . 

However, by the inductive assumption we have A t(in) E P(n - l )' and hence 
At(in) E T( n_l ) ' which means that liJA t) ~ 0, in contradiction to (6.25). 
Therefore, our assumption (6.24) is false. 

(ii) = (i): Let A satisfy (ii). Clearly it is enough to show that 

(6.26) l(A) < li(A) < s(A) "iIiE ( n ) . 

Since A E w0.) ' we have the left inequality in (6.26). Assume that the right 
inequality in (6.26) does not hold, namely that there exists j E ( n ) such that 

(6 .27) 

Let (il, ... ,in) be any permutation of (1 , ... ,n) such that in=j. Since 
A E w(:) ' it follows from (6.27) and Lemma 4.9 that 

(6.28) k=1, ... , n. 

By (ii), (6.28) yields that A s( A) E p(~ ) ' Thus, we have l(A S(A») = 0, and 
hence 

(6.29) l(A) = l(As(A») + s(A) = s(A) . 
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By Proposition 4.lO it now follows from (6.29) that l/A) = leA), in con
tradiction to A E w(:)' Therefore, our assumption (6.27) is false and (6.26) 
follows. • 

We remark that statement (ii) in Theorem 6.22 is not equivalent to the 
weaker statement A E w(:) ' not even for Hennitian matrices. 

EXAMPLE 6.30. Let 

We have 

1 
1 
2 

a(A) = { -1.3722,0,4.3722}, 

a(A(l)) = a(A(2)) = { -1,3}, 

a(A(3)) = {0,2}. 

Hence we have A E w(~) ' but A $.l(~ ) . 

As a corollary to Theorem 6.22 we obtain the following result, which was 
already proven in [3]. 

COROLLARY 6.31. Let A be a Z-matrix with nonzero off-diagonal ele
ments. Then A has the nonnegative GLP property. 

Proof. By Corollary 5.15, A is an I <-matrix. By Theorem 6.22, A has 
the nonnegative GLP property. • 

Corollary 6.31 does not hold in general if we eliminate the requirement 
that A have nonzero off-diagonal elements, even if we require that A be 
irreducible. This is shown in the following example. 

EXAMPLE 6.32. Let 

r 1 
-1 ° -1°1 -1 1 ° -lO A= 

-1~ ° ° -lO . 
-lO -lO -1 



402 D. HERSHKOWITZ, V. MEHRMANN, AND H. SCHNEIDER 

The matrix A is an irreducible Z-matrix with nonnegative leading principal 
minors. However, A does not have the nonnegative GLP property, since 
det A(l) = - 100. 

The above discussion raises interesting problems. We conclude the paper 
by posing some. 

PROBLEM 6.33. Characterize the Hermitian matrices which have the 
nonnegative GLP property. 

PROBLEM 6.34. Characterize the Hermitian matrices in l(~) . 

PROBLEM 6.35. As shown in Example 4.34, T(n) ClI(n)' Characterize the 
totally nonnegative matrices in l(n)' 

PROBLEM 6.36. Is there any relation between a matrix having the 
nonnegative GLP property and its principal submatrices having similar 
properties? 
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