
Contemporary Mathematics 
Volume 47, 1985 

SEMI STABILITY FACTORS AND SEMI FACTORS 

* Daniel Hershkowitz and Hans Schneider 

ABSTRACT. A (semistability) factor [semifactor] of a matrix AE r: nn 

is a positive definite [positive semidefinite] matrix H such that 
AH + HA* is positive semidefinite. We give three proofs to show that if 
A has a semistability factor then it cannot be unique. We give 
necessary and sufficient conditions for a matrix H to be a (semi)factor 
of a given matrix. We also determine the dimension of the cone of 
semistability factors. 

1. INTRODUCTION. A (square) complex matrix A is said to be (positive) 

stable [semistable] if all its eigenvalues lie in the open [closed] right 

halfplane. The matrix A is said to be near stable if A is semis table but 

not stable. A very well known characterization of stable matrices is essen­

tially due to Lyapunov [8], see also [5, vol. II, p. 189], [9], [10], [4] and 

the references there. 

THEOREM 1.1 (Lyapunov-Gantmacher): A complex matrix A is stable if and 

only if there exists a positive definite (hermitian) matrix H such that 

( 1 .2) AH + HA* > O. 

We have here written H > 0 to denote a positive definite (hermitian) 

matrix. We also write H > 0 to denote a positive semidefinite matrix. 

For near stable matrices the situation is more complicated, as shown by 

the following result [4, Corollary III.1]. 

THEOREM 1.3. Let A be a complex matrix. Then there exists a positive 

definite matrix H such that 

( 1.4) AH + HA* > O. 

if and only if A is semis table and 

( 1 .5) 

* 

the elementary divisors of all pure imaginary eigenvalues 

of A are linear. 
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We shall call the matrix H in (1.2) or (1.4) a semistability factor of 

the matrix A. 

An interesting special case occurs when a semistability factor may be 

chosen to be diagonal. In this case we call the matrix Lyapunov diagonally 

stable [semistable] if there exists a positive definite diagonal H 

satisfying (1.2) [(1.4)], and the corresponding diagonal H is called a 

Lyapunov scaling factor of A, e.g. [6] and [7]. At the Bowdoin meeting on 

"Linear algebra and its role in systems theory" (July 1984) one of us 

discussed necessary conditions and sufficient conditions for the uniqueness 

(up to positive scalar multiplication) of a Lyapunov scaling factor of a given 

Lyapunov diagonally semistable matrix (see [6]). At the end of the talk 

Dale Olesky raised the question whether there are cases where a semistability 

factor of a given semis table matrix of order greater than is unique. In 

this paper we show that the answer to that question is negative and we give 

three different proofs. 

Our third proof is a consequence of results that go considerably beyond 

the question of uniqueness of stability factors. If A € r: nn we call a 

matrix H a (semistability) semi factor of A if H > 0 and (1.4) holds. 

In Section 4 we determine necessary and sufficient conditions for H to be a 

semifactor. We give our principal results in two forms. The first 

(Theorem 4.7) is for a matrix A in block diagonal form. The second (Theorem 

4.12) is an invariant form which holds for all A € r; nn. We show that our 

theorem generalizes a part of Theorem III of [4] which characterizes the ranks 

of semifactors of A. 

In Section 5 we define the (semistability) factor cone S(A) and the 

semi factor cone Se(A) of A E r;nn. We show that SO(A) is the closure of 

the set of semifactors of A of maximal rank (Lemma 5.2) and we deduce a 

necessary and sufficient condition on A for SO (A) to be the closure of 

S (A) (Corollary 5.9). We also give a formula for the dimension of S O(A) 

(Theorem 5.10) and as a corollary (Corollary 5.11) we obtain our third proof 

of the nonuniqueness of semistability factors. 

Our paper is related in spirit to the papers by Carlson [3] and 

Avraham-Loewy [1], though there is little overlap in results. Those papers 

discuss the general problem of the relation of ranks and inertias of A € C nn 

and the hermitian matrices Hand K = AH + HA*, in [3] under the assumption 

that K > 0 and in [1] under the assumption that H > O. 

2. STATEMENT OF THE THEOREM AND PROOF NO.1. 

THEOREM 2.1. Let A be a complex matrix of order greater than 1. Then 

either A has no semistability factor or A has at least two linearly inde-
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pendent semistability factors. 

PROOF. Suppose that A has at least one semistability factor. Then, by 

Theorem 1.3, A is semistable. 

Suppose that A is stable. By Theorem 1.1, A has a semistability fac­

tor H such that (1.2) hOlds. Let K be any positive definite matrix such 

that Hand K are linearly independent. Since the positive definite matri­

ces form an open set in the topological space of hermitian matrices, it 

follows that for sufficiently small positive E, Hand H + EK are linearly 

independent semistability factors of A. 

Now suppose that A is near stable. Then A has a pure imaginary 

eigenvalue A = ia. Let x be an eigenvector of A associated with the 

eigenvalue A. So, 

(2.2) Ax = iax 

and by multiplying both sides of (2.2) by * x 

(2.3) 

which is equivalent to 

* Axx iaxx*, 

(2.4) -iaxx*. 

It follows from (2.3) and (2.4) that 

(2.5) D. 

we obtain 

Let H be a positive definite matrix such that (1.4) holds. Observe that 

H' = H + xx* is also a positive definite matrix and, further, by (2.5) and 

(1.4), H' is a semistability factor of A. Since H is nonsingular and 

since * xx is a matrix of rank it follows that * xx is not a scalar 

multiple of H, and therefore H' is not a scalar multiple of H. Hence, H 

and H' are two linearly independent semistability factors of A. [] 

3 • PROOF NO.2. We begin with a simple lemma. 

LEMMA 3.1. Let B,H € I! n,n such that H is a positive definite matrix. 

If BHB* = D then B = D. 

PROOF. Given that BHB* D, it follows that 

(3.2) (B*X)*H(B*X) D, 'iixej[;n. 
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Since H is positive definite it fOllows from (3.2) that 

B*x = 0, VXElC n , 

which implies B* o and B = O. o 
LEMMA 3.3. Let B be a semis table matrix, let H > 0 and let a be 

any real number. Then H is a semistability factor of B if and only if H 

is a semistability factor of B + iaI. 

~. Observe that 

BH + HB* = (B + iaI)H + H(B + iaI)*. o 
Proposition 3.4. Let B be a singular semis table matrix. Then B does 

not have a unique semistability factor. 

~. If B o then the claim is clear. So we may assume that 

(3.5) B '* O. 

Assume that B has a unique semistability factor H. Thus 

(3.6) C BH + HB* > O. 

Clearly, 

(3.7) BCB* > O. 

Since H is positive definite, so .is H" = H + BHB*, and by adding (3.6) and 

(3.7) we obtain that H" is a semistabili ty factor of B. Our uniqueness 

assumption yields that H" is a scalar multiple of H, and hence BHB* is a 

scalar multiple of H. Since H is nonsingular and B is singular it 

follows that BHB* = O. By Lemma 3.1, B = 0, which is a contradiction to 

(3.5). Hence, the uniqueness assumption is false. o 
PROOF NO.2. As in the first proof we may assume that A is a near 

stable matrix. As such, A has a pure imaginary eigenvalue. So, A + iaI 

is singular for some real number a. Our theorem now follows from 

Proposition 3.4 and Lemma 3.3. o 

4. SEMIFACTORS. 

LEMMA 4.1. Let A E IC nn be such that the spectrum of A consists of a 

single pure imaginary eigenvalue A, and let H > O. Then H is a semista-
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bility factor of A if and only if 

(4.2) (A - U)H = O. 

PROOF. If (4.2) holds then AH = AH and (1.4) follows. Conversely, 

suppose that (1.4) holds. Let U be a unitary matrix such that A' = U*AU 

is upper triangular. Let H' be the positive definite matrix U*HU. Denote 

by B the matrix A' - AI. Observe that BH' + H'B* > O. Clearly, the last 

row of BH' is zero. Assume that BH' * 0 and let K be the index of the 

last nonzero row of BH'. Partition B by 

B 

where B11 is k x k, and partition H' and BH' conformably. Since 

[BH')22 = 0 and [BH')21 

that [BH')12 = O. 

o it follows from the fact that BH' + H'B* > 0 

Hence 

(4.3) O. 

Since 

(4.4) o 

it follows from (4.3) that 

(4.5) 

It is a well known property of positive semidefinite matrices, e.g. [7), 

that (4.5) implies 

(4.6) O. 

Therefore, by (4.4) and (4.6), we have 

ROWk [BH')'1 = (ROWk B11 )H;1 + (ROWk B12 )H;1 = O. 

Since [BH')12 = 0 it follows that Rowk(BH') = 0, which is a contradiction. 

Hence, BH' = 0 and so 

(A - U)H O. o 
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THEOREM 4.7. Let 

A 

where 

and 

q+2 
q. A €:c nn 
o.;::J i 
i=1 

0, i 1 , ••• ,q 

~ i, j ~ q. 

where Aq+1 and -Aq+2 are stable. 

Let H > 0 be partitioned conformably. Then H is a semifactor of A 

if and only if 

(4.8) 

where 

(4.9) 

(4.10) 

and 

(4.11) 

H 

q+2 

B Hii 
i=1 

0, i 1, ••• ,q, 

* A H + H A > 0, 
q+1 q+1,q+1 q+1,q+1 q+1 -

Hq +2,q+2 = o. 

PROOF . If H satisfies (4.8) - (4.11) then clearly 

AH + HA 2- O. 

Conversely, let AR + HA* 2- 0 for some H 2- o. By Lemma 4.1, condition 

(4.9) holds. Condition (4.10) is obvious and by Lemma 1 of 

(4.11). To complete the proof we must show that Hij = 0, 

i,j = 1 , ••• ,q + 2. If i = q + 2 then Hij = 0 and Hji 

j = 1, ••• ,q + 1 , since Hii = 0 and H 2- O. Let i '* j, 

Without loss of generality we may assume that 1 < i ~ q. 

Since AH + HA* > 0 it follows that 

* (AR + HA ) . . 
1) 

[2] , we obtain 

i '* j, 

0, 

1 < i, j~q + 

By (4.9) , 

o. 

1 • 
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Hence, by [5, Vol. I, p. 220], Hij 

11 € spec(Aj). 

o since Ai + ~ * 0, whenever 

209 

o 
Let A € r: nn and let a be a complex number. We define the eig:ensl2ace 

Ea(A) as the nullspace of (A - aI) and we define the 2eneralized eig:ensl2ace 

Ga(A) as the nullspace of (A - aI)n. Observe that Ea(Al * {O} and 

Ga(A) * {O} if and only if a is an eigenvalue of A. We denote by G+(A) 

the vector space sum 

~ 
a € spec(A) 

Re a>O 

G (A). 
a 

The following theorem is an invariant formulation of the results of 

Theorem 4.7. 

THEOREM 4.12. Let A € r: nn and let H > O. Then H is a semi factor of 

A if and only if 

(4.13) H L Ha + H+, 
a€ spec(A) 

Re a>O 
where 

(4.14) 

(4.15) 

and 

(4.16) 

PROOF. First suppose tha t A satisfies the hypotheses of Theorem 4.7. 

Suppose that AH + HA* > O. Then, by Theorem 4.7, H satisfies (4.8) -
(4.11). Let 

q+2 

(4.17) HA e °ijHjj i 1 , ••• q, 
i i=l 

where o ij is the Kronecker delta, and let 

q+2 

(4.18) H e 0 q+1, jH jj + 
j=l 
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Then H has the form (4.13). Observe that (4.14) follows from (4.9) and 

(4.17), and that (4.15) and (4.16) follow from (4.10) and (4.18) since G+(A) 

is spanned by the columns of 

q+2 

e 
j=1 

o I 
q+1,j 

Conversely, assume that (4.13) - (4.16) hold. In view of the form of A it 

follows that there exist Hii, i = 1, ••• q + 1 satisfying (4.8) - (4.11). 

Hence, by Theorem 4.7, AH + HA* ~ O. 

Now suppose that A is a general matrix in 1: nne Then there exists a 

nonsingular matrix T such that A' = TAT-1 satisfies the hypotheses of 

Theorem 4.7. Let H' THT*. Then clearly AH + HA* > 0 if and only if 

(4.19) A'H' + H' (A')* ~ O. 

By the discussion above, (4.19) hOlds if and only if H' satisfies 

where 

(4.21 ) 

(4.22) 

and 

Since for any matrix B 

and since 

H' = I 
exE specIAl 

Re ex=O 

H' + H' 
ex + 

(4.20) - (4.23) are equivalent respectively to (4.13) - (4.16) whenever 

and 

o 
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Remark. Observe that (4.14) is equivalent to AHa = aHa. 

COROLLARY 4.24. Let A E lC nn and let H ~ O. If AH + HA* 2. 0 then 

PROOF. By Theorem 4.12, H satisfies (4.13) - (4.16). Hence 

0, a E spec(A), Re a 0, 

and it follows that 

(4.25) AH + HA* 

Since 

it follows from (4.15) and (4.25) that 

The following corollaries are derived either from Theorem 4.7 or 

Theorem 4.12. 

COROLLARY 4.26. Let AE~,n. Then -A is semis table if and only if 

H > 0 and AH + HA* > 0 imply that AH + HA* = O. 

PROOF. If -A is semistable then G+(A) = {O} and our claim follows 

from Corollary 4.24. Conversely, if -A is not semis table then let 

211 

o 

a E spec(A) such that Re a > O. Let x be an eigenvector of A associated 

with a. Observe that the positive semidefinite matrix H = xx* satisfies 

AH + HA* = 2 Re(a)xx* 

which is a nonzero positive semidefinite matrix. 

COROLLARY 4.27. Let B E r: nne Then B has no pure imaginary eigen-

value if and only if K > 0 and BK + KB* o imply that K = O. 

PROOF. There exists a nonsingular T such that A = TBT- 1 satisfies 

the hypotheses of Theorem 4.7. It is enough to prove that A has no pure 

imaginary eigenvalue if and only if H > 0 and AH + HA* = 0 imply that 

o 
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H = o. If A has an imaginary eigenva1ue and x is a corresponding eigen-

vector, then xx* '" 0 and A(xx*) + (xx*)A * = o. Converse1y, suppose that 

has no pure imaginary eigenva1ue and that H > 0 satisfies AH + HA* = o. 

Then A = 1'.1 e 1'.2' where the spectrum of 1'.1 and of -1'.2 are in the open 

right ha1fp1ane. By Theorem 4.7, H Hl1 0 H22, where H22 = 0 and 

A1Hll + Hll 1'.1 * = o. But, since a + F '" 0 for every a,fl € spec(Al), it 

fo11ows from [5, Vo1. I, p. 220] that Hll = o. Hence H = o. 0 

As a direct consequence of (4.13) - (4.15) we obtain the first part of 

Theorem III of [4]. 

COROLLARY 4.28. Let A €:c nne If H > 0 and AH + HA* > 0 then 

(4.29) rank H < peAl + 1f(A), 

A 

where peAl is the number of e1ementary divisors of the pure imaginary roots 

of A and 1f(A) is the number of eigenvalues of A (counting mu1tiplicities) 

which lie in the open right halfplane. 

The following immediate coro1lary strengthens Coro11ary 111.1 of [4], 

(our Theorem 1.~ by characterizing semistability factors. 

COROLLARY 4.30. Let A € !C nn and 1et H > O. Then H is a semistabi-

1ity factor of A if and only if A is semis table , (1.5) hOlds and H satis­

fies (4.13), (4.16) and 

Range Ha 

Range H+ 

5. FACTOR CONES AND SEMI FACTOR CONES. 

Let H be the vector space over the rea1 fie1d consisting of complex 

n x n hermitian matrices. As in [2, p. 2] a cone C in H is a nonempty 

subset H of which is closed under addition as we11 as nonnegative sca1ar 

mu1tiplication. By span C we denote the subspace spanned by C and we 

wri te dim C for the dimension of span C 

The (semistability) ~ ~ SeAl is defined by 

seAl = {O} U {H > 0 : AH + HA* ~ O} 

and the (semistability) semifactor cone So (A) is given by 

SO (A) = {H ~ 0 AH + HA * > O}. 
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We observe that the closure of 

denoted by cl SIAl, satisfies 

SIAl (in the usual Euclidean topology), 

(5.1) cl SIAl I: SOIA). 

The reverse inclusion does not necessarily hold as demonstrated by 

213 

By Theorem 1.3 we have SIAl {O}, while the positive semidefinite matrix, 

satisfies AH + HA* > O. However, let 

rank H k}, 

and let 

Observe that by Theorem III of [4] the set ~ (A) is nonempty if and only 

if 0 ~ k~ rAe Then we have: 

LEMMA 5.2. Let k be a nonnegative integer. Then 

-%(A) = cl fo"(A) 

if and only if k = rAe 

PROOF. Clearly So (A) is a closed set. Hence, for all k, 

cl To~A) ~ SO(A). 

If k < rIA) then, since the limit of rank k matrices has rank less 

than or equal to k, and since SOIA) contains a matrix of rank rA, it 

follows that SOIA) * cl ~(A). 
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If k = r(A) then let H € SO(A) and choose K € ~ (A). Then K has 

a positive definite principal submatrix of order rA' It follows that the 

corresponding submatrix of H + sK is nonsingular for all s > O. Hence 

( 5.3 ) rank(H + sK) ~ rA' 

By the definition of RA' equality hOlds in (5.3). Thus H € cl ~ (A). 0 

LEMMA 5.4. Let k be a nonnegative integer. Then 

(5.5) SO(A) = cl( {O} U T~(A» 

if and only if either S O(A) = {O} or k = rA' 

PROOF. 

TttA) "* ¢, 

If T~ (A) = ~ then (5.5) hold if and only if So (A) = {O}. If 

then cl({O} UT~(A» = cl ~ (A) and by Lemma 5.2, (5.5) holds 

if and only if k = rA' o 
PROPOSITION 5.6. Let A be a complex n x n matrix. Then 

(5.7) S O(A) cl S (A) 

if and only if either -A is stable or A is semistable and the elementary 

divisors of all pure imaginary eigenvalues of A are linear. 

PROOF. By Theorem III of [4], 

(5.8) rA = n(A) + p(A), 

(where n(A) and p(A) are defined in Corollary 4.28). Since 

S(A) = {O} U T~ (A) it follows from Lemma 5.4 that (5.7) holds if and only if 

either SO(A) = {O} or rA = n. By (5.8), SO(A) = {O} if and only if -A 

is stable, and, by Theorem 1.3, rA = n if and only if A is semis table and 

(1.5) hOlds. 

COROLLARY 5.9. Let A be a complex matrix. If S(A) "* {O} then 

cl S(A) = SO(A). 

PROOF. If S(A) "* {O} then rA = n and since S(A) 

claim follows from Lemma 5.4. 

THEOREM 5.10. Let A € r: nn. Then 

dim 1 " SO(A) = 2 [n(A)(n(A) + 1) + L 
aE spec(A) 

Re a=O 

o 
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where ea(A) is the dimension of the eigenspace Ea(A). 

~. Without loss of generality we may assume that A is in its 

Jordan canonical form and satisfies the hypotheses of Theorem 4.7. By 

215 

Theorem 4.7, SOIA) consists of all positive semidefinite matrices H for 

which (4.8) - (4.11) hold. Let 1 ~ i ~ q. By (4.9), Hii is any positive 

semidefinite matrix all of whose entries are 0, except possibly those which 

lie in the intersections of first rows and first columns of Jordan blocks 

which correspond to the eigenvalue Ai' The number of such rows (columns) is 

eAi(A). Hence the number of such linear independent Hii is (eAi(A)(eAi(A) 

+ 1) /2. 

We must still show that the number of linearly independent positive semi­

definite matrices Hq +l,q+l which satisfy (4.10) is n(A)(n(A) + 1)/2. By 

Theorem 1.1 there exists a positive definite matrix Hq +l,q+l such that 

* A H + H A > O. 
q+l q+l,q+l q+l,q+l q+l 

Hence by continuity arguments, there exists an open set of such matrices which 

satisfy (4.10). As is well known, the span of these matrices (over the real 

field) is the whole set of hermitian matrices of order n(A). Our theorem now 

follows. o 
COROLLARY 5.11. (and proof No.3). Let A e C nn , n > 1, be such that 

SIAl * {Ole Then 

dim SIAl = dim SOIA) > 1. 

~. Since SIAl * {O} it fOllows that rA = n and also, by 

Corollary 5.9, cl SIAl = SOIA). Hence, as is well known, 

dim SIAl = dim SOIA). By (5.8) one of the following three possibilities 

holds: 

(i) n(A) ~ 2. 

( ii) n(A) 

(iii) n(A) o 

and pIA) ~ 1. 

and pIA) ~ 2. 

In each case dim SOIA) > by Theorem 5.10. o 
We remark that using essentially the same arguments we can show that 

there exist at least two linearly independent semifactors of A of rank rA 

provided that rA > 1. 
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