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ABSTRACT 

We characterize Lyapunov diagonally stable real H-matrices and those real 
H-matrices which are Lyapunov diagonally semistable but not Lyapunov diagonally 
stable (called Lyapunov diagonally near-stable). The latter characterization is given in 
terms of the principal submatrix rank property defined here. We apply our results to 
the numerical abscissas of real matrices. One of our main tools is a slight strengthening 
of classical results of Ostrowski which we derive from a fundamental theorem of 
Wielandt . 

o. INTRODUCTION 

A matrix A E IR nn is called a Z-matrix if A = sl - P, P ~ 0 (entrywise), 
and an M-matrix if further s ~ pep), the spectral radius of P. A matrix 
A E en n is called an H-matrix if the comparison matrix M( A) is an M­
matrix, where B = M(A) is defined by bii = laiil, i = 1, ... , n, and bij = 

-Iaijl, i =1= j, i, j = 1, .. . , n. Because of their importance in applications there 
have been many papers on H-matrices, for example the recent one by 
Neumann and Plemmons [11]. 

A matrix A E IR nn is said to be Lyapunov diagonally (semi)stable if 
there exists a positive diagonal matrix D, called a Lyapunoo scaling factor of 
A, such that AD + DAT is positive (semi)definite; see our previous paper [9] 
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for some introductory remarks on such matrices. As in [9], it is also useful to 
call A E ~ nn Lyapunov diagonally near-stable if A is Lyapunov diagonally 
semistable but not Lyapunov diagonally stable. 

It is well known that Lyapunov diagonally stable [Lyapunov diagonally 
semistable] matrices are P-matrices [Po-matrices], namely all their principal 
minors are positive [nonnegative]; see e.g. [7]. The problem of characterizing 
Lyapunov diagonally (semi)stable matrices is hard, and has been solved only 
in some special cases, for example for acyclic matrices by Berman and 
Hershkowitz [3]. By a well-known result (Araki and Kondo [1], Tartar [14; 4, 
p. 136]) a Z-matrix A is a nonsingular M-matrix if and only if A is Lyapunov 
diagonally stable. Berman, Varga, and Ward [5] extended the above result by 
characterizing Lyapunov diagonally semistable Z-matrices. 

THEOREM 0.1 [5, Theorem l(i)]. Let A E ~ nn be an M-matrix. Then A is 

Lyapunov diagonally semis table if and only if for each singular irreducible 
block Ai i in the Frobenius normal form of A we have Ai j = 0 and A j i = 0, 

i * j. 
(For definition of the Frobenius normal form see (4.1).) 
In this paper we discuss Lyapunov diagonally stable and Lyapunov 

diagonally near stable (and therefore Lyapunov diagonally semistable) real 
H-matrices. Since a Lyapunov diagonally semistable matrix has nonnegative 
diagonal elements, it is natural to introduce the following definition: 

DEFINITION 0.2. Let A ~ ~ nn. Then A is an H +-matrix if A is an 
H-matrix and a ii ~ 0, i = 1, .. " n. 

It is easy to prove that an H +-matrix A whose comparison matrix is 
nonsingular is Lyapunov diagonally stable (see also [2], [10, Chapter 10], 
where such matrices are called H-matrices). Here we first characterize 
Lyapunov diagonally stable H +-matrices, and we then turn to the much 
harder characterization of Lyapunov diagonally near-stable H +-matrices, which 
is one of our main goals. 

We now describe our paper in detail. One of our major tools is Theorem 
2.6, which is a slight strengthening of classical results due to Ostrowski [12] 
on determinants of H-matrices. We devote Section 2 to deriving this theorem 
from a fundamental result of Wielandt's [15] on conditions for the equality of 
p(Q) and p(P) where P,Q E cnn and IQI ~ P, where R = IQI is defined by 
rij=lqijl, i,j=I, ... ,n. 

In Section 3 we show that an irreducible H +-matrix A is Lyapunov ' 
diagonally semistable (Proposition 3.1) and that A is Lyapunov diagonally 
stable if and only if A is nonsingular (Theorems 3.19 and 3.25). Thus an 
irreducible H +-matrix A is Lyapunov diagonally near-stable if and only if A is 



LYAPUNOV DIAGONAL SEMISTABILITY 121 

singular. In Theorem 3.25 we give five other conditions that are equivalent. 
We also extend Theorem 2.6 in Theorem 3.13. We use a simple but basic 
lemma in [9] (Lemma 3.22 here) to show that the Lyapunov scaling factor of 
an irreducible H +-matrix is unique up to positive scalar multiplication (Theo­
rem 3.23). 

In Section 4 we remove the condition of irreducibility. We show that an 
H +-matrix A is Lyapunov diagonally stable if and only if A is nonsingular 
(Theorem 4.2). We introduce the main concepts of the paper, namely the 
principal sub matrix rank property and the weak principal submatrix rank 
property (Definition 4.3). We show that an H +-matrix A is Lyapunov 
diagonally semistable if and only if A has the principal submatrix rank 
property or, equivalently, the weak property (Theorem 4.14). Theorem 0.1 
stated above now becomes a special case of Theorem 4.14. The rest of the 
section is devoted to a discussion of the implications in Theorem 4.14 in the 
case of general matrices, showing, in particular, that every Lyapunov diago­
nally semistable matrix has the weak principal submatrix rank property 
(Theorem 4.35). 

In Section 5 we apply our results to the numerical abscissa a( A) of a real 
matrix A (see Definition 5.1). We show that the infimum of a«B + BT)j2) 
over real matrices B which are diagonally similar to A lies between a( A) and 
a( I A D (Theorem 5.11 ). We discuss cases of equality in Theorem 5.11 in 
Theorems 5.15 and 5.16. 

1. NOTATION AND DEFINITIONS 

In this section we introduce some additional notation used in the sequel, 
as well as some definitions. 

NOTATION 1.1. 

( n) = the set {1, 2, ... , n }, where n is a positive integer. 
lal = the cardinality of the set a. 

( 
1, a>o) 

sign a = - 1, a < 0 ,where a is a real number. 
0, a=O 

NOTATION 1.2. Let A E ~ nn and let a, f3 ~ (n), a, f3 *- 0. We denote: 

N( A) = the null space of A. 
span (A) = the subspace of ~ n which is spanned by the columns of A. 
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A[al.B] = the sub matrix of A whose rows are indexed by 0: and whose 
columns are indexed by .B in their natural orders. 

A[a] =A[ala]. 
A( a) = A [ < n ) " a], where a =F < n ). 

REMARK. Similar notation will be used also for complex matrices. 

DEFINITION l.3. 

(i) A real n X n matrix A is said to be symmetric in sign if ajja jj ;;:' 0, 
1 ~ i, j ~ n. 

(ii) Let A, B E ~nn. The matrices A and B are said to be sign similar if 
there exists a real diagonal n X n matrix E such that I E I = 1 satisfying 
A = EBE. 

(iii) A real n X n matrix A is said to be row diagonally dominant if 

(1.4) 
11 

a jj ;;:. L lajjl, 
j~l 

j"" i 

1 ~ i ~ n. 

The matrix A is said to be column diagonally dominant if AT is row 
diagonally dominant. 

(iv) A row diagonally dominant matrix A is said to be strictly row 
diagonally dominant if strict inequalities hold in (1.4), and similarly for strict 
column diagonal dominance. 

(v) Let A = s1 - P, P ;;:. 0, s real, be a Z-matrix. The minimal eigenvalue 
of A is defined to be s - p( P). 

REMARK l.5. Whenever we say "positive [semi]definite matrix" in this 
paper we mean "positive [semi]definite hermitian matrix". 

2. ON RESULTS OF OSTROWSKI'S AND WIELANDT'S 

Our basic tools are results on determinants essentially due to Ostrowski .. 
[12]; see Satz I, Zusatz zu Satz I, and Satz V. Since in the sequel these results 
are applied in a form slightly different from that found in [12], we shall derive 
them from a version of the Perron-Frobenius theorem which is due to ' 
Wielandt [15]. We begin by stating Wielandt's result, omitting an assumption 
of irreducibility where it is superfluous. 
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THEOREM 2.1 [15, III] . Let P be a nonnegative matrix in IR nn and let 
QEC" I1

• Let IQI~P. Then p(Q)~p(P). 
Further, if P is irreducible then the following are equivalent: 

(i) p(Q) = pCP). 
(ii) Q = ei'PD-1PD where !p is real and IDI = I. 

COROLLARY 2.2. Let A be an H +-matrix in IR 11 n, and let B be an 
M-matrix in IR n 11 such that M( A) ~ B. Let f3 be the minimal eigenvalue of B. 
Then 

(2.3) Re A ~ f3 for every A E spec( A ) . 

Further, if B is irreducible then the following are equivalent: 

(i) Re A = f3 for some A E spec(A), 
(ii) A = f3 for some A E spec( A), 
(iii) A is sign similar to B. 

Proof. Let s > aii' i = 1, ... , n, and write 

B = sI - P 

and 

A=sI -Q. 

Observe that .P ~ ° and that M(A) = sI --IQI, since A is an H +-matrix. 
Obvioudy, M(A) ~ B implies that P ~ IQI. The first part of the theorem now 
follows from Theorem 2.1. For the second part observe that (iii) = (ii) and 
(ii) = (i) are im.nediate. 

We shall prove (i) = (iii). If (i) holds then p(Q) ~ pCP). Hence, by 
Theorem 2.1, .0((;:» = p( P) and there exist !p and a diagonal matrix D such 
that IDI = I and Q = ei'PD-1PD. Since the diagonal entries of P and Q are 
positive, it follows that e i'P=1. Let D=diag{d 1, ... ,d n }. Without loss of 
generality we may assume that 

(2.4) 

Since B is irreducible, for each i, 2 ~ i ~ n, there exists a sequence t 1"'" t k 

such that t 1 = 1, tk = i, and PI I * 0, 1= 1, ... , k - 1. Note that 
I 1+ J 

(2.5) 
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Since P and Q are real, it follows from (2.4), (2.5), and IDI = I that d; = ± 1. 
Thus P and Q are sign similar, and the sign similarity of A and B follows. • 

THEOREM 2.6. Let A be an H +-matrix in !R nn and let B be an M-matrix 
in !R "". Suppose M(A);;;,. B. Then 

(2.7) "Va~(n), det A [ a] ;;;,. det B [ a] ;;;,. O. 

Further, if B is irreducible then the following are equivalent: 

(i) A is sign similar to M(A), and M(A)= B. 
(ii) For all a ~ (n), det A[ a] = det B[ a]. 
(iii) det B = det A. 

Proof. Since A [a], B [a] satisfy the hypotheses of this theorem for evelY 
a~ (n), it is enough to prove (2.7) for the case a= (n). 

We first consider the case when B is singular. By (2.3), Re A. ;;;,. 0 for each 
A. E spec( A). Since A is real, it follows that det A ;;;,. 0 and (2.7) is proved. 

Now suppose that B is irreducible. Clearly (i) = (ii) and (ii) = (iii). 
Suppose that (iii) holds. Then (ii) of Corollary 2.2 is satisfied, since f3 = O. 
Condition (i) now follows by Corollary 2.2. 

We prove the general case by induction. If n == 1, the result is trivial. 
Inductively, we assume that (2.7) holds provided that n < k. Now let n = k. 
Let t ;;;,. 0 be such that B' = B - tI is a singular M-matrix and let A' = A - tI. 
Then A' is an H +-matrix and M( A');;;,. B'. We have 

(2.8) detA= tl"l det A'( a), 
0<; a<; (II) 

(2.9) detB= 
0<; a<; (II) 

where det A( (n») = 1. By our inductive assumption, det A'( a);;;" det B'( a);;;,. 0" 
and det A' ;;;,. 0, as shown above. Hence (2.7) follows. 

To prove the equivalence of (i), (ii), and (iii), again observe that (i) = (ii) 
and (ii) = (iii) are immediate. For the proof of (iii) = (i), note that by (2.8) ' 
and (2.9) det B = det A implies det B' = det A'. Hence (i) follows by the 
singular case. • 
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3. IRREDUCIBLE H +-MATRICES 

We begin with a known proposition which generalizes results of Tartar 
[14] and Araki and Kondo [IJ. Our proof is due to C. R. Johnson (private 
communication). 

PROPOSITION 3.1. If A E IR nn is an irreducible H +-matrix, then A is 
Lyapurwv diagonally semistable. If, further, M(A) is nonsingular, then A is 
Lyapurwv diagonally stable. 

Proof. As is well known, there exist positive diagonal matrices E and D 
such that EM(A)D is both row and column diagonally dominant (e.g. [4, p. 
156]). Clearly, the same holds for EAD, and hence the matrix C = EAD + 
DATE is positive semidefinite, since it is diagonally dominant. Thus, the 
matrix E - 1 CE - 1 = ADE - 1 + E - IDA is positive semidefinite, and so A is 
Lyapunov diagonally semistable. 

In the case that M(A) is nonsingular then EM(A)D may be chosen to be 
strictly row and column diagonally dominant (e.g. [4, p. 136]), and the rest of 
the proof follows as above. • 

We shall strengthen the second part of Proposition 3.1 in Theorem 4.2 by 
replacing the hypothesis that M(A) is nonsingular with the hypothesis that A 
is nonsingular. This is a weaker condition by Theorem 2.6. 

The converse of Proposition 3.1 is false; namely, a Lyapunov diagonally 
semistable matrix is not necessarily an H +-mat rix, as demonstrated by the 
following example. Let 

[ 

1 
A = -(l 

-a 

a 
1 

-a 

where a is any real number. Here A is even Lyapunov diagonally stable, 
since A + AT = 21. But M(A) is not an M-matrix for lal > i . 

In the sequel we determine which H +-matrices are Lyapunov diagonally 
stable and which are not, but are Lyapunov diagonally semistable. 

We start with two lemmas. 

LEMMA 3.2. Let A, B E IR nn such that B is a Z-matrix and M(A) ~ B. 
.. Then 

(3.3) 
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Equality in (3.3) holds if and only if M( A) = B and A is symmetric in sign. 

Proof Since M(A);;;o B, we have 

(3.4) i = 1, ... , n, 

and for i -=1= j, i, j = 1, ... , n, 

(3.5) M(A+AT);j= -Iaij+ajd 

;;;0 -laijl-lajil=M(A);j+M(A)ji 

Observe that equalities in (3.4) and (3.5) hold if and only if M(A) = Band 
A is symmetric in sign. • 

The conditions M( A) ;;;0 B and the sign similarity of A and B will appear 
frequently in the sequel. We shall show the sign similarity of A and B is 
equivalent to the diagonal similarity of A and B under certain conditions. 
The next two lemmas an~ not used in subsequent proofs. 

LEMMA 3.6. Let A, B E!R nn be such that laijl ~ Ibijl, i -=1= j, i, j = 
1, ... , n. If B is irreducible and D is a nonsingular diagonal matrix in IR nn 
such thatD-IBD=A, then IDI=cI. 

Proof If IDI-=I= cI, then without loss of generality we may assume that 
Idd = Id 21 = ... = Idkl > Idk+11 ;;;old k+ 2 l;;;o ... ;;;oldnl. Since B is irreducible, 
there exist i, j, k < i ~ n, 1 ~ j ~ k, such that b;j -=1= O. Then 

contrary to assumption. • 
A lemma of the same flavor is the following. 

LEMMA 3.7. Let A, B E !R nn be matrices such that IAI, IBI are symmet­
ric. If B is irreducible and D is a nonsingular diagonal matri:t' in !R nn such 
that A = D-IBD, then IDI = cI. 
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Proof. If IDI1= cI, then, as in the proof of the previous lemma, we may 
assume that Id11 = ... = Idkl > Idk+11;;:. ... ;;:.Idnl. There exist i, j, k < i ~ 
n, 1 ~ j ~ k such that Ibjjl = Ibjd 1= o. Then 

lajjl = Idjbjjdj11 < Ibjjl, 

lajjl = Idjbjjdill > Ibjd, 

which is a contradiction. • 
Similar results hold for complex matrices. 

LEMMA 3.8. Let A, B E ~nn such that B is a Z-matrix and M(A);;:. B. 
Then A is sign similar to B if and only if A + AT is sign similar to B + BT. 

Proof. If A is sign similar to B, then A = EBE, where E is a real 
diagonal matrix with lEI = I. Hence AT = EBTE, and so A + AT and B + BT 
are sign similar. 

Conversely, suppose 

(.3.9) 

Clearly, 

(3.10) 

By Lemma 3.2, since M(A);;:. B, (3.10) implies that M(A) = B and that A is 
symmetric in sign. Let i 1= j, 1 ~ i, j ~ n. Then either a jj = ejbjjej or a jj 
= - ejhjjej" Assume that for some i, j, i 1= j, we have a jj 1= ejbjjej" Then 
necessarily 

(3.11) 

Since B is an M-matrix, and A is symmetric in sign, we have 

Hence 

and by (3.9) this implies that 

(3.12) 
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which is a contradiction to (3.11). Hence A = EBE. • 
THEOREM 3.13. Let B E ~ nil be an M-matrix such that B + BT is 

positive semidefinite, and let A E ~ 11 11 be an H + -matrix satisfying M( A) ;;, B. 
Then 

(3.14) 'Var;;.(n), det{A + A'f)[a];;, det{B + BT)[a]. 

Furthermore, if B is irreducible, then the following are equivalent: 

(i) Equality holds in (3.14), 
(ii) 'Va r;;. (n), det A[a] = det B[a], 
(iii) det(A + AT) = det(B + BT), 

(iv) det A = det B, 
(v) A + AT is sign similar to B + BI", 
(vi) A is sign similar to B. 

Proof. By Lemma 3.2, we have 

Sine B + BI" is a positive semidefinite Z-matrix, it is an M-matrix. Hence by 
Theorem 2.6 we obtain (3.14). 

If B is irreducible then so is B + BI", since B is a Z-matrix. By Theorem 
2.6, concitions (i), (iii), ane (v) are equivalent, as well as conditions (ii), (iv), 
and (vi). Conditions (v) and (vi) are equivalent by Lemma 3.8. • 

As a consequence of Theorem 3.13 we get 

PROPOSITION 3.16. Let A be an H +-matrix, and let B be an irreducible 
M-matrix such that M(A);;, B. Then A is Lyapunov diagonally semistable. 

Furthermore, the following are equivalent: 

(i) A is Lyapunov diagonally near-stable. 
(ii) A is sign similar to B, and B is singular. 
(iii) A is singular. 

Proof. The first part of the proposition was already proved in Proposi-. 
tion 3.1. We give a simple second proof which uses the previous results. By [5] 
there exists a positive diagonal matrix D such that BD + DBI" is positive 
semidefinite and thus an M-matrix. We now apply Theorem 3.13 to BD and 
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AD, and we obtain 

(3.17) '<i(X~ ( n ) , 

Hence, A is Lyapunov diagonally semistable. 
We now prove the equivalence of (i), (ii), and (iii). 
(i) = (ii): Since A is Lyapunov diagonally near-stable, it follows from 

(3.17) that 

(3.18) det(AD + DAT) = det(BD + DBT) = o. 

Since B is irreducible, it follows from Theorem 3.13 that AD and BD are 
sign similar. Hence A and B are sign similar. Assume now that B is 
nonsingular. By [1] , the matrix D at the beginning of the proof may be 
chosen such that BD + DBT is positive definite, which is a contradiction to 
(3.18). Hence, B is singular. 

(ii) = (iii): Obvious. 
(iii) = (i): Since Lyapunov diagonally stable matrices have positive prin­

cipal minors (e.g. [7]), and since, as proved above, A is Lyapunov diagonally 
semistable, it follows from (iii) that A is necessarily Lyapunov diagonally 
near-stable. • 

By applying Proposition 3.16 to A and B = M(A) we obtain the following 
theorem, which completes Proposition 3.1 by characterizing those irreducible 
H +-matrices which are Lyapunov diagonally near-stable. 

THEOREM 3.19. Let A be an irreducible H +-matrix. Then A is Lyapunov 
diagonally semistable. 

Furthermore, the following are equivalent: 

(i) A is Lyapunov diagonally near-stable. 
(ii) A is sign similar to M(A), and M(A) is singular. 
(iii) A is singular. 

Theorem 3.19 does not hold for reducible H +-matrices, as demonstrated 
by the singular matrix 

-1 
1 
o -H 

The matrix A is not Lyapunov diagonally semistable, since it does not 
satisfy the conditions of Theorem 4.12 of the next section. It is also easy to 
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verify that A and M(A) are not sign similar. Those reducible H +-matrices 
which are Lyapunov diagonally semistable will be characterized in the next 
section. 

As observed in [9], the Lyapunov scaling factor of a Lyapunov diagonally 
stable matrix is not unique if the order is greater than 1. We now show that 
the Lyapunov scaling factor of a singular irreducible H +-matrix is unique (up 
to a positive scalar multiplication). 

LEMMA 3.20. Let A E ~ nn be a singular irreducible H +-matrix. Then all 
the principal minors of A of order less than n are positive. 

Proof. Observe that M(A) is an irreducible M-matrix. As such, it is well 
known that all the principal minors of M( A) of order less than n are positive. 
Our claim now follows from Theorem 2.6. • 

Recall that the null space of an n X n matrix A, denoted by N(A), is 
defined to be the set of all vectors x E C n such that Ax = O. 

LEMMA 3.21. Let A E!R nn be a singular irreducible H +-matrix. Then 
there exists a unique diagonal n X n matrix D such that N( AD) = N( AT). 

Proof. 
[9]. 

The lemma follows from Lemma 3.20 and from Corollary 5.5 of 

• 
The following Lemma is Lemma 6.6 of [9]. This lemma is going to be used 

several times in the sequel, and thus we quote it here.' 

LEMMA 3.22. Let A be a singular Lyapunov diagonally semistable 
matrix, and let D be a Lyapunov scaling factor of A. Then 

THEOREM 3.23. Let A E!R nn be a singular irreducible H +-matrix. Then 
A has a unique Lyapunov scaling factor. 

Proof. Let D be a Lyapunov scaling factor of A. By Lemma 3.22, 
N( AD) = N( AT). The uniqueness of D now follows from Lemma 3.21. • 

REMARK 3.24. Theorem 3.23 does not hold for reducible H +-matrices. By 
Theorem 6.20 of [9] the Lyapunov scaling factor of any reducible Lyapunov 
diagonally semistable matrix is not unique. 
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We conclude the section with a theorem which summarizes the results of 
this section. 

THEOREM 3.25. Let A be an irreducible H +-matrix of order greater 
than 1. Then A is Lyapunov diagonally semistable. 

Furthermore, the following are equivalent: 

(i) A is Lyapunov diagonally near stable. 
(ii) A is sign similar to M(A), and M(A) is singular. 
(iii) A is Singular. 
(iv) A has a unique Lyapunov scaling factor. 
(v) There exists a unique diagonal matrix D such that N(AD) = N(AT

). 

(vi) There exists a unique positive diagonal matrix D such that N( AD) = 

N(AT ). 

(vii) There exists a positive diagonal matrix D such that N(AD) = N(AT) 
"* {O}, and each such matrix D is a Lyapunov scaling factor of A. 

Proof. In view of Theorem 3.19, we just have to prove the equivalence of 
(iv), (v), (vi), and (vii) to any of (i), (ii), and (iii). 

(iii) = (iv) by Theorem 3.23. 
(iv) = (i): As observed above, since A has a unique Lyapunov scaling 

factor, and since the order of A is greater than 1, A is necessarily Lyapunov 
diagonally near-stable. 

(iii) = (v) by Lemma 3.21. 
(v) = (iii): Since there exists a unique diagonal matrix D such that 

N(AD)= N(AT), and since the order of A is greater than 1, it follows that 
N(A1)"* {O}. 

(iv) = (vi): By Lemma 3.22, the Lyapunov scaling factor D of A is a 
positive diagonal matrix satisfying N(AD) = N(AT ). The uniqueness follows 
from (v), which has been proved to be equivalent to (iv). 

(vi) = (vii): N(AT )"* {O}, since there is a unique positive diagonal matrix 
D such that N( AD) = N( AT). This matrix is necessarily the Lyapunov scaling 
factor of A by Lemma 3.22. 

(vii) = (iii): The matrix A is singular, since N(AT )"* {O}. • 

4. REDUCIBLE H +-MATRICES 

Let A be an n X n H + -matrix. Since Lyapunov diagonal stability and the 
property of being an H +-matdx are not affected by identical permutation of 
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rows and columns, we may assume that A is in Frobenius normal form 

( 4.1) 
Alk I A2k 

... ' 

Akk o 

where A ii' i = 1, ... , k, is a square irreducible matrix. 
As mentioned in the previous section, a reducible H +-matrix is not 

necessarily Lyapunov diagonally semistable. In this section we determine 
which H +-matrices are Lyapunov diagonally semistable. We begin with a 
theorem which characterizes the Lyapunov diagonally stable matrices. 

THEOREM 4.2. Let A be an H +-matrix. Then A is Lyapunov diagonally 
stable if and only if A is nonsingular. 

Proof. Let the matrix A be given in the form (4.1). As shown in [3], A is 
Lyapunov diagonally stable if and only if each A ii is Lyapunov diagonally 
stable. The assertion now follows from Theorem 3.19. • 

The characterization of Lyapunov diagonally semistable M-matrices con­
tained in Theorem 0.1 does not hold for H +-matrices. For example consider 
the H +-matrix 

1 
1 
o 

which is Lyapunov diagonally semistable, since A + AT is positive semidefi­
nite. We shall, however, generalize the result of [2] to H +-matrices. 

DEFINITION 4.3. An n X n matrix A is said to have the principal 
submatrix rank property if it satisfies 

( 4.4) rank A[al<n) ] = rank A[<n) la] = rank A[a] 

for all nonempty sets a ~ < n ). 
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The matrix A is said to have the weak principal submatrix rank property 
if it satisfies 

(4.5) 
( 

A[jla]=O = A[alj] Espan(A[a]), ) 

[ ] [ . ] T ([ ] T) for all j E ( n ) " a, 
A alj = 0 = A Jla E span A a 

for all nonempty sets a ~ (n). 

PROPOSITION 4.6. Let A be an n X n matrix. Then A has the principal 
submatrix rank property if and only if (4.4) holds for all sets a such that 
A [a 1 is irreducible and singular. 

Proof. The" only if" part is obvious. Conversely, it is clear that (4.4) 
holds for nonsingular irreducible principal submatrices, so we may now 
assume it holds for all irreducible principal submatrices. Let B = A [a 1 be any 
principal submatrix of A. Without loss of generality, we may assume that B 
has the form 

o 

where Bjj , i = 1, .. . , r, is a square irreducible matrix. We prove our claim by 
induction on r. For r = 1 there is nothing to prove, since B is irreducible. 
Assume that our cl::i.im holds for r < m, and let r = m. Let 13 ~ (n) be the set 
such that 

Bn=A[f3] . 

By the inductive assumption 

rank A [ a " f3l ( n ) ] = rank A [ (n ) la " 13] = rank A [ a " 13] 

and 

rank A [f3l( n)] = rank A [( n) 113] = rank A [13]. 
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Hence, 

(4.7) rank A [al( n ) ] ~ rank A [a " f31( n ) ] + rank A [f3I( n ) ]. 

= rank A [ a " f3 ] + rank A [ f3 ] . 

Because of the structure of B 

(4.8) rank A [ a " f3] + rank A [ f3] ~ rank A [ a] . 

It follows from (4.7) and (4.8) that 

rank A [ al ( n ) ] ~ rank A [ a], 

but since clearly 

rank A [al( n)] » rank A [a], 

we have 

rank A [al( n) ] = rank A [a]. 

In a similar way we prove that 

rankA[ ( n ) la] =rankA[a] . • 
Similarly we have 

PROPOSITION 4.9. Let A be an n X n matrix. Then A has the weak 
principal submatrix rank property if and only if (4.5) holds for all sets a such 
that A [ a 1 is irreducible and singular. 

Proof. For a nonempty a ~ ( n ), denote by m( a) the set 

a U (j E ( n ) " a: A [ a I j] = 0 or A [j I a] = O} . 

Observe that in view of Definition 4.3, the matrix A has the weak principal 
sub matrix rank property if and only if it satisfies 

rankA[alm(a)] =rankA[m(a)la] =rankA[a] 
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for all nonempty sets a: ~ (n). Our proof now follows exactly as the proof of 
Proposition 4.6, where (n) is replaced everywhere by m( a:), using the facts 
that for the choice of 13 in the proof of Proposition 4.6 we have 

and 

which imply that 

13 ~ m{a:) ~ m{f3) 

and 

a: " 13 ~ m{a:) ~ m{a:" 13). • 
LEMMA 4.10. Let A be an n X n H +-matrix in Frobenius normal form 

(4.1). Then A has the principal submatrix rank property if and only if (4.4) 
holds for all sets a: such that A[ a:] is a singular A ii , i = 1, ... , k. 

Proof. By Lemma 3.20, it is clear that the singular irreducible principal 
sub matrices of A are the singular A; i' i = 1, ... , k. The lemma follows from 
Proposition 4.6. • 

LEMMA 4.11. Let A E ~ 1111 have the principal submatrix rank property. 
If A has a singular principal submatrix A [ a: 1 such that A [ a: 1 + A [ a: V is 
positive semidefinite, then A + AT is singular. 

Proof. Since A[ a:] is singular, there exists a nonzero vector x such that 

( 4.12) A [ a:] x = 0. 

By Lemma 6.3 of [9] 

( 4.13) 

Because of the principal submatrix rank property it follows from (4.12) and 
(4.13) that 

A[(n)Ia:]x=O 
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and 

Hence 

xT( A + AT)[ al( n)] = xTA [al(n)] + xTA[ (n )Iaf 

= xTA [al(n)] + (A [(n)la]x) I' = 0, 

which implies the singularity of A + AT. • 
We now complete the characterization of Lyapunov diagonally semistable 

H +-matrices. 

THEOREM 4.14. Let A be an H +-matrix in Frobenius normal form (4.1). 
Then the following are equivalent: 

(i) A is Lyapunov diagonally semistable. 
(ii) A has the principal submatrix rank property. 
(iii) A has the weak principal submatrix rank property. 
(iv) For every singular Aii the columns of Aij' 1 ~ i < j ~ k, are in the 

span of the columns of Ai;> and the rows of Ali' 1 ~ I < i ~ k, are in the span 
of the rows of A ii · 

(v) There exists a positive diagonal matrix D such that the corresponding 
principal minors of A and AD + DAT are either both positive or both zero. 

Proof. In the case that A is nonsingular, conditions (ii), (iii), and (iv) 
hold, since all principal minors of A are positive, and conditions (i) and (v) 
follow from Theorem 4.2. So we assume that A is singular. 

(i) = (ii): Assume that A is Lyapunov diagonally semistable in Frobenius 
normal form (4.1). By Lemma 4.10 is enough to show that (4.4) holds where 
A[a] is any singular A ii , i = 1, ... , k. So let A[a] = Aii be singular. If i < k 
then let j, 1 ~ j ~ n, satisfy 

(4.15) j>t for all tEa. 

Denote by f3 the set a U { j }. Observe that 

where x = A[alj]. 
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principal sub matrix rank property. 
(ii) = (iii): Obvious. 
(iii) = (iv) by Definition 4.3. 
(ii) = (iv) by Lemma 4.10. 
(ii) = (v): Let A have the principal submatrix rank property. We prove (v) 

by induction on the number k of irreducible diagonal blocks in the form (4.1). 
For k = 1, if A is nonsingular then A is Lyapunov diagonally stable by 
Theorem (4.2). If A is singular, then by Theorem 3.19 there exists a positive 
diagonal matrix D such that AD + DAT is positive semidefinite and A is sign 
similar to M(A). Hence AD + DAT is an irreducible H +-matrix, and by 
Lemma 3.20 all the principal minors of A and of AD + DAT of order less than 
n are positive. The singularity of AD + DAT follows from Lemma 6.3 of [9] 
(also from Theorem 3.19). 

Assume that the claim holds for k < m, and let k = m. We write A as 

A = [B~l B12 ] 
B22 ' 

where 

All A1 ,"'-1 
0 A22 

Bll = and B22 = A",,,,. 

0 0 A",-l,,,,-l 

Let [3 ~ < n) be the set such that Bll = A([3), and let y = < n ) " [3. By the 
inductive assumption there exist positive diagonal matrices Di and D2 such 
that 

(4.20) 
signdet A [0] = signdet( ADi + DIAT)[ 0], 
signdet A [0] = signdet( AD2 + D2AT)[ 0]. 

Define D = D 1EBeD2 , where e is a positive scalar, and let C = AD + DAT. 
Consider a principal submatrix C [ a]. If either any = 0 or a n [3 = 0 , then 
our claim follows from (4.20). Otherwise, if A [ a] is singular, then either 
A [ an [3] or A [ any] is singular. In this case we apply Lemma 4.11 to 
(AD)[a], and get that C[a] is Singular. If detA[a] is positive, then so are 
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Since A is Lyapunov diagonally semistable if and only if AD is Lyapunov 
diagonally semistable for each positive diagonal matrix D, and since the 
principal submatrix rank property is invariant under multiplication by a 
nonsingular diagonal matrix, we may assume that A + AI' is positive semidefi­
nite. Therefore A[,B] + A[,BV is positive semidefinite, which is equivalent to 

(4.16) for every vector u. 

Let v be a nonzero vector satisfying 

(4.17) 

and let u be the nonzero vector [~l, where e is any real number. Observe 
that 

(4.18) 

If v I'x =1= 0, then for e small enough with sign opposite to that of v 1'x, the 
expression (4.18) will be negative, which is a contradiction to (4.16). Thus 

(4.19) 

Denote by 1 the order of A ii • By Lemma 3.20, 

rankAii=1-1 

and it follows from (4.17) that the columns of Ai i span the subspace of C I 
which is orthogonal to v. Therefore, by (4.19), x = A[aln is a linear 
combination of the columns of it [ a]. Since this holds for any j satisfying 
(4.15), we have proved that 

rank A [ al( n )] = rank A [ a] . 

Considering indices j, 1 ~ j ~ n, satisfying j < t for all tEa, we show in a 
similar way that 

rankA[(n)la] =rankA[a]. 

So (4.4) is satisfied for every A[a] that is a singular A ii , and thus A has the 
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det A [ a Ii f3] and det A [a Ii y]. In this case det C [ a] is a polynomial in f, 

where the lowest power flo< n PI has the positive coefficient det A [a Ii 
f3] det A [a Ii y]. Therefore, for f sufficiently small, det C [a] will be positive. 
Since the number of the subsets of (n > is finite, we can choose f small 
enough such that D is the required positive diagonal matrix. 

(v) = (i): Obvious, since A is a Po-matrix. • 

REMARK. Using arguments similar to those in the first part of the proof 
of Theorem 4.14, one can prove the known results that a positive semidefinite 
matrix has the principal sub matrix rank property. 

The following proposition is closely related to known results as in Lemma 
5 of [13]. We give a proof for the sake of completeness. 

PROPOSITION 4.21. Let A E ~ nn be an M-matrix in Frobenius normal 
form (4.1). Then A has the principal submatrix rank property if and only if 
A;; singularimpliesthatA;j=O, Aj;=O, j*i, j=I, ... ,k. 

Proof. The "if" part is obvious. Conversely, assume that A has the 
principal sub matrix rank property, and let A [ a] = A ii be singular. Let x be a 
positive vector satisfying 

A[a]x=O. 

By (4.4) 

A[(n>"ala]x=O. 

But since x is positive and A [ ( n > " al a] is nonpositive, then necessarily 
A [ ( n > " al a] = O. The proof that A [al( n > " a] = 0 is essentially the same. • 

In view of Proposition 4.21, Theorem 4.14 generalizes Theorem 0.1. 
We now show that the implication (v) = (ii) in Theorem 4.14 holds in 

general. 

LEMMA 4.22. Let A E ~ 11 n, and suppose that A + AT is positive semidef­
inite. Then rank A equals the maximum of the orders of nonsingular principal 
submatrices of A. 

Proof. By Corollary 111.1 of [6], the elementary divisors belonging to the 
eigenvalue 0 of A are linear. Hence, the nullity of A equals the algebraic 
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multiplicity of 0 as an eigenvalue of A. Let the characteristic polynomial of A 
be L~~Ocn_rN. Thus, rank A equals the maximum k such that Ck * O. Since 
( - Ilc k is the sum of all principal minors of A of order k, and since A is a 
Po-matrix (being Lyapunov diagonally semistable), the results follows. • 

THEOREM 4.23. Let A E IR n n, and assume that there exists a positive 
diagonal matrix D such that the corresponding principal minors of A and 
AD + DAT are either both positive or both zero. Then A has the principal 
submatrix rank property. 

Proof. Since the principal submatrix rank property is invariant under 
multiplication by a nonsingular diagonal matrix, we may assume, without loss 
of generality, that the matrix D may be chosen to be the identity matrix 
(otherwise we apply our assertion for AD). By Lemma 4.22 the rank of A 
equals the maximum of the orders of nonsingular principal submatlices of A. 
Since the same holds for any principal sub matrix of A, it follows from the 
assumptions of the theorem that 

(4.24) rank A [f3] = rank ( A + AT) [ f3 ] for all f3 ~ (n > . 

We now choose a ~ (n >, and we shall show that (4.4) holds. If A [ a] is 
nonsingular then there is nothing to prove. If A [ a] is singular then by Lemma 
3.22 

and it follows from (4.24) that 

N( A [ a]) = N( A [ a] T) = N( (A + AT) [ a] ). 

Since, as is well known, for any square matrix X, 

(4.25) 

where V -L is the orthogonal complement of a vector space V, we have 

(4.26) span(A [aD = span( A [af) = span((A + A1")[ a]). 

If for all j, j = 1, ... , n, j rE ex, A[aJj] and A[j\af are in span(A[a]), then 
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(4.4) holds. Otherwise, assume that for some j, j = 1, ... , n, j fI- a, 

(4.27) A[alj] fl-span(A[aD or A[jlar fl-span(A[a]). 

Observe that, by (4.26), (A + AT)[a] is a singular principal submatrix of the 
positive semidefinite matrix A + AT. As such, it is well known that 

By (4.26), (4.27), and (4.28) we have 

(4.29) A [alj] fI- span( A [aD, 

and 

(4 .30) 

Let Y = a U { j }. It follows from (4.29) that 

(4 .31) rankA[aIY] =rankA[a]+I, 

and from (4.30) that 

(4 .32) rank A [ Y ] = rank A [ al "Y ] + 1. 

So, by (4.31) and (4.32) 

( 4 .33) rank A [y ] = rank A [ a] + 2. 

But, by (4.28), 

and therefore 

(4.34) rank(A + AT)[ y] ~ rank(A + AT)[a] +1. 

By (4.24) 

rank A [ a] = rank( A + AT)[ a] . 
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So it follows from (4.33) and (4.34) that 

rank(A + AT)[ y] < rank A[ y], 

which is a contradiction to (4.24). Hence, (4.27) is false and (4.4) holds. • 

Another implication that holds in general is (i) = (iii). 

THEOREM 4.35. Let A E IR nn. If A is a Lyapunov diagonally semistable, 
then A has the weak principal submatrix rank property. 

Proof. Let a be a nonempty subset of < n), and let j E < n) " a be such 
that AUla] = O. We denote by.B the set aU {j}. 

Let D be a Lyapunov scaling factor of A. Clearly, C = A[.B]D[.Bl+ 
D[.B]A[.BV is positive semidefinite. Since A[a] is singular, by Lemma 3.22 
the matrix 

B = A[a] D[ a] + D[a] A[ar 

is a singular principal submatrix of the positive semidefinite matrix C. 
Therefore, 

(4.36) djjA[alj] = C[ajj] E spanB. 

It is known that if VI and V2 are subs paces of a given vector space V, then 

(4.37) 

By Lemma 3.22, N(AT) ~ N(AD + DAT), and hence by (4.25), (4.36), and 
(4.37) we have, since B is symmetric, 

djjA[alj] E span(B) = span(BT) ~ span(A[a]). 

Similarly we show that A [ al j] = 0 implies that A [j 1 arE span( A [ a ]1'). • 

In view of Theorems 4.23 and 4.35 and the obvious implications (ii) = (iii) 
= (iv) and (v) = (i), we have in general 

(i) = (iii), (iv), 

(ii) = (iii), (iv), 

(iii) = (iv), 

(v) = (i), (ii), (iii), (iv). 
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These implications can be summarized by the following diagram: 

(4.38) 

./(i), 
(v)~ (iii) 

~(ii)./ 
=> (iv) 

We give three examples demonstrating that none of the other possible 
implications hold in general, not even for Po-matrices. Our examples involve 
nonsingular matrices. In order to have examples of singular matrices it is 
enough to add a zero row and a zero column to each of the matrices 
considered below. 

EXAMPLE 4.39. The matrix 

1 
o 
o ~l 

demonstrates that (iv) =# (iii). Hence in view of (4.38) we have (iv) '*'> (i), (ii), (v). 

EXAMPLE 4.40. Consider the P-matrix 

2 
1 
o 
o 

o 
2 
1 
o 

with All = A[1,2,3]. The matrix All is Lyapunov diagonally semistable, 
since 

2 
2 
2 

Observe that A has the principal submatrix rank property, since all its 
plincipal minors are positive. Assume that there exists a positive diagonal 
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matrix D = diag{ d l' d 2, d 3 , d 4 } such that 

l d, 

d 2 d 1 

C = AD + DAT = 2 d 2 
d 2 d 3 

d 1 d 3 d 3 

0 0 d 4 

is positive semidefinite. It is easy to verify that 

detC[1,2] ;;:, 0 = d 1 ;;:, d2 , 

det C [ 1 , 3] ;;:, 0 = d 3 ;;:, d 1 ' 

detC[2,3] ;;:, 0 = d 2 ;;:, d 3 . 

The last three inequalities imply 

But then 

detC[2,3,4] = - 8d2d~ < 0 , 

I] 
d 4 

which is a contradiction to C ' s being positive semidefinite. Thus A is not 
Lyapunov diagonally semistable. Hence, this example demonstrates that even 
for P-matrices, (ii), (iii) ~ (i). By (4.38) (ii), (iii) ~ (v). 

EXAMPLE 4.41. Let 

Clearly, A does not have the principal submatrix rank property, but A is 
Lyapunov diagonally semistable, since A + AT = O. Also, it follows from 
Theorem 6.17 of [9] that the identity matrix is the unique Lyapunov scaling 
factor of A, and since the determinant of A is positive, A does not fulfill (v). ' 
Hence, even for Po-matrices, (i) ~ (ii). This example also shows that (iii) ~ (ii). 
Hence, by (4.38) we have (i), (iii) ~ (vJ. 
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5. APPLICATIONS TO NUMERICAL ABSCISSAS OF REAL MATRICES 

DEFINITION 5.1. Let A E ~ nn. 

(i) The spectral abscissa a( A) of A E ~ n n is defined to be 

a{ A ) = max {Re A : A E spec{ A ) } . 

(ii) The symmetric part of A, denoted by Re( A), is defined to be 

Re{A) = A + AT 
2 

(iii) The numerical abscissa of A is defined to be 

v{A) = a{Re{A)). 

DEFINITION 5.2. Let A, B E ~ nn. Then A and B are diagonally similar 
(A - B) if there exists a nonsingular diagonal matrix D E ~ n n such that 
B = D - lAD. The set of all matrices in ~ n n diagonally similar to A will be 
denoted by .0;l( A). 

Note that the symbol - was used more restrictively in [8]. In this section 
we apply the results of the previous sections to compare the numerical 
abscissas of matrices B diagonally similar to a given A E ~ n n to the spectral 
abscissas of A and IAI. It is easy to show that v(B) is in fact also the 
maximum of real parts of elements of the field of values V(B), where as usual 

V{B)= {X*BX:XEC n
, x*x=l}. 

This remark yields the well-known inequality a( A) ~ v( A) for A E ~ n n, and 
hence, since spec(D-IAD) = spec(A) for a nonsingular diagonal matrix D, it 
follows that 

(5.3) a{A) ~ v{B) if BE .0;l{A). 

Further, since IAI ~ 0, it follows immediately from Perron-Frobenius that 

(5.4) a{IAI) is the spectral radius of IAI. 
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It is easy to refonnulate our results on Lyapunov diagonal stability in 
terms of diagonal similarity. We shall not do this in detail, but we furnish the 
required means in our next lemma. Let D be a positive diagonal matrix. 
Clearly, the matrix AD2 + D2AT is positive (semi)definite if and only if 
D - lAD has positive (semi)definite symmetric part. Thus the next lemma is an 
immediate consequence of the following definition. 

DEFINITION 5.5. Let A E ~ nil. We set 

H(A) = a(IAI)I - A. 

LEMMA 5.6. Let A E ~ nn, and let D be a nonsingular diagonal matrix. 
Then 

(i) H(A) is an H+-matrix. 
(ii) H(A) is a nonsingular H +-matrix if and only if a(A) < a(IAI). 
(iii) 

(5.7) 

if and only if D2 is a Lyapunov scaling factor of H(A). 
(iv) Let e> O. Then 

(5.8) 

if and only if D2 is a Lyapunov scaling factor for H(A)+ d. 
(v) 

(5.9) a(A) ~ ,,(D-1AD) < a(IAI) 

if and only if H(A)D2 + D2H(Al is positive definite. 

Proof. (i); Since M(H(A)) = a(IAI)I -IAI = M(IAI), and the latter ma­
trix is an M-matrix, it follows that H(A) is an H-matrix. Furthermore, H(A) 
is an H+-matrix, since a(IAD~ laiil, i = 1, ... , n. 

(ii); follows from a(A) ~ a(IAI). 
(iii); Let D be a nonsingular diagonal matrix. By (5.3), 

(5.10) 
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is equivalent to (5.7). By Sylvester's inertia Theorem, D2 is a Lyapunov 
scaling factor for H(A) if and only if D-1H(A)D +(D- 1H(A)Dl = 
D-l(H(A)D2 + D 2H(A))D- l is positive semidefinite. But this holds if and 
only if (5.10) is satisfied. 

(iv): Similar to (ii). 
(v): Similar to (iii). • 

THEOREM 5.11. Let A E [R nn. Then 

(5.12) a(A)~inf{v(B):B-A}~a(IAI). 

Proof In view of Lemma 5.6(i), H( A) + d is nonsinguiar H +-matrix for 
all positive Ii. Hence by Theorem 4.2, there is a Lyapunov scaling factor for 
H(A)+ d . By Lemma 5.6(iv) there exists a nonsingular D for which a(A) ~ 
v(D - 1AD) ~ a(IAD+ Ii, and (5.12) now follows. • 

We note that the inequality (5.12) does not imply the existence of a matrix 
B E £?l( A) for which 

(5.13) a(A) ~ v(B) ~ a(IAI) 

in the case that a(A)= a(IAD. For let 

A=[~ ~]. 

Then a( A ) = a( I A D = 0, but for all nonsingular diagonal D, v( D - lAD) > O. 
Our next proposition clarifies this situation. 

PROPOSITION 5.14. Let A E [Rnn. There exists aBE .@(A) such that 
(5.13) holds if and only if a(IADI - A has the (weak) principal submatrix 
rank property. 

Proof By Lemma 5.6(iii), (5.13) is equivalent to the existence of a 
Lyapunov scaling factor for H( A). The proposition now follows from Theo­
rem 4.14. • 

We do not know in general under what conditions the infimum in (5.12) is 
achieved. But we have some partial results of interest. 
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THEOREM S.lS. Let A E ~ nn. Then the following are equivalent: 

(i) The second equality holds in (S.12). 
(ii) Both equalities hold in (S.12). 

Proof. (i) = (ii): Assume that 

a(A) < a(IAI). 

Then the H+-matrix H(A) is nonsingular by Lemma S.6(ii). Hence, by 
Theorem 4.2, H(A) is Lyapunov diagonally stable. Thus, by Lemma S.6(v) 
there is aBE ~(A) with ,,(B) < a(IAI). Hence the second equality in (S.12) 
implies a(A)= a(IAI). 

(ii) = (i): Trivial. • 

Observe that it is necessary and sufficient for either of the equivalent 
conditions in Theorem S.lS to be satisfied that there should exist a block Au 
in the Frobenius normal form of A with a( A ii) = a( I A I). 

For irreducible A we have some additional conditions. 

THEOREM S.16. Let A E ~ nn be irreducible. Then the following are 
equivalent: 

(i) The matrix a(IADI - A is singular. 
(ii) The second equality holds in (S.12). 
(iii) Both equalities hold in (S.12). 
(iv) A is sign similar to a nonnegative matrix. 
(v) There is a nonnegative matrix in ~(A). 

Proof. (i) = (ii) by Lemma S.6(ii). 
(ii) = (iii) by Theorem S.lS. 
(iii) = (iv) by Theorem 2.6. 
(iv) = (v) is trivial. • 
We remark that the first equality in (S.12) does not imply the second. An 

example is furnished by A = [ -1] E ~ll and by 

For this example it is easily seen that a(B)= ,,(B)=O < 1 = a(IBI). 
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THEOREM 5.17. Let A E IR nn. Then there exists a unique positive diago­
nal matrix D satisfying (5.7) if and only if A is irreducible and A is sign 
similar to a nonnegative matrix. 

Proof. By Lemma 5.6(iii) there exists a unique positive diagonal matrix 
D satisfying (5.7) if and only if H( A) has a unique Lyapunov scaling factor. 
By Remark 3.24 and by Theorem 3.25 this is equivalent to the irreducibility 
and singularity of H(A). Our theorem now follows from Theorem 5.15. • 
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