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Summary. A symmetric scaling of a nonnegative, square matrix A is a 
matrix XAX- 1

, where X is a nonsingular, nonnegative diagonal matrix. By 
associating a family of weighted directed graphs with the matrix A we are 
able to adapt the shortest path algorithms to compute 'an optimal scaling of 
A, where we call a symmetric scaling A' of A optimal if it minimizes the 
maximum of the ratio of non-zero elements. 
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1. Introduction 

The scaling of matrices has been considered from several points of view. At 
one extreme some papers concentrate on theoretical characterizations, e.g. [12J 
or [18J, and at the other papers report on the efficiency of algorithms, e.g. 
Tomlin [22]. This paper falls between these extremes for we are concerned 
with the development of algorithms which may however be stated as math­
ematical theorems. 

We now briefly describe our paper. After some preliminaries in Sect. 2 we 
turn in Sect. 3 to the construction of an algorithm for a problem solved 
theoretically in [12J: Given nonnegative square matrices A, B, C when does 
there exist a symmetric scaling A'=XAX- 1 of A (where X is diagonal) for 
which C;;;; A' ;;;; B? Our algorithm is related to Karp's algorithm for finding the 
minimum cycle mean in a weighted directed graph, see [14J, and its first 
version was developed by one of us in [10, 11J and is there applied in the 
consideration of asymmetric scalings: A' = X A Y. In [11 J the present form of 
the algorithm is given and is there used for the approximation of bivariate 
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functions by univariate ones. Here we apply the algorithm to give an algorith­
mic answer to the problem described above. 

Our main results may be found in Sects. 4 and 5. We again turn to a 
problem previously solved theoretically, see [18, Theorem 6]: Given a non­
negative matrix A characterize the symmetric scalings A' which minimize the 
maximum of the ratio of non-zero elements. By associating a family of weight­
ed directed graphs with the matrix A we are able to adapt our algorithm to 
compute an optimal scaling A'. In Sect. 6 we then give a new proof of the 
theorem in [18J based on this algorithm. 

By means of the bipartite expansion of a directed graph it is possible to 
obtain from any result on symmetric scalings a corresponding result on asym­
metric scalings, see [19, Sect. 3]. The asymmetric formulation of some of our 
results is given in Sect. 7. 

2. Notations 

In this paper, n will be a fixed positive integer, 

V={1;2; ... ;n} and E~VxV, E~0. 

By G = (V, E) we denote the directed graph with vertices V and arcs e = (i,j)EE. 
A sequence f3=(e 1 , ... ,ek), k~ 1, of arcs e.=(i.,j.)EE, s= 1, ... ,k, is a path (of 

length 1131 = k from i 1 to jk) if j.= is+ l' S = 1, ... , k-l. 
A path 13 is closed if il =jk' and a closed path 13 is a directed cycle if 

iI' .. . , ik are pairwise distinct. We put 

wr = {f3: 13 is a path of length k ending at j}, 
Wk := {f3:f3 is a path oflength k}, 

~:=UJ:f3 is a path ending atj}, 
Y:={{3:f3 is a closed path}, 
z: = {f3: 13 is a directed cycle}. 

Finally, we say that (V, E, d) is a weighted directed graph with the weight 
function d: E ~ 1R.. 

The weight d(f3) of a path 13 = (e l' ... , ek) is defined by 

k 

d(f3): = L d(e.), 
s= 1 

and 

is called the minimum cycle mean in the weighted directed graph (V, E, d). 
Notice that loops f3=(i, i)EE are elements of z. 
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3. Fundamental Results 

We now turn to the problem discussed in the introduction. 

Problem 1. Let aijEIR, bijEIR u {oo}, CijEIR u { - oo}, i,j = 1, 2, ... , n. Do there 
exist xiEIR, i = 1, ... , n, for which 

(3.1) 

A special case of Problem 1 is the following. 

Problem 2. Let E c;; V x V, dijEIR for (i,j)EE. Do there exist xiEIR, i = 1, ... , n, for 
which 

(3.2) 

Our next lemma shows that Problem 1 is equivalent to Problem 2, and can be 
solved with the same Xi' i = 1, .. . , n, provided that E and the dij are properly 
chosen. 

Lemma 1. Let aij , bij , cij be as in Problem 1. Let 

i,j=1, ... ,n, , 

E: = {(i,j) :dij=t= oo}. 

Then x=(x1, ... ,Xn)EIRn solves (3.1) if and only if x solves (3.2). 

Proof The inequalities (3.1) are equivalent to the 2n2 inequalities 

O~Xi+aij-Cij-Xj' i,j= 1, ... , n 
O;£xi+bji-aji-xj, i,j= 1, ... , n 

(3.3) 

(3.4) 

where the last relations are obtained by interchanging i and j. Thus we obtain 
the equivalent form 

Since the inequalities above are trivially satisfied if dij = 00, they are equivalent 
to (3.2). 0 

Our algorithm for solving Problem 2 (and thus Problem 1) is based on the 
following theorem which states that Problem 2 is equivalent to the negative 
cycle problem in weighted directed graphs. 

Theorem 1. Let Ec;;Vx V, d(e): =dij for e=(i,j)EE. 
(a) If there is a directed cycle fJ of negative weight d(fJ) in the weighted 

directed graph (V, E, d), then Problem 2 has no solution. 
(b) Otherwise the vector x=(xl> ""Xn)EIRn defined by 

x/=min{o; d(fJ):fJE U Jilljk}, j=1, ... ,n 
k= 1 

(3.5) 

is a solution of (3.2). 
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Proof (a) Let XiE1R, i=l, ... ,n, and put d;j'=xi+dij-x j , (i,j)EE. Then for any 
directed cycle fJ in (V, E), d(fJ) =d'(fJ). Hence Problem 2 has no solution if 
d(fJ) < 0 for some directed cycle fJ in (V, E). 

(b) Let Xj be defined by (3.5), j = 1, ... , n. Since there is no directed cycle of 
negative weight in (V, E, d), we have 

xj=min to; d(fJ):fJE W), j = 1, .. . , n. 

Suppose that Xi =d(fJ;) where fJiE Wi. If (i,j)EE and y is the path fJi followed by 
the arc(i,j), then d(Y)=Xi+dij~Xj' since ydtj. Hence xi+dij-xj~O if 
(i,j)EE. 0 

Corollary 1. The minimum cycle mean A * of the weighted directed graph (V, E, d) 
is the largest of the numbers A for which the inequalities 

(3.6) 
have a solution XE1R n. 

Proof Applying Theorem 1 for the weights d;j'=dij-A, (i,j)EE, we realize that 
(3.6) has a solution X iff 

d'(fJ) = d(fJ) - A IfJl ~ 0 for all fJEZ, 

d h ·ff 1 < . d(fJ) _ 1 * 
an ence 1 II.=~~ IfJl -II. . o 

Remark 1. The above results are partly well-known and have already appeared 
in the literature in various guises and forms, see e.g. [11, Theorem 1.1J and the 
detailed theoretical investigations of Problem 1 in [12]. The equivalence of 
Problem 1 and Problem 2, but in particular our Theorem 1 play an essential 
role in algorithms which are concerned with the planning and scheduling in 
MPM networks (MPM = Metra-Potential-Method), see e.g. [23, Part III, § 1.31 
and § 1.32]. 

Lemma 1 and Theorem 1 give the following information: Any algorithm 
which determines if a weighted directed graph (V, E, d) contains a directed cycle 
of negative weight can be applied to Problem 1 and Problem 2. Efficient 
algorithms of this kind have been constructed by Ford and Bellman, by Yen, 
by Dantzig, Blattner, Rao, and by others, see e.g. [15]. 

Our Algorithm 1 below is a modification of the famous Ford-Bellman 
algorithm and a first version of Karp's algorithm for finding the minimum 
cycle mean in a weighted directed graph. Algorithm 1 has been suggested in 
the present form in [11]. 

Algorithm 1 (The Minimum Cycle Mean Problem) 

Step O. We suppose that the forward and backward stars of each vertex jEV 
are non-empty. Otherwise, we may erase such vertices. 

Set x/O):=O for JEV, J(O):={l; ... ,n}, k:= 1. 
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Step 1. For j E V, compute 

x)k):=min{xj(k-1); xi(k-1)+di/ iE1(k-1),(i,j)EE}; 

J(k): = {jE V:x)k) <xj(k -I)}. 
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(3.7) 

For any jEJ(k), choose one of the indices iEJ(k -1), for which the minimum in 
(3.7) is attained, and call it l)k' 

If J(k) =0, put 
xj'=x)k), j=l, ... ,n. Stop. 

If k = nand J(n) =1= 0, Stop (Problem 2 has no solution). 
If k<n and J(k)=l=0, put k:=k+l and return to Step l. 

Step 2. Suppose that all sets J(k), k=l, ... ,n, are non-empty. 
(a) Compute the minimum cycle mean ..1.* of (V,E,d) by 

x)n)-x)k) 
n-k 

..1.* = min max 
jEJ(n) O;:ik;:in-1 

(3.8) 

(3.9) 

(b) Choose any jE1(n) for which the minimum in (3.9) is attained. Construct 
the sequence of vertices by the recurrence 

jn:=j, jk-1:=l)k,k for k=n,n-1, ... (3.10) 

until the first time equality jr=js occurs for some rand s, O~r<s~n. Then 

[3*: = Wr,jr+ 1)' ... , US-1,jS)} 

is a directed cycle in (V, E) with d([3*)!I[3*I=A*. 

(3.11) 

Remark 2. The properties of Algorithm 1 have been studied in [l1J under the 
assumption that the directed graph (V, E) has no loops. In our paper, loops are 
admitted and belong to the set Z of directed cycles in (V, E). But it turns out 
easily that these loops don't cause any additional difficulties in the proofs of 
[11]. 

In more detail, the following properties of Algorithm 1 have been proved in 
[11; Theorem 2.1, pp. 68ff.]. 

Theorem 2. (a) The minimum cycle mean ..1.* of (V, E, d) is non-negative if and only 
if there exists an index k, 1 ~ k~ n, for which the set J(k) is empty. 

(b) If J(k) is empty for some k, then the numbers x j, j=l, ... ,n, defined by 
(3.8) and by (3.5) are the same, and therefore solve Problem 2. 

(c) If all sets J(k), k=l, ... ,n, are non-empty, then ..1.* can be computed by 
(3.9) and the directed cycle [3* of form (3.11) constructed in Step 2 of Algorithm 1 
has the property d([3*)!1 [3* I = ..1.*. 

The computation of the minimum cycle mean ..1.* and of an optimal di­
rected cycle [3* in weighted directed graphs will play an important role in 
the Sects. 4-7. For the solution of Problem 2 we need less than Algorithm 1 
achieves. If we want to solve Problem 2 (see also [11; Sect. 4J) then we can 
simplify Algorithm 1 to the following. 
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Algorithm 2 (Problem 1 and Problem 2) 

O. Perform Step 0 of Algorithm l. 
1. Perform Step 1 of Algorithm 1 without noting the indices Ijk' If all sets 

J(k), k = 1, ... , n, are non-empty then Problem 2 has no solution, else the 
numbers Xj defined by (3.8) solve Problem 2. 

4. Symmetric Scaling of Matrices 

Let A = (Ai) '* 0 be a non-negative n x n-matrix. The matrices of the form 
XAX- 1 with X ED;; are called symmetric scalings of A where D;; is the set of 
non-negative, non-singular, diagonal n x n-matrices. The measure of a sym­
metric scaling X AX - 1 is given by 

where Eo:= {(i,j):Aij>O}. 

max (XAX- 1)ij 
a( X) = -,-,(i'=}).,.-~E-"o..,--_c::--;c:-­

mm (XAX- 1
)kl 

(k,I)EEo 

(4.1) 

It is the main purpose of our paper to present an efficient algorithm for the 
following Symmetric Scaling Problem. 

Problem 3. Find the infimum 
a:= inf a(X) 

XeDri 

and a diagonal matrix X*ED;; with a(X*)=a. 

We put 

and define the set QEIR. 2 by 

Q: = {(m, M): there exist Xi~~' i = 1, ... , n, for which (4.2) 
m~xi+aij-Xj~M, (I,J)EEo' 

Let X =diag(X1, ,,,,Xn)ED;; and xi:=logXi, i= 1, ... , n. Taking the logarithm 
of (4.1) leads to 

10ga(X)= max (xi+aij-x)- min (xi+aij-x) 
(i,})EEo (i,})EEo 

and thus to the following additive form of the Problem 3. 

Problem 3'. Find the infimum 

10ga=inf{M -m:(m,M)EQ} 

and numbers m*, M*, x'J', ... , x: such that M* - m* = log a and 

The following lemma is obviously true. 

(4.3) 

(4.4) 
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Lemma 2. The real numbers xi, ... , x: solve (4.4) with M* - m* = log IX if and 
only if IX(X*) = IX for 

After associating with the matrix A =1=0 a family of weighted directed 
graphs GS

, SEJR, it will turn out that the Problem 3 and the Problem 3' are also 
equivalent to the Problem 3" below which will be studied and solved by 
graph theoretical methods. But first, we need some notations. 

We put 
V:={l, ... ,n}; E:=Eou{(i,j):U,i)EEo} 

and denote by Z the set of all directed cycles in the directed graph G = (V, E). 
For any real number s, we define the weight function dS: E-4JR by 

(4.5) 

where in (4.5) the notation min* indicates that we set in (4.5) au - s = + 00 if 
(i,j)¢Eo and s-aji = + 00 if U, i)¢Eo. We put 

E~ : = {(i,j)EE:aij-s =df) 

E~: = {(i,j)EE:s -aji =df) 

E~:=E~nE~. 

For any directed cycle f3EZ we denote its number of arcs in E~, r = 1, 2, 3, by 
N:(f3):=If3nE~1 and put 

n 1 s(f3): = Nt(f3) + N~(f3) - Ni(f3), 

n2s (f3): = Nt(f3) - N~(f3) - Ni(f3)· 

Finally, with each sEJR we associate the weighted directed graph Gs=(V,E,dS
) 

and denote the minimum cycle mean in GS by cp(s), i.e. 

cp(s): = min dS (f3)!1 f31, (4.6) 
peZ 

and by f3sEZ one of the directed cycles in (V, E) for which the minimum in (4.6) 
is attained, i.e. 

dS (f3s)/lf3sl =cp(s). (4.7) 

Since dfj~ -dji' (i,j)EE, the minimum cycle mean cp(s) of GS is non-positive for 
each s. 

Problem 3". Find the supremum 
sup cp(s) (4.8) 
seR 

and a number s* for which the supremum is attained. 

The next theorem will show that the Problems 3, 3', 3" are equivalent, that 
the supremum in (4.8) and thus the infima in the Problems 3 and 3' are 
attained, and how the optimal numbers xi, ... , x: of the Problem 3' are con­
nected with the minimum cycle mean problem. 
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Theorem 3. 1. There exists an S*ElR for which cp(s*) =sup cp(s). 
2. The supremum (4.8) is attained at a number s* if and only if the irifimum 

(4.3) of the Problem 3' is attained by 

m*:=s*+cp(s*), M*:=s*-cp(s*). (4.9) 

Additionally, any solution xi, ... , x: of 

(i,j)EE (4.10) 

is also a solution of (4.4), and conversely. And 

log rx=M* -m* = -2cp(s*). (4.11 ) 

Proof 1. The set E~={(i,j)EE: aij-s=s-ajJ is empty except for finitely many 
numbers s, say except for Sl < S2 < ... <Sq. For any (JEZ, dS(fJ) is a continuous 
function in s and linear in the intervals (- OO ,Sl),(Sl,S2), ... ,(Sq, oo). Since the 
number of directed cycles (JEZ is finite, cp is a piecewise linear continuous 
function consisting of only finitely many linear pieces. But as cp(s)~O for all s, 
cp attains its maximal value. 

2. We need the following lemma. 

Lemma 3. For any s, /cp(s)/ = - cp(s) is the smallest of all non-negative numbers p 
for which 

S-p~xf+aij-xj~s+p, (i,j)EEo (4.12) 

has a solution (x l' . .. , x n)· 

Proof of Lemma 3. It follows from Corollary 1 that cp(s) is the largest of all 
numbers A for which 

(4.13) 

has a solution (Xl ' .. . ,Xn)' But by Lemma 1, (4.12) and (4.13) are equivalent if p 
=-A. 0 

Since /cp(s*)1 = min I cp(s)l, the second part of Theorem 3 follows directly from 
Lemma 3 and the equivalence of (4.12) and (4.13) if p= -A. 0 

Since the Problems 3, 3', 3" are equivalent we shall solve the Symmetric 
Scaling Problem 3 by characterizing and computing the maximal points s* of 
the function cp. For this' purpose, we first have to study the essential properties 
of cp in our next theorem. 

Theorem 4. 1. cp is continuous, non-positive, and piecewise linear consisting of 
finitely many linear pieces. 

2. cpELip11, i.e. Icp(s)-cp(t)I~ls-tl for all s,t. 
3. cp is concave. 
4. cp satisfies the inequality 

l{Jsl(cp(t)-cp(s))~ min (s-t)nrs({Js) (4.14) 
r= 1,2 

for any numbers sand t and any {JsEZ satisfying (4.7). 
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Proof 1) has already been proved in the proof of Theorem 3. 
2) Since -1,8sl ~n2sCBs)~n1sCBs)~I,8sl, it follows from (4.14) that c:p(t) 

-c:p(s)~lt-sl for all sand t. Hence, c:pELiP 1 1. 
3) Suppose that SO<Sl and s:=(1-u)so+us1 for a fixed number u, 

o<u< 1. It follows from (4.14) with t=so that 

and from (4.14) with t=Sl that 

Hence we have 

which shows that c:p is concave. 
4) Let sand t be fixed. Then, for any ,8EZ, 

IPI c:p(t) ~ dt(,8) ~dS(,8) + (s - t)(Nt(,8) ±N~(,B) - N2(,8)) 

which already proves (4.14) if we take ,8 = ,8s· D 

The next theorem gives an important characterization Of the maximal points 
s* of the Problem 3/1 and thus (by Theorem 3 and the relation (4.3)) of the 
minimal solutions (m*, M*) of the Problem 3' and the minimum a of the 
Scaling Problem 3. 

Theorem 5. The following three statements are equivalent. 
(1) q> attains its maximal value at s* . 
(2) There exist two ( not necessarily distinct) directed cycles ,8 and ,8' in Z 

for which the relations 

and 

are satisfied. 

c:p(s*) = dS*(,8)/ I.BI = dS*(,8')!I ,8'1 (4.15) 

(4.16) 

(3) For any number s, s=!=s*, and any directed cycle ,8sEZ satisfying (4.7), the 
integers n1s (,8s) and n2.(,8s) have the properties 

n1s(,8S)~n2.(,8S)~O if s>s* 

n2 s(,8s)~n1s(,8s)~O if s<s*. 

Proof (1)=(3): It follows from (4.14) that 

O~I,8sl(c:p(s*)-c:p(s))~ min (s-s*)nrs(,8s) 
r= 1 . 2 

which leads to (4.l7). 

(4.17) 

(3)=(2) : Suppose that the Statement (3) is valid. Since the number IZI of 
directed cycles is finite, we find sequences Sk~S*, Sk>S*, and s~~s*, s~<s*, and 
two (not necessarily distinct) directed cycles ,8 and ,8' such that 

(4.18) 
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holds for all k. Because of (4.17) and (4.18), 

n1sJf3)~ n2Sk(f3) ~ 0, n2s,,(f3'):;;; n1 s,,(f3'):;;; 0. 

for all k. Hence, for k--.oo, the continuity of <p and dfj guarantees that (4.15) 
and (4.16) are valid. 

(2)=>(1): It follows from (4.14)-(4.16) that 

1f31(<p(t)-<p(s*)):;;;(s* -t)n1s,(f3):;;;0 if t>s*, 

1f3'I(<p(t)-<p(s*)):;;;(s* -t)n2s,(f3'):;;;0 if t<s*. 

Hence, <p(t):;;; <p(s*) for each t. 0 

5. An Algorithm for the Problems 3, 3', 3" 

We have seen in Lemma 2 and Theorem 3 that any solution s*, xl, ... ,x: of 
Problem 3/1 and (4.10) leads by (4.9) to a solution M*-m*= -2cp(s*) of 
Problem 3' (where (4.4) holds) and to a minimal symmetric scaling 

X* AX* -1, X*: =diag(exi, ... , eX~) 
with 

a = a(X*) = e- 2q>(s'). 

(5.1) 

(5.2) 

Hence it suffices to find a maximal point s* of <p and numbers xl, ... , x: 
satisfying (4.10). For this purpose, we suggest the algorithm below which is 
based on Theorem 5, Inequality (4.14) and on Algorithm 1 which will compute 
the minimum cycle mean <p(s) of the weighted directed graph GS = (V, E, dS) for 
finitely many real numbers s. 

Algorithm 3 

Step O. Put L: = - 00, U: = + 00. (L and U will serve as lower and upper 
bounds for a maximal point s* of cp.) Choose a real number s. 

Step 1. Apply the Algorithm 1 to the weighted directed graph GS =(V, E, dS) and 
compute <p(s), one directed cycle f3s satisfying (4.7), and the integers nrs 
:=nrs(f3s), r=1,2. 

a) If n2s :;;;0:;;; n1s' put s*: =s and goto Step 2. 
b) If n1s <0, put L: =s. If n2s > 0, put U: =s. 
c) Choose the new number s as follows. 

s: =sw: = L+ If3LI(U -L)nw + If3LIlf3ul(<p(U) - cp(L)) 
If3LI nw -1f3ul n1L 

if -00 <L:;;; U< +00, and 

S: =SLU: = {L+ If3LI <p(L)jnlL 
U + lf3ulcp(U)/nw 

if U= +00 

if L= -00. 
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d) If sw=L or sw=U, put s*:=sw and go to Step 2. Else return to 
Step 1. 

Step 2. s* is a maximal point of cp. 
Apply the Algorithm 1 to the weighted directed graph (V, E, d*) where the 

weight function d* is defined by 

dt: =dC - cp(s*) =min* {aij-s*; s* -aj ;} - cp(s*), 

(i,j)EE. Since the minimum cycle mean of (V, E, d*) is equal to zero, the event 
(3.8) must occur for some index k, l~k~n, and the numbers xj:=xik), j 
= 1, ... , n, which we obtain from (3.8), are the desired solution of the in­
equalities (4.10). 

Remark 3. 1. If the events (a) or (d) of Step 1 occur, then the inequalities (4.14) 
imply that s is a maximal point of cp. 

2. The number Sw in Step 1 is the unique point where the straight lines 

Y2(t):={cp(U)-(t- U)n2U/l fJul, 
0, 

if L > - 00 } lR 
.f tE 
1 L=-oo 

if U < + Co} 
.f tElR 
1 U=+oo 

intersect. Hence, L ~ s w ~ U. 
3. The above Algorithm 3 finds a maximal point s* of cp in finitely many 

iterations. That follows at once from the inequalities (4.14). 

6. An Explicit Characterization of the Minimum IX 

In [18; Theorem 6], Rothblum and Schneider haved proved a characterization 
of the minimal value rJ. of the Problem 3. We shall now show how this result 
follows from our Theorem 5. 

Let the notation be the same as in Sect. 4. More exactly, let A = (AijH=O be 
a non-negative n x n-matrix, v: = {I, ... , n}, Eo: = {(i,j): Aij > O}, 
and 

aij:=log Aij for (i,j)EEo. 

We now consider another directed graph, Go: = (V, Eo). In this section, Go and 
the (oriented) cycles c in Go play the essential role. 

Definition. c=c+uc-={e1, . .. ,ek}s;Eo, k~l , is called a cycle in Go if there 
exist k distinct vertices in V, say i l' ... , ik , such that 

if e,Ec+} 
.f - r=l, ... ,k 
1 e,Ec 

where we set ik+l :=i 1 • By Zo we denote the set of all cycles c=c+ uc- in Go . 
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We associate with any arc e=(i,j)EEo its weight D(e): =aij and with any 
cycle c=c+ UC-EZo its weight 

D(c):= L D(e)- I D(e). 
eec+ eec-

We put N(c):=lc+I-lc-1 and 

CO(Go): = {cEZo:N(c)=O}, 

C2 (GO): = {(c l , C2)EZo x Zo:N(c 2) <0 <N(c l)}. 

Finally, with any cycle CEZo we associate the directed cycle CEZ in G=(V,E) 
defined by 

Here, E and Z are defined as in Sect. 4. 
We then have for each cycle c=c+ UC-EZo and each s 

dS(C)= L min*{aij-s; s-aj;}+ I min*{aji-s; s-aij} (6.1) 
(i,j)ec + (i,j)ec-

and hence 

ICl rp(s) = Icl rp(s) ;£dS(C) ;£D(c) - sN(c) (6.2) 
and 

rp(s);£D(c)/lcl if CECO(Go), (6.3) 

() 
D(C2)N(Cl)-D(Cl)N(C2) rp S < --,-.....;;;....--=-,---=----''---

!e21 N(c l) -Icll N(c 2 ) 
(6.4) 

if (C l ,C2)EC2 (GO)' Here, the number I(c l ,c2 ) is defined by the equation of (6.4). 
The inequality in (6.4) follows from (6.2) since the straight lines 

On the other hand, using our Theorem 5, there exist directed cycles {3 and {3' in 
Z which satisfy (4.15)-(4.16) for a maximal point s* of rp. Hence we can choose 
the cycles zr=Z:UZ;EZo, r=1,2, such that 

Zl={3 and zi={3nEr which implies N(zl)=n lS.({3) 

Z2={3' and zi={3'nE~"E3' which implies N(Z2) = n2s.({3')· 

Applying (4.15) and (6.1) leads to 

and thus to 
IZrl rp(s*) = D(z)-s*N(zr), r=1,2 (6.5) 

(6.6) 
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Combining (6.3)-(6.6) completes the proof of the following explicit characteri­
zation of the infimum ff. of the Symmetric Scaling Problem 3 which is due to 
Rothblum and Schneider [18; Theorem 6]. 

Theorem 6. Under the above setting and notations, 

Example. Let Eo: = {(l, 1), (1, 2), (1, 3), (2, 3), (3, 2)}, 

(
1 2 4) 

10gA:=(ai):= * * 1 . 

* 2 * 
We apply Algorithm 3 starting with S: = 0. Then we obtain the following values 
S=SLV and matrices dS

: 

S=o: d
S

= (=~ ~ -~*) 
-4 -1 

cp(S) = -3/2; .8s={(2,3), (3,2)}, 

nls=n2s= -2, L:=O, sLu=3/2 

(

-1/2 1/2 5/2) 
s=3/2: dS = -1/2 * -1/2 

-5/2 1/2 * 
cp(S) = -5/6; .8s={(l, 2), (2, 3), (3, I)}, 

n1 S = 1, n2s = - 1. Hence, s* = 3/2 is a maximal point of cp, and 

cp(S*) = - 5/6, m* = 2/3, M* = 7/ 3, log ff. = 5/3. 

Step 2 of Algorithm 3. s* = 3/2 

d* = (df; - cp(s*)) = ( ~~~ 
-5/3 

4/3 10/3) 
* 1/3 

4/3 * 

xi = - 5/3, xi = -1/3, x; =0, 

The directed cycles of Theorem 5 are 

.8 =.8' = {(I, 2), (2, 3), (3, I)}, 
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and the minimum in Theorem 6 is attained by (Zl' Z2)E C2 (G O) where 

zi = {(I, 2), (2, 3)}, zl = {(I, 3)}, D(z 1) = -1, 

zi={(1,2)} , zz={(3,2),(1,3)}, D(Z2)=-4 

and N(Zl)=I, N(Z2) = -1. 

7. Asymmetric Scaling 

Let A = (AijH= 0 be a non-negative m x n-matrix. The matrices of the form X A Y 
with XED;:; and YED;; are called asymmetric scalings of A. The measure of a 
asymmetric scaling is given by 

where Eo:={(i,j):Aij>O}. 

Problem 4. Find the infimum 

max (XAY)ij 
(X Y) = (i,])eEo (7.1) 

y , min (XAY)kl 
(k,l) eEo 

y:=inf{y(X, Y): XED;:;, YED;;} 

and diagonal matrices X*ED;:;, Y*ED;; with y(X*, Y*)=y . 

We put aij:=logAij , (i,j)EEo, and 

xi:=-logXi, i=I, ... ,m, if X=diag(X 1 , ... ,Xm)ED;:;, 

Y/= -log 1], j=l, .. . ,n, if Y=diag(Y1, ... , ¥,,)ED;;. 

Taking the logarithm of (7.1) leads to 

log y(X, Y) = max (au - Xi - y) - min (au - Xi - yJ 
(i,j)eEo (i,j)eEo 

Hence, the Scaling Problem 4 is equivalent to 

Problem 4'. Find the infimum 

!logy= inf max laU-xi-Yjl 
X f, Y j (i,])eEo 

and numbers xi, i = 1, ... , m, and yj, j = 1, ... , n, for which the infimum is achieved. 

Meanwhile, many people have studied the Problems 4 and 4' or related 
topics. We do not intend to survey these results, but have listed a few of these 
articles in the References below. We only want to point out that the Prob­
lems 4 and 4' are equivalent to the minimum cycle mean problem in a 
properly chosen weighted directed graph G. More detailed, we shall prove 
Theorem 7 below by introducing G as follows. We put 

V:={1 , 2, ... ,m+n}, 

E: = {(i, m + j); (m + j, i) :(i,j)EEo} S V x V, 
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and define the weight function d: E-4JR by 

Theorem 7. Let A * denote the minimum cycle mean of the weighted directed 
graph G = (v, E, d). Then, 

-tlog l' = -A*; 

and the numbers (Xl' ... ,Xm+n)EJRm+n are a solution of 

if and only if 
xk+dkl-Xl~A*, (k,I)EE 

max laij+x;-xjl=-tlogl'. 
(;,j)eEo 

Proof The inequalities (7.3) are equivalent to 

and hence to 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

That already concludes the proof of Theorem 7 since, by ' Corollary 1, A* is the 
largest number for which (7.3) has a solution xEJRm+n. 0 

Theorem 7 shows that any algorithm which solves the minimum cycle 
mean problem is also applicable to the Problems 4 and 4'. For instance, if we 
apply our Algorithm 1 of Sect. 3, we obtain the recurrences 

x;(k):=max{x;(k-l); aij- y/k-l):j= 1, ... ,n}, i= 1, ... ,m, (7.7 a) 
and 

y/k): =min {y/k -1); aij-x;(k -1):i = 1, ... , m}, j = 1, ... , n, (7.7b) 

which we have to compute for k = 1,2, ... , m + n until we can apply (3.9) for the 
computation of A*. 

In [10; Algorithm 1] however, the recurrence (7.7a) is the same, but (7.7b) 
is replaced by 

Yj(k):=min{Yj(k-l); aij-x;(k):i= 1, ... ,m}, j= 1, ... ,n, (7.7b)' 

using the latest value of the Xi' 

But then, we only need to compute (7.7 a), (7.7b)' for k = 1, ... , n, which is an 
essential improvement. 
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