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A scaling of a nonnegative matrix A is a matrix XA Y -I. where X and Yare nonsingular. 
nonnegative diagonal matrices. Some condition may be imposed on the scaling, for exa'mple. 
when A is square, X = Y or det X = det Y. We characterize matrices for ' which there exists a 
scaling that satisfies predetermined upper and lower bound. Our principal tools are a piecewise 
linear theorem of the alternative and a theorem decomposing a solution of a system of equations 
as a sum of minimal support solutions which conform with the given solutions. 
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1. Introduction 

A symmetric scaling of a nonnegative, square matrix A ~ 0 is a matrix of the 
form XAX- ' where X is a nonnegative, nonsingular, diagonal matrix having the 
same dimension as A. An asymmetric scaling of a nonnegative rectangular matrix 
A ~ 0 is a matrix of the form XA y-l where X and Yare nonnegative, nonsingular, 
diagonal matrices having appropriate dimensions. Such an asymmetric scaling is 
called constrained, if the corresponding diagonal matrices X and Y can be chosen 
such that det X = det Y. There are many models in which a matrix can be replaced 
by anyone of its scalings without changing the character of the problem (e.g. linear 
programming). A number of recent investigations studied the problem of finding 
and characterizing scalings of a matrix which are efficient in some way, e.g. ~ank 
(1979), Bauer (1959, 1963), Curtis and Reid (1972), Fulkerson and Wolfe (1962), 
Hamming (1971) and Tomlin (1975). Scaling problems occur in many applications, 

* This research was partially supported by National Science Foundation Grants ENG-78-25182 and 
MCS-80-26132. 
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e.g. input-output models in economics, e.g. Bacharach (1970) and telecommunica
tion, e.g. Orchard-Hays (1968). They are also related to problems in approximation 
theory, e.g. Golitschek (1982). 

The systematic theoretical study of diagonal scaling problems has a history of 
15-20 years. We now give a condensed (and incomplete) account of this history 
as it affects the present paper. An early paper, Fielder and Plak (1969), examined 
an additive scaling problem whose multiplicative analog requires the elements of 
the matrix to be positive. This condition was relaxed in Engel and Schneider (1973), 
where diagonal scaling theorems are proved for irreducible nonnegative matrices, 
with some extensions to reducible nonnegative matrices by use of the Frobenius 
normal forms. The papers mentioned so far use as their principal tool circuit 
products of elements of the matrix (such as occur in the evaluation of determinants). 
In Saunders and Schneider (1978) the simple but crucial observation was made 
that restrictions such as irreducibility could be removed by the consideration of 
general cyclic products which allow reverse arcs. Diagonal scaling problems could 
now be reformulated as fairly standard problems in graph theory or the duality of 
cones, see Saunders and Schneider (1979), or as linear programming problems, see 
Rothblum and Schneider (1980). It is the purpose of the present paper to continue 
the unification of diagonal scaling problems by the methods of linear programming 
and to obtain additional results. A new feature of our paper is the introduction of 
cyclic products which draw their elements from more than one matrix. Another 
consequence of the reformulation referred to above has been the application of 
specially developed variants of algorithms employed in combinatorial optimization 
to diagonal scaling problems, e.g. v. Golitschek (1980) and Engel and Schneider 
(1982). It is planned to implement the results of this paper, which are theoretical, 
for publication elsewhere. 

In greater detail, it is the aim of our paper to characterize matrices which have 
scalings that satisfy predetermined upper and lower bounds, see Sections 4 and 5. 
As corollaries we obtain known results where only the upper (or lower) bound is 
given, or where the two bounds coincide. A sample question concerning constrained 
asymmetric scalings is: 

Given nonnegative matrices B, A, C, are there nonnegative 
diagonal matrices X and Y with det X = det Y for which B.;;; 
XAy-I.;;;C? (1.1) 

Usiflg techniques related to those found in Saunders and Schneider (1978, 1979) 
and Rothblum and Schneider (1980) we derive an equivalent formualtion of the 
scaling problem: 

Given a real rectangular matrix Ll a~d vectors a, b, c, f of appropri-
ate size, is there a vector x for which b .;;; a + Llx .;;; c and fT x = 0 ? (1 .2) 

We answer this question by means of an equivalent condition (see (1.3) below) 
given by a theorem of the alternative, which is piecewise linear as it involves the 
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positive and negative parts of a real vector w, respectively, defined by w'" = 

max(w,O) and w - = max( -w, 0), see Section 2. Specifically, we show that (1.2) is 
equivalent to: 

The matrix L1 which occurs in (1.3) is the incidence matrix of a graph and f is a 
vector whose entries are ± 1. We strengthen our theorem of the alternative by 
showing that (1.2) is equivalent to a weaker form of (1.3) where one considers only 

. minimal support solutions of L1 T w = 0 or L1 T W = ± f, which are called, respectively, 
cycles and pseudodiagonals of the corresponding graph. This is done by using a 
conforming decompositions theorem of solutions to linear systems proved in 
Section 2. The homogenous case of this theorem is well known (see Rockafellar 
(1968, p. 109». 

As we have just explained, our considerations of scalings of matrices ~ave led 
to a theorem of · the alternative which involves conforming decompositions of 
vectors. We attach equal importance to each of the three types of results mentioned 
in the title of our paper and presented here. 

One can view upper and lower bounds on a scaling as a requirement that a 
(multiattribute) efficiency level must be satisfied. We hope that our theoretical 
analysis will eventually lead to a better understanding of the relationship between 
theoretical properties and numerical efficiency of scalings. 

2 • . Conforming decompositions of solutions to linear systems 

The purpose of this section is to establish a conforming decomposition of solutions 
to a system of linear equations. The result concerning homogenous systems 
generalizes a result of Tutte (1956) and is well known (e.g. Rockafellar (1968, p. 
109». We first need a few definitions. 

Let IR be the real field and let IR ... be the set of nonnegative reals. By IRmn (resp. 
lRZ'n) we denote the set of all m x n matrices with elements in IR (resp. IR+). As 
usual, IRn (resp. IR~) will stand for IRnl (resp. IR~\ By convention, the empty sum 
of vectors in IRn is defined to be zero. . 

Let x E IRm. The support of x, denoted S(x), is defined to be the index set {i: Xi "'" OJ. 
Also, we define x'" and x- to be, respectively, max{x,O} and max{-x,O} where 
these maxima are taken elementwise. We also let Ixl = x'" +x-. Next, if x, y E IRm, 
we say that x conforms to y if S(x)s:;S(y) and for i=1, ... ,m, XiYi~O. (This 
definition is asymmetric in x and y and follows Tutte (1956, p. 22». We say that 
Xl, . .. ,xq 

E Rm are symmetrically conforming if for every r, s = 1, ... , q and i = 
1, ... , m, xix: ~o. 

We consider solutio~s to linear systems of the form 

D{=d, E{ ';;e 
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where D and E (resp. d and e) are matrices (resp. vectors) of appropriate sizes. 
A solution x to such a system is called a minimal-support solution if x is nonzero 
and there exists no solution y;eO to the above system with S(y)cS(x) (where we 
use c to denote proper inclusion). We remark that x = 0 has to be excluded in 
this definition only when d = 0 ~ e. In this case, if x is a (minimal-support) solution 
of the above system, we call {ax: a E lit .. } a minimal-support solution ray. 

Theorem 2.1 (Rockafellar (1967, p. 109». Let A E [Rmn. Consider the system 

A~=O. 

Then 
(a) The system (H) has a finite number of minimal-support solution rays. 

(H) 

(b) For every solution x of (H) there exists minimal-support solutions of (H), 
Z I, ..• , zP, such that x = L~;, z' and z I, .•. , zP all conform to x. 0 

Extensions of Theorem 2.1 in the setting of oriented matroids appear in Bland 
(1974) and Bland and Las Vergnas (1979). Using a familar technique. e.g. Bachem 
and Grotschel (1982). we now derive a theorem on inhomogenous systems. 

Theorem 2.2. Let A E [Rmn and b E [Rm. Consider the system 

A~=b. (G) 
Then 

(a) If b ;e O. then the system (G) has a finite number of minimal-support solutions. 
(b) For every solution x of (G) there exist minimal-support solutions of (H). 

x I • . ..• x
q

• minimal-support solutions of (G). y I, ... , y' and positive numbers 
{3 {3 h th ", {3 - 1 - "q ,,,' {3 S d I q I , 

10· ... ,sue at L..s=1 s- ,X-L..,=IX +L..s=1 syan x •...• x.y •... ,y 
all conform to x. 

Proof. I For x E [Rn let i = (x T, 1) E [Rn ... l. Then x is a (minimal-support) solution of 
(G) if and only if i is a (minimal-support) solution of 

(A, -b)~ = O. 

Hence, by the first conclusion in Theorem 2.1, the number of minimal-support 
solutions of (G) is finite. proving (a). 

Next observe that by Theorem 2.1 there exist minimal-support solutions 
ii, ... ,iP of (f:I), all conforming to i such that i = L~; I ii. By the conformality 

'condition, i~+, ~O for j = 1, ...• p. For j = 1, ...• p, let zi E [Rn consist of the first 
n coordinates of ii and let 1= {j : i~+, > O} and K = {j : i~+, = O} = {I, ... ,p }\l. 
Th - "p i -" -i [( -i )-1 i]" i M ,,-i - 1 d en x - L..j;1 Z - L..jelz,,+1 Z,,+I Z + L..jeKz. oreover, L..ielz,,+l - , an 
(i~+d-'Zi for jEI are minimal-support solutions of (H) all conforming to x and 
zj for j EK are minimal-support solutions of (0) all conforming to x. 0 

The following two examples illustrate conforming decompositions of the type 
established in Theorem 2.2. In the first example each solution of the given system 

I The current proof is due to Alan Hoffman. 



M.v. Golitschek, U.G. Rothblum, H. Schneider / Conforming decompositions and scalings 295 

has a unique conforming decomposition. This example also illustrates that the 
foIlowing are possible: t> I, q > 0 or q = O. The second example illustrates that, 
in general, non uniqueness of these decompositions is possible. 

Example 2.3. Let A = (1, -1) and b = (1). Then {x : Ax = b} = {(a, a _1)T : a E IR}, 
Let x = (a, a _1)T be a solution of A~ = b. Then the (unique) conforming decompo
sition of x = (a, a -1) is given by: x = (I, O)T +(a -I, a _1)T when a ~ I, x = 
a(I,O)T+(1-a)(O,-1)T when O"'a ... l, and x=(O,-l)T+(a,a)T when a ... O. 
When 1 ... a and a ... 0 there clearly exist solutions y of the homogeneous equation 
which conforms to x, but no such y exists when 0 < a < 1. 

Example 2.4. Let 

_ (1 -1 0 
A- 0 0 1 and b =G). 

Then x = (1, -I, I, _1)T has two conforming decompositions given by 

x = 0.5(2, 0,2, O)T +0.5(0, -2,0, _2)T = 0.5(2, 0, 0, _2)T +0.5(0, -2,2, O)T. 

We now compare and contrast Theorem 2.2 with the following well-known 
'Resolution Theorem'. 

Theorem 2.5 (Motzkin (1936, p. 40), d. Goldman (1956». Consider the inequalities 

(G') 

and the corresponding homogeneous inequalities 

(H') 

Then there exist solutions x I, •.. ,xq of (H') and solutions y I, • , • , Y I of (G') such 
that every solution x of (G) is a nonnegative combination of x I, .•• , x

q 
plus a convex 

b· . {I I 0 com matton 0 y , ... , y . 

In the case of equalities, Theorem 2.5 is an immediate consequence of our 
Theorem 2.2. The general case of Motzkin 's theorem is also obtained from Theorem 
2.2 by a standard transformation of an inequality system to an equality system. 
Conversely, it is possible to obtain Theorem 2.2 from Theorem 2.5. When the 
solution set S of (G') is pointed, (i.e. contains no lines) one can require that y I, .. . , Y I 
(resp. x I, ... ,xq

) in Theorem 2.5 to be extreme points (resp. extreme rays) of the 
polyhedron S. In particular, this holds for the set of solutions of (G) augmented 
by nonnegativity and/or nonpositivity constraints on each of the coordinates. We 
remark, without proof, that for such systems, the minimal support solutions are 
precisely the extreme points of the corresponding polytope and the extreme rays 
of that polytope consist of minimal-support solutions of the corresponding 
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homogeneous system. Thus our Theorem 2.2 follows from Theorem 2.5 by consider
ing separately each of the 2" systems obtained by adjoining to (G) a set of 
non negativity and/or nonpositivity constraints. 

3. A piecewise linear Theorem of the Alternative 

The purpose of this section is to obtain a Theorem of the Alternative that gives 
necessary and sufficient conditions that a linear system having upper and lower 
bounds inequalities has a solution. 

Theorem 3.1. Let A E IRm", dE IR" and b, c E IRm where b ~ c. Then the following 
three conditions are equivalent: 

(a) The system 

(3.1) 

has a solution. 
(b) Let w E IRm. If either AT w = 0 or AT w = d or AT w = - d, then 

c TW+ -b TW-;;='O. (3.2) 

(c) Let WE IRm. If w is a minimal-support solution of one of the following three 
systems: ATT/ = 0, ATT/ = d, ATT/ = -d, then (3.2) holds. 

Moreover, the above equivalence holds when (a) is weakened by replacing dT f. = 0 
in (3.1) by dT f.;;='0 (resp. dTf. ~O), (b) is weakened by not requiring that ATw =-d 
(resp. AT w = d) implies (3.2) and (c) is weakened by not requiring that a minimal
support solution waf A TT/ = -d (resp. ATT/ = d) satisfies (3.2). 

Proof. (a) ~ (b): First, observe that by a standard application of Farkas Lemma 
(e.g. Gale (1960, Theorem 2.7, p. 46) (a) is equivalent to the implication 

(3.3) 

The fact that (3.3) implies (b) is straightforward. To see the reverse implication, 
assume that (b) holds and u, v E IR:' and y E IR satisfy A T(U - v) = yd. We will show 
that c TU -b TV ;;=.0. First consider the case where y,c O. Let w = lyl- l(U -v) and 
z = lyl-1u - W +. As ly\-lU;;=' 0 and ly\-lU = w + \y\-lV;;=' w we have that lyr1u;;=. 
max{O, w} = w +, assuring that z ;;=. O. Hence, as c ;;=. b, we have that c T z ;;=. b T z. Also, 
as w+-w-=W=\y\-l(U-V), we have that \y\-lV-W-=\y\-lU-W,+=z. Now, if 
y > 0 then AT w = d and if y < 0 then AT w = -d. In either case (b) implies that (3.2) 
holds. Consequently, 

c TU -c TV = Iyl[c T(ly\-lU)_b T(lyl-1v)] 

= \yl[c T(W+ +z)-b T(W- +z)] 

= Iyl[c TW+ -b TW-)+(C TZ -b TZ)];;='O. 
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The, case where i' = 0 follows similarly by setting w = u - v. Thus the proof that 
(b) implies (3.3) is complete. establishing the equivalence of (a) and (b). 

(b) ¢> (c): The implication (b):::::> (c) is trivial. Next assume (c) holds and assume 
that either ATw =Oof ATw=d or ATw=-d. It follows from Theorem 2.2 that 
h . .. I I' I I f h AT AT t ere eXist minima -support so utlOns w , ...• w 0 t e system 1/ = w. 
.. I I' 1+1 I+q f h AT 0 d .. minima -support so utlOns w •...• w 0 t e system 1/ = an posItive num-

~I 1 ~I ,~I+q, d 1 I+q bers {3h ..•• {31 such that ~,~I {3, = . w = ~, = 1 {3,w + ~' =I+l W an w •...• w 
all conform to w. In particular. W+=L:=l{3,(W't and w-= 
L:=l (3,(w')- + L::~+l (w')-. It follows from (c) that for s = 1 •...• t +q c T(W,t-
b T(W')-~O. Thus. . 

I I+q 
cTw+-bTw-= L {3.[c T(w't-b T(w')-]+ L [cT(w't-bT(W')-]~O, 

5 - 1 s=I+1 . 

completing the proof that (c) implies (b). 
Finally. the equivalence of the weakened forms of (a). (b) and (c) follows from 

analogous arguments. 0 

Observe that w is a solution of the system AT 1/ = d if and only if -w is a solution 
of the system AT1/ =-d. Also, recall that (-wt=w- and (-w)-=w+. These 
observations allow one to replace the requirement (3 .2) by 

(3.4) 

in parts (b) and (c) of Theorem 3.1. Of course, one can combine (3.6) and (3.2) to 
a joint inequality 

(3.5) 

We remark that (a) implies that b::;; c, but as the following example illustrates 
(b) and (c) can hold even when b~c. We remark that our proof shows that (b) and 
(c) are equivalent independently of the condition b ::;; c. 

Example 3.2. Let 

Then the only solutions to AT 1/ = 0 are of the form w = a (1, 1) T, where a E IR, and 
for these vectors either w + = W or w - = w; in either case (3.2) is satisfied. 

4. Symmetric scalings of square matrices 

In this section we consider symmetric scalings of square matrices. After appropri
ate definitions, we derive our main result (Theorem 4.1). From it we derive a 
number of corollaries most of which are known. 
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For a positive integer s let (s}={I, ... , s}. A (directed) graph G is an ordered 
pair (Gv, G a) where G a 5; G u x G u• In this paper we have G u = (n) for some positive 
integer n. We order G a lexicographically, viz. Ga = (glo ... , gm) where m denotes 
the number of elements of Ga. If G is a graph, the incidence matrix of G, denoted 
r(G), is the n x m matrix defined in the following way: if g, = (i, j) then 

{

I if k = i ¥- j, 

r( G h, = -1 if k = j ¥- i, 

o otherwise. 

(Observe that r(GL = 0 if g, = (i, i) for some i E (n}.) A circulation of G is a vector 
w E ~m such that r(G)w = O. A cycle of G is a vector w ¥- 0 with w, E {-1, 0, 1} for 
r = 1, ... , m where w is a minimal-support solution to the system r(G)w = O. A 
circuit (or directed cycle) is a cycle w of G with w ~ O. 

Let A E ~nn. The (directed) graph associated with A, written G(A), has G(A)v = 
(n) and G(A)a={(i,j)E(n}x(n}IAii ¥-O}. Also, the incidence matrix assoCiated 
with A, written r(A), is the matrix rcG(A)). 

If A E ~:n and y E ~m, with gt. ... , gm being the elements of G(A)a when ordered 
. lexicographically, we define 

m 

lIy(A) = nAir, 
,=1 

where for each r in the above product, (i, j) is chosen as the (unique) pair with 
g, = (i, j). Observe that lIy(A) = lIy -(A)/ lIy (A). Notice that if B is any matrix in 
lR~m we may use the notation lIy(B) = n;':, 1 Brr without difficulty, provided that 
y, ~ 0 whenever B i; = O. (We use the convention 0° = 1.) The matrix A involved will 
not appear explicitly in the notation and will be clear from the context. If lIw -(B) = 0 
in (4.1) below and elsewhere the inequality of the type lIw(A)~IIw ·(C)/IIw-(B) 

is to be interpreted as IIw-(B)IIw(A)~IIw+(C). 

Theorem 4.1. Let B, A, C E ~:n with B ~ C and G(B)a 5; G(Ala 5; G(C)a' Then 
the following are equivalent: 

(a) There exists a nonsingulardiagonal matrix X E ~:n for which B ~XAX-l ~ C. 
(b) For each circulation w of G (A), 

IIw(A) ~ IIw+(C)/ IIw -(B). (4.1) 

(c) For each cycle w ofG(A) (4.1) holds. 

Proof. First assume that G(A)a = G(B)a = G(C)a' Let IG(C)la = m and let a, b, c E 

~m be defined by 

a, = log A jb b, = log Bib C, = log Cb (4.2) 

where g, = (i, j) (i.e. (i, j) is the rth element of G(A)a when ordered lexicographi
cally). It is immediate to see that, with r = r(A), (a) is equivalent to the existence 
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of a solution to the system 

b:;;;;a+rTg:;;;;c 

and (b) and (c) are, respectively, equivalent to the implications 

WE~m is a circulation ~ cTw+-bTw-~aTw, 

WE~m is a cycle ~ cTw+-bTw-~aTw, 

(4.3) 

(4.4) 

(4.5) 

where circulations and cycles are with respect to G(A). The fact that the existence 
of a solution to (4.3) is equivalent to both (4.4) and to (4.5) follows immediately 
from Theorem 3.1 (with d = 0), and the definitions of circulations and cycles. 

We now consider the general case where G(A)a S;;; G(B)a S;;; G(C)a' Consider the 
matrix C' obtained from C by replacing Cij by 0 for all i, j with Aij = 0 < Cj. To 
see that (a) ~ (b), assume that (a) holds with the diagonal matrix X. EVidently, 
B':;;;; X-I AX where B' is obtained from B by replacing Bij = 0 for which Aij > 0 
by (X-IAX)ij. As B', A and C' satisfy (b). Since fI", (B')~fIw-(B) and fIw ·(C)~ 
fIw+(C') for each circulation of A, it easily follows that B, A and C satisfy (b). The 
implication (b) ~ (c) is trivial. It remains to see. that (c) ~ (a). Assume that (c) 
holds. Since the number of cycles of G(A) is finite, it follows that for some a > 0 
and matrix 13' obtained from B by replacing Bij = 0 for which Aij > 0 by a, satisfies 
(4.1) together with the matrices A and C' for every cycle w of G(A)~_ As B', A 
and C' satisfy (c) and it follows that B', A and C' also satisfy (a), which immediately 
implies that B, A and C satisfy (a). 0 

Inequality (4.1) in conditions (b) and (c), respectively, of Theorem 4.1 may be 
given in an alternative form (cf. the remark following Theorem 2.2). Evidently, w 
is a circulation (resp. a cycle) of G(A) if and only if -w is. Further, for every 
y E ~m, (-y t = y -, (-y)- = y + and 'IT _y(A) = 'lTy(A)-I. Hence, we can replace (4.1) 

by 

(4.6) 

Of course, we could also augment (4.6) by (4.1) thereby replacing (4.1) in Theorem 
4.1 by 

(4.7) 

The following example illustrates that the condition B :;;;; C cannot be dropped 
from Theorem 4.1. Of course, (a) implies that B :;;;; C and as our proof establishes 
(b) and (c) are equivalent, independently of the condition B :;;;; C. 

Example 4.2. Let 

A ~B~(~ ~ ~). 
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It is easy to see that the two cycles of G(A) are (1, 1,1) and (-1, -1, -1). If w is 
either of these, then JIw(A) = JIw(B) = JIw(C) and either w = w+ or w = w -. Con
sequently, (b) and (c) are satisfied, though B 23 >C23• One can modify the .above 
example and obtain an alternative (trivial) example by setting A31 = B31 = C31 = O. 
Then G(A) has no cycles or circulations and (b) and (c) are trivially satisfied, though 
(still) B 23 > C23 • 

It is easily seen that if part (a) of Theorem 4.1 holds then, necessarily, G(B)a!;;; 
G(A)a!;;; G(C)a' However, parts (b) and (c) of Theorem 4.1 can hold when either 
G(B)a~G(A)a or G(A)a~G(C)a (though part (a) will necessarilY,be violated). 

Example 4.3. Let 

B =(~ ~), A =C=(O 0) o O· 

Part (b) of Theorem 4.1 trivially holds (as G(A) has no Circulations), but part (a) 
does not hold as G(B)a~ G(A)a' 

Corollary 4.4 (Saunders and Schneider (1978, Theorem 2.1 and Corollary 2.4» . Let 
A, C E IR~" with G(A)a = G(C)a' Then the following are equivalent: 

(a) There exists a nonsingular diagonal matrix X E IR~" such that XAX- I = C. 
(b) For each circulation w of G(A) 

(4.8) 

(c) For each cycle w of G(A), (4.8) holds. 

Proof. Let B = C. Since JIw+(B)/JIw -(B) =JIw(B) we have that (4.7) is equivalent 
to (4.8). Consequently, the corollary is immediate from Theorem 4.1 and the 
following remark. 0 

Corollary 4.5 (Saunders and Schneider (1979, Theorem 5.2 and Remark 5.6». Let 
A, C E IR:" with G(A)a!;;; G(C)a' Then the following are equivalent: 

(a) There exists a nonsingular diagonal matrix X E IR~" such that XAX- I 
,.,;;; C. 

(b) For each nonnegative circulation w of G(A) 

(4.9) 

(c) For each circuit w of G(A), (4.9) holds. 

Proof. The corollary is immediate from Theorem 4.1 and the observation that 
(4.1) is immediate when w ;:;. O. 0 
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5. Asymmetric scalings of rectangular matrices 

In this section we consider asymmetric scalings of rectangualr matrices. We start 
this section with some additional definitions. Our first result and its corollary are 
then obtained by applying resuits of the previous section to the bipartitie expansion 
(definition to follow) of the matrix under consideration. We then derive our main 
result concerning asymmetric scalings (Theorem 5.5). From it we derive a number 
of corollaries most of which are known. 

A directed graph H = (Hu, Ha) is called (p, n )-bipartite, where p and n are positive 
integers, if Hu = (p +n) and Ha S; {1, ... , p} x {p + 1, ... , p +n}. Cycles of such a 
graph are called polygons. We typically use .:1 to denote the incidence matrix of 
such a graph. Let H be a (p, n)- bipartite graph with incidence matrix .:1 E ~p+".m. 
A pseudodiagonal of H is a vector x E ~m with .:1x = f where f E ~p+" is defined by 
fr = 1 for r = 1, ... , p and fr = -1 for r = p + 1, ... , p + n. We call a pseudodiagonal 
integral if in addition Xr is an integer for r = 1, ... , p + n. (Our definitions differ 
from those introduced in Saunders and Schneider (1978) where integrality is 
required in the definition of a pseudodiagonal.) A minimal-support pseudodiagonal 
of H is a minimal-support solution to the system .:1~ = f. A diagonal of H is a 
pseudodiagonal w with Wi E {O, 1} for i = 1, ... , m. Some relationships between 
tb~se definitions are summarized in the Appendix. In particular, H has no 
pseudodiagonals when p ,c n. Other properties of pseudodiagona\s can be found in 
Saunders and Schneider (1978). 

Let A E ~p" . The bipartite expansion of A is defined to be the matrix A * given by 

A*= (0 A) o 0' 

' (where the zero matrices are of apporpriate dimensions). The (directed) 
(p, n )-bipartite graph associated with A, written H (A), is defined to be the graph 
G(A *). Also, the (p, n)-bipartite incidence matrix associated with A, written .:1(A), 
is the matrix r(A *). If A E ~P" and y E ~'" where the number of elements in H(A)a 
is m, we define IIy(A) :3 IIy (A *), where IIy (A *) is defined as in Section 4. Of course, 
when A is square, IIy (A) = IIy (A *) and therefore this definition is consistent with 
the one for square matrices. 

Theorem 5.1. Let B,A, C E ~p" with B ~ Cand H(B)a s;H(A)a s;H(C)a' Then the 
following are equivalent: 

(a) There exist nonsingular diagonal matrices X E~? and Y E ~:" for which 
B~XAy-l~c. 

(b) For each circulation w of H(A) 

(c) For each polygon w of H(A) (5.1) holds. 
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Proof. If X E IR~ and Y E lR:n are nonsingular diagonal matrices and Z = X EB Y E 

IRP +
n

•
p

+
n

, then ZA *Z-I = C is equivalent to XA y-I = C, where A * is the bipartite 
expansion of A. The equivalence of (a), (b) and (c) now follows immediately from 
the fact that fly (A) = fly (A *), combined with the application of Theorem 4.1 to 
A*. 0 

Corollary 5.2 (Saunders and Schneider (1979, Theorem 3.1 and Remark 5.3». Let 
A, C E IRpn with H(A)a = H(C)a' Then the following are equivalent: 

(a) There exist nonsingular diagonal matrices X E 1Rt;" and Y E IR:" for which 
XAy- 1 =c. 

(b) For each circulation w of H (A ) 

flw(A)=flw(C). (5.2) 

(c) For each polygon w of H(A), (5.2) holds. 

Proof. The proof follows the same lines as that of Corollary 4.4. 0 

The analog to Corollary 4.5 is trivial. For A, C E IRpn with H(A) = H(C), one 
can always find nonsingular diagonal matrices X E 1Rt;" and Y E lR:n such that 
XA y-l:o;;; C. Also, H(A) has no nonnegative circulations. So, (a), (b) and (c) of 
Corollary 4.5 trivially apply to A * and C*. It therefore seems natural to impose 
some normalization condition on the corresponding diagonal matrices. 

Theorem 5.3. Let B, A, C E lR~n with B:o;;; Cand H(B)a S H(A)a sH(C)a' Then the 
following are equivalent: 

(a) There exist nonsingular diagonal matrices X E 1Rt;" and Y E lR:n with det X = 
det Y such that B :o;;;XA y-l:o;;; C. 

(b) For each circulation w of H(A) (5.2) holds and for each pseudodiagonal w 

of H(A) 

(5.3) 

(c) For each polygon w of H (A), (5.1) holds and for each minimal-support 
pseudodiagonal w of H(A), (5.3) holds. 

Proof. The proof follows the same lines as that of Theorem 4.1. 0 

The following example illustrates that, unlike Saunders and Schneider (1978, 
Theorem 4.6), it is not possible to weaken (b) in Theorem 5.3 by requiring that 
Uust) one pseudodiagonaJ of H(A) satisfies (5.3) (provided a pseudodiagonal of 
H(A) exists). . 

Example 5.4. Let 

B=G !), A=C2 ~2) and c=C ~2)' 
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Then b = (0, 0, 0, 1)T, a - (0,0,2, 2)T, c = (0, 0,1, 2)T, and 

L1 =( ~ -1 

° 

1 

° ° -1 

The only two cycles of H(A) are w=(l,-1,-1,1)T and -w. Now, w+= 
(l,0,0,1)T=(-W)-, w-=(0,1,1,0)T=(-wt, aTw=O. bTw+=1, bTw - =O, 
.cTw+=2 and cTw "=l. So, aTw=O . .;;;2=cTw~-bTw - and aT(-wl=O.;;; 
c T(-wt -b T(_W)-. Next, observe that u = w - is a diagonal (with u + = U = W - and 

- 0) S b T + T - 1 2 T T + T - + U = . 0, u - c u = .;;; . = a u = c u - bu. But v = w is a diagonal 
(with v + = v = w + and v - = 0) and aT v = 2 > 1 = C TV + - b TV -. 

A characterization of (p, n )- bipartite graphs having no pseudodiagonals is given 
in the Appendix. In particular, (p, n)-bipartite graphs have no pseudodiagonals 
when p ;t. n. When H(A) has no pseudodiagonals, conditions (b) and (c) of Theorem 
5.3 reduce, respectively, to the corresponding conditions of Theorem 5.1. Formally, 
we obtain the following immediate corollary . 

. Corollary 5.5. Let B, A, C E IRpn with B .;;; C and H(B)a c;;H(A)a C;; H(C)a' If H(A) 
has no pseudodiagonals then there exist nonsingular diagonal matrices X E IR~P and 
y E lR:n such that B.;;; XA y-I.;;; C if and only if there exist nonsingular diagonal 
matrices X E IR~P and Y E lR:n with det X = det Y such that B .;;; XA Y -I .;;; C. 0 

The following two corollaries follow from Theorem 5.3 by the same arguments 
used to deduce Corollaries 4.4 and 4.5, respectively, from Theorem 4.1. 

Corollary 5.6. Let A, C E lR~n with H(A)a = H(C)~. Then the following are 
equivalent: 

(a) There exist nonsingular diagonal matrices X E IR~ and Y E lR~n with det X = 
det Y such that XA y - I = C. 

(b) For each circulation w of H (A) and for each pseudodiagonal w of H (A) . 

(5.4) 

(c) For each polygon. w of H(A) and for each minimal-support pseudodiagonal 
(5.4) holds. 0 

It was shown in Saunders and Schneider (1978, Theorem 3.3 and 4.6) that if 
H(A) has a pseudodiagonal, it is enough to suppose that (5.4) holds for each 
polygon and just one pseudodiagonal of H(A) in order to conclude (a) of Corollary 
5.6. 

Corollary 5.7 (Saunders and Schneider (1979", Theorem 5.7 and Remark 5.6». Let 
A, C E lR~n with H (A)a = H (C)a' Then the following are equivalent: 
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(a) There exist nonsingular diagonal matrices X E IR~ and Y E lR~n with det X = 
det Y such that XA y- I ~ C. 

(b) For each nonnegative circulation or nonnegative pseudodiagonal w of H(A) 

(5.5) 

for each nonpositive pseudodiagonal w of H(A) 

(5.6) 

(c) For each nonnegative cycle or nonnegative minimal-support pseudodiagonal w 
of H(A) (5.6) holds. 0 

When H(A) has no pseudodiagonals, conditions (b) and (c) of Corollary 5.7 
reduce, respectively, to the corresponding conditions of Corollary 5.2. Formally, 
we obtain the following immediate corollary. 

Corollary 5.8 (Saunders and Schneider (1979, Corollary 4.9». Let A, C E IRpn with 
H(A)a =H(C)a' If H(A) has no pseudodiagonals then there exist .nonsingular 
diagonal matrices X E IRPP and Y E IRnn such that XA y- 1 = C if (;lnd only if there 
exist nonsingular diagonal matrices X E IRPP and Y E IR"" with det X = det Y such 
that XA y- 1 = C. 0 

Our methods can be used to study asymmetric and symmetric scalings of the 
form XAy-l where {log Xii} and {log Yii} satisfy a linear relation other than 
L log Xii = L log Yii. We next state the results corresponding to the inequalities 
Li log Xii ~ L log Yii and L log Xii ~ L log Yii (i.e. det X ~ det Y and det Y ~ 
det X, respectively). We did not find other interesting examples and therefore do 
not include a formal presentation of the general result. 

Theorem 5.9. Let B, A, C EIR~" withB ~ CandH(A)a r;;.H(B)a r;;.H(C)a' Then the 
following are equivalent: 

(a) There exist nonsingular diagonal matrices X E IR~ and Y E lR~n with det X ~ 
det Y (resp. det X ;?;det Y) such that B ~XA y- I ~ C. 

(b) For each circulation w of H(A) (5.1) holds and for each pseudodiagonal w 
ofH(A) 

Ilw"(B)/ Ilw-(C) ~Ilw(A) (5.7) 

(resp. 

(5.8) 

(c) For each cycle w of H(A), (5.1) holds and for each minimal-support 
pseudodiagonal w of H(A), (5.7) (resp. (5.8» holds. 0 
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Appendix 

In this Appendix we summarize some properties of pseudodiagonals. 

Lemma A.1. Let H be a (p, n )-bipartite graph for some positive integers p and n. Then 
(a) Every minimal-support pseudodiagonal of H is an integral pseudodiagonal 

ofH. 
(b) Every diagonal of H is a minimal-support pseudodiagonal of H. 
(c) Every nonnegative integral pseudodiagonal of H is a diagonal of H. 

Proof. Assertions (b) and (c) are straightforward. Also, assertion (a) is immediate 
from the (well-known) unimodularity of r(H) and the (standard) observation that 
if w is a minimal-support pseudodiagonal of H then the columns of H corresponding 
to nonzero coordinates of ware independent. 0 

We next characterize bipartite graphs having pseudodiagonal. A simple necessary 
and ·sufficientcondition was obtained by Saunders and Schneider (1978). We slightly 
generalize their results. 

We need two additional definitions. A component of a graph G = (Gu, G a ) is an 
equivalence class under the (equivalence) relation defined on Gu by saying that i 
and j are equivalent if i = j or there exist gl> ... , g, E Ga and i I> ••• , it E Gu such 
that, with io = i and it = k, for s = 1, ... , t either gs = (is-I> is) or gs = (is> is -1). We 
say that G is connected if it has only one component. 

Lemma A.2. Let H be a (p, n )-bipartite graph for some positive integers p and n. 
Then the following are eq~ivalent: 

(il) H has a pseudodiagonal. 
(b) H has an integral pseudodiagonal. 
(c) H has a minimal-support pseudodiagonal. 
(d) Each connected component of H has as many vertices in {1, ... , p} as in 

{p + 1, ... ,p + n}. 
Moreover, a necessary condition for the above (equivalent) conditions to hold is 

that p = n. Also, a sufficient condition for the above (equivalent) conditions to hold 
is that p = n and in addition R is connected. 

Proof. The equivalence of (a), (b) and (c) follows by Lemma A.l. The equivalence 
of (b) and (d) was established in Saunders and Schneider (1978). The necessary 
condition and the sufficient condition for (a)-(d) to hold are immediate from (d). 0 

We remark that Saunders and Schneider (1978, p. 214) have illustrated that 
there exist bipartite graphs having no diagonals but having pseudodiagonals. 
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