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ON THE CONTROLLABILITY OF MATRIX PAIRS (A, K) 
WITH K POSITIVE SEMIDEFINITE* 

DAVID CARLSONt, B, N, DATTAI: AND HANS SCHNEIDER§ 

Dedicated to Emilie V, Haynsworth 

Abstract. The controllability of matrix pa'irs (A, K) is studied when K is positive semi-definite, and in 
particular when K is in the range of the Lyapunov map determined by A This extends previous work of 
Chen, Wimmer, Carlson and Loewy, and Coppel. 
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1. Introduction. This note is devoted to the study of the controllability of (A, K) , 
where A E en,n, K E Hn (the set of hermitian matrices in en,n), and K is positive 
semidefinite (which we shall write as K ~ 0). A well-known result, proved indepen­
dently by Chen [5] and Wimmer [11], states: 

THEOREM 1. Let A E en,n, and suppose that K = AH + HA * ~ 0 for some H, 
K E Hn. If (A, K) is controllable, then A has no eigenvalues on the imaginary axis and 
His nonsingular (and, in fact, the numbers of eigenvalues of A with positive and negative 
real parts equal respectively the numbers of positive and negative eigenvalues of H). 

Using Theorem 1, Wimmer extended previous results in the damping of certain 
quadratic differential equations involved in linear vibration problems. 

An example [3, p. 240] shows that the converse of Theorem 1 is false. However, 
working independently of Chen and Wimmer, Carlson and Loewy [3] established a 
converse under an additional hypothesis: 

THEOREM 2. Let A E en,n, such that A + ji -,6 0 for all eigenvalues A, J.t of A. Suppose 
that K = AH + HA * ~ 0 for some H, K E Hn. Then the following are equivalent: 

(i) (A, K) is controllable. 
(ii) H is nonsingular. 
The question thus arose as to the role of the additional hypothesis of Theorem 2 

in a more complete converse of Theorem 1. We answer this question by proving a 
result (Theorem 4) which will yield, under K = AH + HA * ~ 0, a condition equivalent 
to the controllability of (A, K) in terms of the spectrum of A and the non singularity 
of a matrix Ii determined by A and H The matrix Ii is obtained from H via projections 
associated with an A -modal decomposition of en; see § 2 for definitions. Our proof 
of this result will use Theorem 1 and a result in [3] preliminary to Theorem 2; the 
result itself contains Theorem 2 as a special case. 

As a consequence of Theorem 4 we will be able to discuss special cases (like that 
in Theorem 2) in which Ii may be replaced by H, that is, for which (i) and (ii) above 
are equivalent, This clarifies (see also [7]) Coppel's discussion in [6] of the relationship 
between dichotomies for linear differential equations and Lyapunov functions in the 
constant-coefficient case. Coppers work, along with that of Chen, Wimmer, and Carlson 
and Loewy, has motivated our investigations. 
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2. Definitions. So that our decompositions depend only on the spaces involved 
and nQt particular choices of bases for the spaces, we will set our results in an equivalent 
but seemingly more abstract setting. Let V be a finite-dimensional inner product space, 
and let L( V), H( V) be respectively the sets of linear operators and self-adjoint linear 
operators on V. K E H( V) is positive semi-definite iff (x, Kx) ~ 0 for all x E V. 

Let A E L( V) have spectrum a(A) = {A. I> ••• ,An}; let 5(A) be the number of 
eigenvalues Ai which are imaginary, and let ~(A) = n~j=I (Ai + X). Evidently ~(A) ,e 0 
is equivalent to a(A) n a( -A *) = 0, where A * is the adjoint of A, and 5(A) = 0 is 
equivalent to a(A) n iR = O. Thus ~(A),e 0 implies that 5(A) = 0; the converse is 
false. We denote the kernel· and image of A by Ker A and 1m A respectively, and the 
rank of A by p(A). 

Let A, BE L( V); the control space of (A, B) is C(A, B) = r:o 1m A'B, the 
smallest A-invariant space containing 1m B. Note that C(A, B) depends only on A 
and 1m B and that (because of the Cayley-Hamilton Theorem), 

n-I 

C(A,B)= I 1m A 'B. 
,=0 

The pair (A, B) is said to be controllable if C(A, B) = V. 
For A E L( V), we may decompose V (generally in a number of ways) as V = VI EEl 

••• EEl VI" so that each Vj is A-invariant, and so that the restrictions AI Vj of A to 
distinct Vj have disjoint spectra. Following Wonham [12, p. 18], we call such decomposi­
tions A-modal. In the finest A-modal decomposition of V the Vj are the generalized 
eigenspaces of the distinct eigenvalues of A. We call this the A-spectral decomposition 
of V. Another natural A-modal decomposition is obtained by choosing VI = V+, 
V2 = V _, and V3 = Yo, the direct sums of the generalized eigenspaces of the eigenvalues 
of A with, respectively, positive, negative, and zero real parts. We call this the A-inertial 
decomposition of V. 

If V = VI EEl· .• EEl Vp is an A -modal decomposition of V, for j = 1, ... ,p we let 
Ej denote the projection in L( V) onto Vj which annihilates L" j Vi. It is well-known 
that If=I Ej = I, that EiEj = 0, i,e j, and that each Ej is a polynomial in A, cf. [8, p. 
221]. Also, V = WI EEl· •• EEl Wp , where each"'] is the range in V of the corresponding 
projection Ef in L( V). For j = 1, ... ,p, as Vj is A-invariant, we may set 

(1) 

so that 

(2) 

and for K E H( V), we set 

(3) 

(4) 

A P 
Note that p(K) = Ij=I p(Kjj). 

p 

A= I A j , 
j=I 

A P 
K = I K jj . 

j=I 

The restrictions of the linear operations A and Aj to Vj are equal, and the 
restrictions to "'] of the Hermitian forms induced by K and K jj are equal: if x, y E "'], 

(y, Kjjx) = (y, EjKEfx) = (Efy, KEfx) = (y, Kx). 
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3. Results. 
LEMMA 1. Let A E L( V), and suppose that V = VI EEl· .. EEl Vp is an A -modal 

decomposition. If K E H( V), with K ~ 0, then C(A, i) = C(A, K). 
Proof. We observe that 

(5) C(A, i) = C(AI> Kll)EEl· .. EEl C(Ap, Kpp) j = 1, ... ,p, 
... p ... 

since ArK = Lj-I AjKjj, and 1m ArKjj S;; Vj, r = 0, . ~. , n -1; it follows that 1m ArK = rl 
L;=I 1m AjKjj . Thus to prove C(A, K) ;2 C(A, K), it is sufficient to show that 
C(A, K);2 C(Aj, K jj )' j= 1,' .. ,p. Since Ej is a polynomial in A, we have I 

• 
1m (AjKjj) = 1m (EjArEjKEf) s;; 1m (EjArEjK) s;; C(A, K) 

and the inclusion follows. (We have not used K ~ ° here.) 
To prove C(A, K) S;; C(A, i), we first note the easily-proved result that K ~ ° 

implies that Ker is;; Ker K. It follows that 1m K s;; 1m K and hence 1m ArK S;; 1m ArK, 
r = 1, ... , n -1. The result follows. 0 

THEOREM 3. Let AEL(V), and suppose that V= VlEEl"'EEl Vp is an A-modal 
decomposition of v. Suppose that K E H( V), with K ~ 0. Then the following are 
equivalent: 

(i) (A, K) is controllable. 
(ii) C(Aj , K jj ) = Vj, j = 1, ... ,p. 

(iii) (Ai) is controllable. 
(iv) (x, Kx) > ° for every eigenvector x of A *. 
Proof. The equivalence of (i), (ii), and (iii) follows immediately from (5) and 

Lemma 1. The equivalence of (i) and (iv) is a special case of [2, Lemma 3]. 0 
We remark that a related result which holds for all K E L( V) is known, cf. [12, 

p. 45, Exercise 1.5]. 
The equivalence of (i) and (iv) was noted in [3] (under the unnecessary assumption 

that IlA,e 0); it is in fact merely a rephrasing of Hautus' criterion for controllability 
(cf. [11]) in the case that K ~ 0. We cannot drop the condition K ~ ° from either 
Lemma 1 or Theorem 3: let V = C 2 = VI EEl V2 , where Vb V 2 are the coordinate 
subspaces, and let 

K =(0 1). 
1 0' 

then (A, K) is controllable, but C(A, K) = {a} since i = 0. 
In Theorem 3 we considered the controllability of pairs (A, K) where the only 

restriction on K is K ~ 0. We shall now assume that K = AH + HA * ~ 0, where 
HEH(V). We note that the mapping H~AH+HA* of H(V) into itself is onto 
H (V) if and only if Il(A) ,e 0. 

Before stating Lemma 2, we must take care of a trivial but awkward technicality !). 
which we require to relate our results to Theorems 1 and 2. If K = AH + HA *, note 
that K jj = AjHjj + Hj01 and indeed, for any c E C, Kjj = BjHjj + HjjBj, where Bj = 1 
A j+ c(L" j Ej). Then u(B) = u(AI Vj) U {c}. Hence, if Il(AI Vj),e 0, j = 1, ... ,p, we 
may choose c E R so that Il(Bj),e 0, j = 1, ... ,p. 

LEMMA 2. Let A E L( V), and let V = VI EEl· .. EEl Vp be an A -modal decomposition 
with Il(AIVj),eo, j=l,' ",p. Let H, KEHn with K=AH+HA*~O. Then 
C(A,K)=lmH. 

Proof. For j = 1, ... ,p, since Il(AI Vj),e 0, we choose c E R so that Bj = 
Aj+cL .. jEj has Il(Bj),eO. Also C(Bj,Kjj ) = C(Aj,Kjj ) and 

Bj~j+ HjjBj = AjHjj + HjjAj =Kjj~ 0. 
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By Corollary 2 of [3], then, 

1m ~j = C(Bj, K jj ) = C(Aj, K jj ) , 

and the lemma follows by Lemma 1 and (5). D 
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THEOREM 4. Let A E L( V) with c5(A) = 0. Suppose that V = VI EB· . ·EB Vp is an 
A-modal decomposition and that, for each j = 1, ... ,p, A(AI Vj) ~ 0. Let K = 
AH + HA * ~ ° for H, K E H( V). The following are equivalent: 

(i) (AK) is controllable. 
(ii) fI is nonsingular. 

(iii) (x, Hx) ~ ° for each eigenvector x of A *. 
(iv) (x, fIx) ~ ° for each eigenvector x of A *. 
(v) His nonsingular and (A*, H-I K) is controllable. 

Proof. We note first that c5(A) = ° guarantees that there exists an A-modal 
decomposition V = VI EB· . ·EB Vp for which A(AI Vj) ~ 0, j = 1,· .. ,p. 

The equivalence of (i) and (ii) follows immediately from Lemma 2. 
To show that (i) and (iii) are equivalent, note that for any x E V for which A * x = Ax, 

(x, Kx) = (x, (AH + HA*)x) = (A*x, Hx)+(x, H(A*x)) = (A +A)(x, Hx), 

and use condition (iv) from Theorem 3. To show that (iii) and (iv) are equivalent, we 
observe that if A * x = Ax, then ~ E Wj for some j, 1 ~ j ~ p, where Wj is defined in § 2. 
Hence (x, Hx) = (x, Hjjx) = (x, Hx). 

To show that (i) and (v) are equivalent, suppose that H is nonsingular. Then 

and the equivalence follows easily from [1, Thm. 4]. 0 
We state the special case of A-inertial decomposition as a 
COROLLARY 1. Let A E L( V) and let V = V + EB V _ EB Vo be the A -inertial decompo­

sition of v. Suppose K = AH + HA * ~ ° for some H, K E H( V). Then (A, K) is control­
lable if and only if c5(A) = ° and fI is nonsingular. 

Proof. If c5(A) = 0, then V = V+EB V_ is an A-modal decomposition with 
A(A/ V+) ~ 0, A(AiV-) ~ 0, and .Theorem 4 applies. 

If 8(A) ~ 0, then by Theorem 1, (A, K) is not controllable. 0 
As an example, let V = C 2 and let 

A =(l 0) H=(l 0) K=AH+HA*=(2 2»0 
2 -1 ' ° -1 ' 2 2 = . 

Here 8(A) = 8(H) = 0, yet (A, K) is not controllable. We have 

and 

A * * (1 1) H = EI HE I + E2HE 2 = 1 l' 

which is singular. 
Finally, we observe that if V = VI EB· .. EB Vp is any A-modal decomposition and 

each Vj is also H-invariant (in ·particular, this is true if p = lor if A and H commute), 
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then H commutes with all E j (cf. [8, p. 221]) and 

It is easily shown that Lf=I Ej El is nonsingular, so that Hand fI are singular or 
nonsingular together, and we may replace H by H in (ii) of Theorem 4. If, for example, 
all eigenvalues of A are known to have negative real part, then (A, K) is controllable 
if and only if H is nonsingular. This result is stated in [7]. 
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