Linear and Multilinear Algebra, 1983, Vol. 13, pp. 185-201 0308-1087/83/1303-0185 \$18.50/0 © 1983 Gordon and Breach Science Publishers, Inc. Printed in the United States of America

Analytic Functions of *M*-Matrices and Generalizations

ĸ

MIROSLAV FIEDLER

Czechoslovak Academy of Sciences, Institute of Mathematics, Zitna 25, 115 67 Praha 1, Czechoslovakia

and

HANS SCHNEIDER*

Mathematics Department, University of Wisconsin, Madison, WI 53706, USA

(Received December 23, 1981)

Dedicated to Ky Fan

We introduce the notion of positivity cone K of matrices in \mathbb{C}^{nn} and with such a K we associate sets Z and M. For suitable choices of K the set M consists of the classical (non-singular) *M*-matrices or of the positive definite (Hermitian) matrices. If $A \in \mathbf{M}$ and $1 \le p \le 3$ we prove that there is a unique $B \in \mathbf{M}$ for which $B^p = A$. If p > 3, this uniqueness theorem is false for general M and we prove a weaker result. We extend the result that for a Z-matrix A we have $A^{-1} \ge 0$ if and only if A is an M-matrix. Under an additional hypothesis on the positivity cone, we exhibit a class of entire functions f(z) such that for $A \in \mathbf{Z}$ we have $A \in \mathbf{M}$ if and only if there is a $B \in \mathbf{K}$ for which $f(B) = A^{-1}$.

§1. INTRODUCTION

Since their introduction as objects of study by Ostrowski [9], M-matrices have received a great deal of attention. A summary of the literature may be found in [4] and we choose to mention here just one of several papers by Fan on this topic, [6].

^{*}The research of this author was partly supported by the NSF under grants MCS 78-01087 and MCS 80-26132 and by the Deutsche Forschungsgemeinschaft (BRD) while on leave at the Mathematisches Institut der Universität, Würzburg, West Germany.

Here we shall consider some problems on analytic functions of M-matrices and M-matrix will mean *non-singular* M-matrix throughout. We investigate the existence and uniqueness of roots of an M-matrix which are also M-matrices. We find new characterizations of the set of M-matrices as a subset of the set of Z-matrices. We introduce generalization of M-matrices for which our results are proved.

We shall now summarize our paper in greater detail. In §2 we introduce generalizations of Z-matrices and M-matrices associated with certain cones of matrices which we call positivity cones. Thus for each positivity cone K we define the sets Z = Z(K) and M = M(K). If K consists of the (elementwise) nonnegative matrices, then Z and M are the sets of Z-matrices and M-matrices, respectively (and we reserve the terms *nonnegative matrix*, Z-matrix and M-matrix for this classical case). If K is the set of positive semi-definite (Hermitian) matrices, then Z is the set of Hermitians and M is the set of positive definite matrices and positive definite matrices and thereby respond to a research problem raised by Olga Taussky [11]. We also use a certain positivity cone to obtain a counterexample in §4.

In §3 we prove some very straightforward results on analytic functions f(z) such that $f(A) \in \mathbf{M}$ or $f(A) \in \mathbf{Z}$ whenever $A \in \mathbf{Z}$. For technical reasons, we confine ourselves to the subset \mathbf{Z}^* of \mathbf{Z} consisting of matrices A for which $A \leq I$ in the order induced by \mathbf{K} . If \mathbf{M} is the set of M-matrices and all orders of square matrices are considered we have a characterization of analytic functions f(z) with the property described. Examples of such functions f(z) are z^q , 0 < q < 1 and $\log z$. For these particular functions it is known that f(A) is a Z-matrix when A is an M-matrix. Ando [3] obtained these implications as special cases of very interesting results on Pick functions of M-matrices. However, our class of functions does not coincide with the Pick functions.

The results of §3 show that if $A \in \mathbf{M}$, p > 1, and $B = A^{1/p}$ then $B \in \mathbf{M}$. In §4 we investigate uniqueness properties and we show that for $1 \le p \le 3$, $B = A^{1/p}$ is the unique matrix in \mathbf{M} that $B^p = A$. For p > 3 we prove a weaker theorem: $B = A^{1/p}$ is the unique matrix for which $B^p = A$ and B, B^2, \ldots, B^m belong to \mathbf{M} , where *m* is the integer satisfying $p/3 \le m < (p/3) + 1$. Let p > 3. If \mathbf{M} is the set of positive definite matrices, then roots within \mathbf{M} are unique. However we give an example of a positivity cone \mathbf{K} such that for the corre-

sponding set **M** there is an $A \in \mathbf{M}$ with at least $2^{(n-1)}$ matrices $B \in \mathbf{M}$ for which $B^p = A$. We also show that for $n \ge 3$ and p > 12 there exist distinct *M*-matrices B_0, B_1 in \mathbb{R}^n such that $B_0^p = B_1^p$ is again an *M*-matrix.

Let A be a Z-matrix. It is very well known that A is a (nonsingular) M-matrix if and only if $A^{-1} \ge 0$. It is easy to find functions g(z) such that $g(A) \ge 0$ if A is an M-matrix but where the converse implication may be false, e.g. for $g(z) = z^{-2}$. A class of such functions was introduced by Varga [12], cf. [4, pp. 142–146] (who also obtained a converse by considering the *series expansion* rather than the function itself). We are thus led to §5 to the search for functions g(z) for which $A \in \mathbf{M}$ if and only if $A \in \mathbf{K}$. Our class of functions is described in terms of what we call reciprocating pairs of functions (f(z), g(z)). Examples are $(z^p, z^{-1/p})$, p a positive integer and $(e^{k(z-1)}, 1 - k^{-1}\log z)$ where k > 0. For M-matrices, the case g(z) $= z^{-1}$ is classical and the special case of $g(z) = z^{-1/2}$ of our result is known, and was recently proved by E. Alefeld and N. Schneider [1] by different methods.

§2. POSITIVITY CONES AND ASSOCIATED SETS

We begin with some definitions. By \mathbb{R} we denote the real field, and by \mathbb{C} the complex field. As usual, \mathbb{C}^n will denote the space of complex *n*-tuples, and \mathbb{C}^{nn} the set of all $n \times n$ matrices with elements in \mathbb{C} . We use \mathbb{R}^n and \mathbb{R}^{nn} similarly.

A cone **K** is a non-empty subset of a (usually complex) vector space which is closed under addition and multiplication by nonnegative reals. The cone **K** is pointed if $P \in \mathbf{K}$ and $P \in -\mathbf{K}$ imply P = 0, cf. [4, p. 2]. A pointed cone **K** partially orders the vector space, viz. $P \ge Q$ defined by $P - Q \in \mathbf{K}$ is a partial order which is compatible with addition and multiplication by nonnegative scalars.

We now introduce a definition which is fundamental for our results.

DEFINITION 2.1 A pointed, closed cone **K** in \mathbb{C}^{nn} such that

(a) $I \in \mathbf{K}$,

(b) If $P \in \mathbf{K}$ then $P^r \in \mathbf{K}$, $r = 1, 2, \ldots$,

will be called a positivity cone of matrices.

Henceforth K will always denote a positivity cone of matrices and

we partially order \mathbb{C}^{nn} with respect to **K**. (We may write $P \ge 0$ for $P \in \mathbf{K}$ even though we reserve the *words* nonnegative matrix for the classical case.)

Suppose $P \ge 0$ and let $\omega(P)$ be the cone of all polynomials $\sum_{r=0}^{m} c_r P^r$ where $c_r \ge 0$, r = 0, 1, ..., m. Then $\omega(P) \subseteq \mathbf{K}$ and hence also $\overline{\omega}(P) \subseteq \mathbf{K}$, where $\overline{\omega}(P)$ is the closure of $\omega(P)$. Hence, $\overline{\omega}(P)$ is pointed and the spectral radius $\rho(P)$ of P belongs to spec P (the spectrum of P), see [10, Theorem 5.2].

We call $\rho(P)$ the *Perron-Frobenius* root of *P*. Hence A = sI - P, where $s \in \mathbb{R}$ and $P \ge 0$ has an eigenvalue $\alpha(A)$ such that $\alpha(A)$ $= \min\{\operatorname{Re}\lambda:\lambda\in\operatorname{spec}A\}$. We call $\alpha(A)$ the *minimal eigenvalue* of A = sI - P.

DEFINITION 2.2 Let K be a positivity cone of matrices. We put

(a) $\mathbf{Z} = \{A \in \mathbb{C}^{nn} : A = sI - P, s \in \mathbb{R}, P \in \mathbf{K}\},\$ (b) $\mathbf{Z}^* = \{A \in \mathbf{Z} : A \leq I\},\$ (c) $\mathbf{M} = \{A \in \mathbf{Z} : \alpha(A) > 0\},\$ (d) $\mathbf{M}^* = \mathbf{Z}^* \cap \mathbf{M}.$

Our notation does not indicate the dependence of Z, M, etc. on K. But K may be considered fixed throughout. Nor do we indicate the order n of our matrices. But here also, n may be considered fixed, except in one theorem. We give some examples of possible choices for K.

Example 2.3 (i) Let \mathbf{K}_1 be the cone of all (elementwise) nonnegative matrices in \mathbb{C}^{nn} , viz. $P \in \mathbf{K}_1$ if $p_{ij} \ge 0$, i, j = 1, ..., n. Then \mathbf{Z}_1 and \mathbf{M}_1 are respectively the sets of Z-matrices and (non-singular) *M*-matrices as defined in Berman-Plemmons [4].

(More generally we could choose **K** to be the cone of matrices which map a proper cone in \mathbb{R}^n into itself, see [10] for definition of proper cone.)

(ii) Let \mathbf{K}_2 be the cone of positive semi-definite (Hermitian) matrices. Then \mathbf{Z}_2 is the set of all Hermitian matrices, and \mathbf{M}_2 the set of positive definite matrices.

(iii) Let $\mathbf{K}_3 = \mathbf{K}_1 \cap \mathbf{K}_2$.

(iv) Let $n \ge 2$. Let \mathbf{K}_4 be the cone of all diagonal matrices P with $p_{11} \ge |p_{ii}|$, i = 2, ..., n. (Note that $p_{11} \ge 0$). Then \mathbf{Z}_4 consists of all diagonal matrices A with $a_{11} \in \mathbb{R}$ and either $a_{11} = a_{ii}$ or $a_{11} < \operatorname{Re} a_{ii}$, i = 2, ..., n. Also $A \in \mathbf{M}_4$ if and only if $A \in \mathbf{Z}_4$ and $a_{11} > 0$. Observe that \mathbf{Z}_4 is not closed in \mathbb{C}^{nn} .

We shall use the subscript 1, 2, 3, 4 to refer to the cones, etc., in the above example. Note that for $\mathbf{K} = \mathbf{K}_i$, i = 1, 2, 3, 4 we have a property stronger than (2.1) which will be needed in §5:

Condition 2.4 If $P, Q \in \mathbf{K}$ and P, Q commute then $PQ \in \mathbf{K}$.

We observe that if $P \in \mathbb{C}^m$ and $\overline{\omega}(P)$ is pointed, then $\mathbf{K} = \overline{\omega}(P)$ obviously satisfies the conditions (2.1) and (2.4).

The following lemma is obvious.

LEMMA 2.5 Let $A \in \mathbb{Z}$ (where \mathbb{Z} corresponds to a positivity cone \mathbb{K}). Then the following are equivalent.

(a) $A \in \mathbf{M}$, (b) All eigenvalues of A have positive real part.

§3. PRELIMINARY RESULTS ON ANALYTIC FUNCTIONS

If g(z) is a single-valued function analytic in an open subset V of the complex plane and $A \in \mathbb{C}^{nn}$ has spec $A \subseteq V$, then we define g(A)as in Dunford-Schwartz [5, p. 557]. Thus we choose any polynomial p(z) with $p^{(r)}(\alpha) = g^{(r)}(\alpha)$ for $\alpha \in \text{spec } A$ and $r = 0, 1, \ldots, n$. For the Jordan form $QAQ^{-1} = \sum_{i=1}^{s} \bigoplus (\alpha_i I_i + N_i)$ where I_i is an identity matrix and N_i is nilpotent, we define

$$Qg(A) Q^{-1} = \sum_{i=1}^{s} \bigoplus \left(\sum_{r=0}^{\infty} \frac{1}{r!} p^{r}(\alpha_{i}) N_{i}^{r} \right).$$

We shall be particularly interested in analytic functions whose derivatives at 1 satisfy certain properties.

DEFINITION 3.1 Let f(z) be a function analytic at 1.

(a) We call f(z) totally nonnegative at 1 if

$$f^{(r)}(1) \ge 0$$
, for $r = 0, 1, ...$

(b) We call f(z) totally oscillating at 1 if

 $(-1)^r f^{(r)}(1) \ge 0$, for r = 0, 1, ...

The terms absolutely monotonic have been used in a manner related to our totally nonnegative and totally oscillating cf. Widder [13, p. 144–145], Varga [12] and [4, p. 142].

By U we shall henceforth denote the set

$$U = \{ z \in \mathbb{C} : |z - 1| < 1 \}.$$
(3.2)

If g(z) is an analytic function in U then for |x| < 1

$$g(1-x) = \sum_{r=0}^{\infty} b_r x^r = g(1) - \sum_{r=1}^{\infty} c_r x^r$$

where

$$-c_r = b_r = (-1)^r \frac{g^{(r)}(1)}{r!}, \qquad r = 1, 2, \dots$$
 (3.3)

Hence g(z) is totally oscillating if and only if $b_r \ge 0$, $r = 0, 1, \ldots$. Also, g'(z) is totally oscillating if and only if $c_r \ge 0$, $r = 1, 2, \ldots$. If $A \in \mathbf{M}^*$, then A = I - P, where $P \ge 0$ and $\rho := \rho(P) < 1$. Hence $\sum_{r=1}^{\infty} c_r P'$ converges and

$$g(A) = g(I) - \sum_{r=0}^{\infty} c_r P^r$$
(3.4)

We have proved (i) of the following simple theorem.

THEOREM 3.5 Let $A \in \mathbf{M}^*$ with minimal eigenvalue α . Let g(z) be function analytic in U such that g'(z) is totally oscillating at 1. Then

- (i) $g(A) \in \mathbb{Z}$,
- (ii) $g(\alpha)$ is the minimal eigenvalue of g(A).
- (iii) $g(A) \in \mathbf{M}$ if and only if $g(\alpha) > 0$.

Proof (i) was proved before the statement of the theorem. (ii) We have

spec
$$g(A) = \{ g(\lambda) : \lambda \in \operatorname{spec} A \}.$$

Hence $g(\alpha)$ is an eigenvalue of g(A). If A = I - P and $\lambda = 1 - \mu \in \operatorname{spec} A$, then $\mu \in \operatorname{spec} P$, and so $|\mu| \leq \rho < 1$. Hence

$$|g(1) - g(\lambda)| = \left|\sum_{r=1}^{\infty} c_r \mu^r\right| \leq \sum_{r=1}^{\infty} c_r \rho^r = g(1) - g(\alpha)$$

since $\alpha = 1 - \rho$. Thus Re $g(\lambda) \ge g(\alpha)$, for $\lambda \in \operatorname{spec} A$, and this proves (ii).

(iii) is an immediate consequence of (ii).

If
$$z = re^{i\theta}$$
, where $r \ge 0$, $-\pi < \theta = \arg z \le \pi$, we define
 $\log z = \log r + i\theta$

where $\log r$ is real, and, for $p \in \mathbb{R}$,

$$z^{p} = r^{p} e^{ip\theta}.$$

Thus $\log z$ and z^p are analytic in \mathbb{C} with the negative axis and 0 removed. If 0 < q < 1, then $g(z) = \log z$ and $g(z) = z^q$ have g'(z) totally oscillating at 1 and g'(1) > 0. We thus have the following corollaries, which are obtained from Theorem (3.5) by consideration of $s^{-1}A$ where s is sufficiently large to ensure $s^{-1}A \in \mathbf{M}^*$.

COROLLARY 3.6 Let $A \in \mathbf{M}$. Then $\log A \in \mathbf{Z}$ and $\log A \in \mathbf{M}$ if and only if $\alpha > 1$, where α is the minimal eigenvalue of A.

COROLLARY 3.7 Let $A \in \mathbf{M}$ and let 0 < q < 1. Then $A^q \in \mathbf{M}$.

For $A \in \mathbf{M}_1$, it was noted by Ando [3] that $\log A \in \mathbf{Z}_1$ and $A^q \in \mathbf{M}_1$, if 0 < q < 1. As remarked in our introduction, his proof uses Pick functions, though a remark of his suggests he was aware of the above simple argument with Taylor expansions. See also Johnson [8]. Similar results for \mathbf{M}_2 are also known, e.g. Ando [2].

In the rest of this section we consider the classical case; viz. $\mathbf{K} = \mathbf{K}_1$. If $A \in \mathbb{R}^{nn}$, we define the (directed) graph G(A) in the normal way, viz. G(A) has as its vertex set $\{1, \ldots, n\}$ and (i, j) is an edge of G(A) if and only if $a_{ii} \neq 0$, cf. [4, p. 29]. (Usually the definition is given for nonnegative A, but here it is convenient to apply it also to other matrices). A class of A (or strongly connected component of G(A) is characterized as being a subset of $\{1, \ldots, n\}$ which is maximal with respect to the property that it is either a singleton or else there is a path (directed sequence of edges) from each element of the subset to every other element. The graph G(A) is called *essentially* transitive if, for $i \neq j$, (i, j) is an edge of G(A) whenever there is a path from i to j in G(A). The set of classes of A will be called the class structure of A, cf. [4, p. 42]. If $P \ge 0$ (elementwise) and $r \ge 1$ it is easy to see that (i, j) is an edge of G(P') whenever there is a path from i to *j* in G(P) consisting of r edges. It follows that each class of P' is contained in a class of P. Hence we can easily prove the following lemma which is related to known results, e.g. Johnson [8].

LEMMA 3.8 Let P be a nonnegative matrix and let

$$Q = \sum_{r=0}^{\infty} c_r P^r,$$

where $c_r \ge 0$, for r = 1, 2, ... If $c_1 \ge 0$ then P and Q have the same

class structure. If $c_r > 0$, r = 1, 2, ..., then G(Q) is essentially transitive.

We have the following completion of Theorem (3.5) and Corollaries (3.6) and (3.7).

THEOREM 3.9 Let $A \in \mathbf{M}_1^*$. Let g(z) be a function analytic in U such that g'(z) is totally oscillating at 1. If g'(1) > 0 then A and g(A) have the same class structures. If $g^{(r)}(1) \neq 0$, r = 1, 2, ..., then the graph of g(A) is transitive. In particular $\log A$ and A^q , where 0 < q < 1, have the same class structure as A and their graphs are essentially transitive.

Proof Follows immediately from Lemma (3.8) since $g(z) = c_0 - \sum_{r=1}^{\infty} c_r$, where $c_r > 0$, r = 1, 2, ...

We end this section by showing that there is a converse to Theorem (3.5) provided that we consider all orders of square matrices. Thus the totally oscillating functions arise naturally in the type of problem we are considering.

THEOREM 3.10 Let g(z) be a function analytic in U. Then the following are equivalent:

- (a) g'(z) is totally oscillating at 1,
- (b) For all orders of square matrices, $A \in \mathbf{M}_1^*$ implies $g(A) \in \mathbf{Z}_1$.

Proof In view of Theorem (3.5), we need only prove that (b) implies (a). We assume that $(-1)^s g^{(s)}(1) < 0$ for some $s, s \ge 1$, and we shall construct an $A \in \mathbf{M}_1^*$ for which $g(A) \notin \mathbf{Z}_1$. We let n > s and we put A = I - J, where J is the matrix with entry 1 everywhere in the first super-diagonal and entry 0 elsewhere. Then we define B by

$$B = g(A) = c_0 I - \sum_{r=1}^{n-1} c_r J^r,$$

where $-c_r = (-1)^r g^{(r)}(1)/(r!)$, r = 1, ..., n-1 and $c_0 = g(1)$. Hence $b_{1,s} = -c_s > 0$ and so $g(A) \notin \mathbb{Z}_1$.

We remark that it is easy to find functions which satisfy the hypothesis of Theorem (3.10) which are not Pick functions, e.g. $g(z) = 1 - (1 - z)^3$. Of course, Ando [3] obtains many properties for Pick functions in addition to $g(A) \in \mathbb{Z}_1$.

§4. UNIQUENESS OF ROOTS OF MATRICES IN M

In the last section we showed that $A^{1/p} \in \mathbf{M}$ if $A \in \mathbf{M}$ and p > 1. In this section we investigate the uniqueness of the solution of $B^p = A$ for $B \in \mathbf{M}$. If B and C are commuting matrices satisfying certain conditions, we have $(BC)^p = B^p C^p$. Some restrictions are clearly necessary in this identity for, according to our definition in §3, the corresponding result does not even hold for all complex numbers β, γ , e.g. if $\beta = \gamma = e^{4i\pi/5}$ and p = 5/2 then $\beta^p = \gamma^p = 1$, but $(\beta, \gamma)^p = -1$. However $(\beta\gamma)^p = \beta^p \gamma^p$ if $|\arg \beta + \arg \gamma| < \pi$ and so it is natural to assume a restriction on the spectra of B and C. However, even then the identity is not self evident, and we supply a proof in the form of a sequence of two lemmas. The proof of the first of these is based on a suggestion of H. W. Knobloch.

For commuting indeterminates x, y, z, we let $\mathbb{C}[\![x]\!]$ or, $\mathbb{C}[\![x, y]\!]$ or $\mathbb{C}[\![x, y, z]\!]$ be the rings of formal powers series in x, or x, y or x, y, z respectively, with coefficients in \mathbb{C} . If $F(x) \in \mathbb{C}[\![x]\!]$, we say that F(x) represents the analytic function $\alpha \to F(\alpha)$ if for α in some neighborhood of the origin $F(\alpha)$ converges.

LEMMA 4.1 Let x and y be commuting indeterminates and let $F(x) = 1 + \binom{p}{2}x^2 + \cdots$ in $\mathbb{C}[[x, y]]$. Then

$$F(x)F(y) = F(x + y + xy).$$

Proof Let z be an indeterminate which commutes with x and y. In Cax, y, zb define

$$F(xz)F(yz) = \sum_{r=0}^{\infty} P_r(x, y)z^r,$$
$$F(xz + yz + xyz^2) = \sum_{r=0}^{\infty} Q_r(x, y)z^r,$$

where the $P_r(x, y)$ and $Q_r(x, y)$ are in $\mathbb{C}[[x, y]]$. Evidently the $P_r(x, y)$ and $Q_r(x, y)$ are polynomials. Let α , β , γ be in the neighborhood $V = \{z \in \mathbb{C} : |z| < 1/4\}$ of 0. Since $F(\delta) = (1 + \delta)^p \delta = \alpha \gamma$, $\delta = \beta \gamma$ or $\delta = \alpha \gamma + \beta \gamma + \alpha \beta \gamma^2$ we have

$$F(\alpha\gamma)F(\beta\gamma) = F(\alpha\gamma + \beta\gamma + \alpha\beta\gamma^2).$$

But the corresponding series converge absolutely and hence we may

rearrange terms to obtain

$$\sum_{r=0}^{\infty} P_r(\alpha, \beta) \gamma^r = \sum_{r=0}^{\infty} Q_r(\alpha, \beta) \gamma^r.$$

Thus $\sum_{r=0}^{\infty} P_r(\alpha, \beta) z^r$ and $\sum_{r=0}^{\infty} Q_r(\alpha, \beta) z^r$ represent the same analytic function. Since this holds for all $\alpha, \beta \in V$, we now deduce that $P_r(x, y) = Q_r(x, y)$. Hence $F(xz)F(yz) = F(xz + yz + xyz^2)$. The lemma follows on replacing z by 1.

LEMMA 4.2 Let B, C be commuting nonsingular matrices in \mathbb{C}^{nn} and suppose, that for $\beta \in \operatorname{spec} B$, $\gamma \in \operatorname{spec} C$. $|\arg \beta + \arg \gamma| < \pi$. Let $p \in \mathbb{R}$. Then $B^p C^p = (BC)^p$.

Proof Since B and C commute there is a nonsingular $Q \in \mathbb{C}^{nn}$ such that

$$QBQ^{-1} = \sum_{i=1}^{s} \bigoplus \beta_i (I_i + X_i)$$
$$QCQ^{-1} = \sum_{i=1}^{s} \bigoplus \gamma_i (I_i + Y_i)$$

where $\beta_i \in \text{spec } B$, $\gamma_i \in \text{spec } C$, I_i is an identity matrix and X_i , Y_i are commuting strictly upper triangular matrices of the same order as I_i , $i = 1, \ldots, s$. Since

$$QB^{p}Q^{-1} = (QBQ^{-1})^{p} = \sum_{i=1}^{s} \oplus \beta_{i}^{p}(I_{i} + X_{i})^{p},$$
$$QC^{p}Q^{-1} = (QCQ^{-1})^{p} = \sum_{i=1}^{s} \oplus \gamma_{i}^{p}(I_{i} + Y_{i})^{p},$$

it is enough to prove the lemma for matrices of form B = I + X, C = I + Y where X, Y are commuting strictly upper triangular matrices. Evidently BC = I + U, where U = X + Y + XY and U is also nilpotent. But then

$$B^{p} = I + {p \choose 1}X + {p \choose 2}X^{2} + \cdots$$

since X is nilpotent, and a similar expansion holds for C^p and $(BC)^p$. The lemma now follows immediately from Lemma (4.1).

For $0 < \theta \leq \pi$, we define a sector in the complex plane

$$S(\theta) = \{ 0 \neq z \in \mathbb{C} : -\theta < \arg z < \theta \}.$$

A matrix A is called *positively stable* if spec $A \subseteq S(\pi/2)$, the open right half plane.

LEMMA 4.3 Let $A \in \mathbb{C}^{nn}$ be positively stable and let $p \ge 1$. Then spec $A^{1/p} \subseteq S(\pi/2p)$ and $B = A^{1/p}$ is the unique matrix such that $B^p = A$ and spec $B \subseteq S(c\pi/2p)$ where $c = \min(3, 2p - 1)$.

Proof Let $B = A^{1/p}$. Clearly spec $B \subseteq S(\pi/2p)$. Let $C \in \mathbb{C}^{nn}$ satisfy spec $C \subseteq S(c\pi/2p)$ and $C^p = A$. Then C commutes with A and hence also with B. Since C is non-singular we may put $D = C^{-1}B$. Since B and C commute and

$$\left|\arg \beta - \arg \gamma\right| < \frac{\pi}{2p} + \frac{(2p-1)\pi}{2p} = \pi$$

it follows by Lemma 4.2 that $D^{p} = (C^{-1})^{p}B^{p} = (C^{p})^{-1}B^{p} = I$. Further every eigenvalue of D is of form $\delta = \gamma^{-1}\beta$, where $\beta \in \operatorname{spec} B$ and $\gamma \in \operatorname{spec} C$. Since $\delta^{p} = 1$ and

$$|\arg \delta| = |\arg \beta - \arg \gamma| < \frac{\pi}{2p} + \frac{3\pi}{2p} = \frac{2\pi}{p}$$

we must have $\delta = 1$. Next, every matrix satisfying $D^{p} = 1$ is similar to a diagonal matrix [7, p. 100]. Hence D = I and we deduce that C = B.

THEOREM 4.4 Let $A \in \mathbf{M}$ and let $1 \leq p \leq 3$. Then $B = A^{1/p}$ is the unique matrix in \mathbf{M} satisfying $B^p = A$.

Proof By Corollary (3.7), $B \in \mathbf{M}$. From the definition of c it follows that $c\pi/2p \ge \pi/2$. Hence uniqueness follows from Lemma (4.3).

THEOREM 4.5 Let $A \in \mathbf{M}$ and let p > 3. Then $B = A^{1/p}$ is the unique matrix in \mathbf{M} satisfying

(a) $B^p = A$,

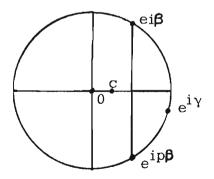
(b) B, B^2, \ldots, B^m are in M, where m is the integer satisfying $p/3 \le m < (p/3) + 1$.

Proof We repeat the first part of the proof of Theorem (4.4) Thus $B = A^{1/p}$ satisfies $B^p = A$. Further, by Corollary (3.7), $B^k = A^{kq} \in \mathbf{M}$, $k = 1, \ldots, m$, since mq < (1/3) + q < 1, where q = 1/p. Now suppose that $C \in \mathbb{R}^{nn}$ satisfies (a) and (b). From (b) we obtain successively spec $C \subseteq S(\pi/2)$, spec $C \subseteq S(\pi/4), \ldots$, spec $C \subseteq S(\pi/2m)$. Since $m \ge p/3$, clearly $\pi/2m \le 3\pi/2p$. Thus spec $C \subseteq S(c\pi/2p)$, where $c = \min(3, 2p - 1) = 3$. It now follows from Lemma (4.3) that C = B.

The question arises to what extent $B \in \mathbf{M}$ and $B^{\rho} = A \in \mathbf{M}$ is sufficient to ensure $B = A^{1/\rho}$ even when p > 3. When $\mathbf{K} = \mathbf{K}_2$ the result is true and well known. (The proof depends on the observation that if D is a diagonal matrix with positive diagonal elements, then $UD^{\rho}U^{-1} = VD^{\rho}V^{-1}$ implies $UDU^{-1} = VDV^{-1}$). By considering the case $\mathbf{K} = \mathbf{K}_3$ we thus have the following corollary.

COROLLARY 4.6 Let A be a positive definite Z-matrix and let p > 1. Then the unique positive definite matrix B satisfying $B^p = A$ is $B = A^{1/p}$ and B is also a Z-matrix.

For general K some further conditions are required for uniqueness. We show this by means of an example which is easily understood from the diagram below.



Example 4.7 (i) Let $n \ge 2$ and $p \ge 3$. We put $\beta = 2\pi/(1+p)$ and $\gamma = -2\pi/p(1+p)$. Then it is easy to show that $0 < \beta < \pi/2$, $3\pi/2 < p\beta = 2\pi - \beta < 2\pi$. Hence $0 < \cos \beta = \cos p\beta$. Also $0 < -\gamma < \beta$

M-MATRICES

and so $\cos \gamma > \cos \beta$. Now choose c so that $0 < c < \cos \beta$. Let B be a diagonal matrix in \mathbb{R}^{nn} for which $b_{11} = c$ and either $b_{ii} = e^{i\beta}$ or $b_{ii} = e^{i\gamma}$, i = 2, ..., n. Then $B \in \mathbf{M}_4$. Let A be the diagonal matrix given by $a_{11} = c^p < \cos \beta$, and $a_{ii} = e^{ip\beta}$, i = 2, ..., n. Thus $A \in \mathbf{M}_4$. Since $e^{ip\beta} = e^{ip\gamma}$, there are at least $2^{(n-1)}$ matrices B in \mathbf{M}_4 such that $B^p = A$.

(ii) In the above example it is possible to choose p and c so that $A \in \mathbf{M}_{4}^{*}$, $B \in \mathbf{M}_{4}$, but $B \notin \mathbf{M}_{4}^{*}$. Let p > 5. Then $0 < \beta < \pi/3$. Choose c such that $\sqrt{2} \sqrt{1 - \cos \beta} < c < \cos \beta$ but $c^{p} < \sqrt{2} \sqrt{1 - \cos \beta}$. Then define B by $b = c, b = e^{i\beta}, i = 2, ..., n$ and A as above.

We shall show that for $n \ge 3$ and real p, p > 12, there exist two different *M*-matrices (viz. in \mathbf{M}_1) B_0 , B_1 and an *M*-matrix *A* such that $B_0^p = B_1^p = A$. It is enough to consider the case n = 3.

Example 4.8 Let

$$X = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$$

Then

$$X^{2} = -\frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

Let p > 12 and put $e^{2\pi i/p} = c + is$, where $c, s \in \mathbb{R}$. Since X is similar to the diagonal matrix diag(0, i, -i), it is easy to prove that

$$W = I + sX + (1 - c)X^2$$

satisfies $W^p = I$. Let $\epsilon > 0$ and

$$B_0 = \epsilon I - X^2,$$

$$B_1 = B_0 w = \epsilon I + s(1 + \epsilon)X - (c + \epsilon c - \epsilon)X^2$$

Then

$$A = B_0^p = B_1^p = \epsilon^p I + \left(\left(1 + \epsilon \right)^p - \epsilon^p \right) X^2.$$

Thus B_0 and A are M-matrices and so is B_1 provided that

$$\frac{s(1+\epsilon)}{\sqrt{3}} \leq \frac{c(1+\epsilon)-\epsilon}{3} \, .$$

Since $s/c = \tan(2\pi/p) < 1/\sqrt{3}$, the inequality holds for sufficiently small positive ϵ .

C. R. Johnson (private communication) has informed us that he has found a similar example. He has also shown that a 3×3 *M*-matrix has a unique *p*th root which is an *M*-matrix when $p \le 12$.

§5. CHARACTERIZATIONS OF M

In this entire section we suppose that the positivity cone **K** of matrices satisfies condition (2.4). We shall extend the well-known result that for $A \in \mathbb{Z}_1$ we have $A \in \mathbb{M}_1$ if and only if $A^{-1} \in \mathbb{K}_1$. We first show that this result holds for general **K**.

LEMMA 5.1 Let $A \in \mathbb{Z}$. Then $A \in \mathbb{M}$ if and only if A^{-1} exists and $A^{-1} \in \mathbb{K}$.

Proof Let $A \in \mathbf{M}$. Then A = t(I - P), where t > 0, $P \ge 0$ and $\rho(P) < 1$. Hence $A^{-1} = t^{-1} \sum_{r=0}^{\infty} P^r \ge 0$. Conversely, let A = (sI - P) and $A^{-1} \ge 0$. By [10, Thm. 5.2], there exists an $F, 0 \ne F \subseteq \overline{\omega}(P) \subseteq \mathbf{K}$ such that $AF = (sI - P)F = (s - \rho)F$. Thus $F = (s - \rho)A^{-1}F$ where $\rho = \rho(P)$. Since AF = FA, the matrices A^{-1} and F commute and hence $A^{-1}F \in \mathbf{K}$. But \mathbf{K} is pointed, and so $s - \rho > 0$. Hence $A \in \mathbf{M}$.

We have actually shown the stronger result that $A \in \mathbf{M}$ implies that $A^{-1} \ge \epsilon I$ for some $\epsilon > 0$. We may now use the results of §3 to characterize \mathbf{M} as a subset of \mathbf{Z} . We shall write $A^{-1/p} \in \mathbf{M}$ to mean that $A^{-1/p}$ is defined and $A^{-1/p} \in \mathbf{M}$, etc.

THEOREM 5.2 Let $A \in \mathbb{Z}$ and let p be a positive integer. Then the following are equivalent:

- (a) A ∈ M,
 (b) A^{1/p} ∈ M,
 (c) There is a B ∈ M for which B^p = A,
 (d) There is an ε > 0 for which A^{-1/p} ≥ εI,
 (e) There is an ε > 0 and a C ≥ εI for which C^p = A⁻¹,
 (f) A^{-1/p} ≥ 0,
 (g) There is a C ≥ 0 for which C^p = A⁻¹.
 Proof First we prove (a)⇒(b)⇒(d)⇒(f)⇒(g)⇒(a):
- (a) \Rightarrow (b) By Corollary (3.7).

M-MATRICES

(b) \Rightarrow (d) Apply Lemma (5.1) and the remark following its proof to $A^{1/p}$.

 $(d) \Rightarrow (f) \Rightarrow (g)$ Trivial.

(g) \Rightarrow (a) Since p is a positive integer $A^{-1} = C^p \ge 0$. Then use Lemma (5.1).

Next we show $(b) \Rightarrow (c) \Rightarrow (e) \Rightarrow (g)$:

 $(c) \Rightarrow (e)$ Apply Lemma (5.1) and the remark following to B. The other implications are obvious.

Technically $A^{-1/p}$ has not been defined if A has a negative eigenvalue, for the function $z^{-1/p}$ is not analytic on the negative axis, cf. our definition in §3. However, given any nonsingular A, by cutting the complex plane along the ray $\arg z = \pi + \epsilon$, where $\epsilon \ge 0$ and ϵ is sufficiently small, we may assume that $z^{-1/p}$ is analytic for all $\lambda \in \operatorname{spec} A$ and coincides there with our previous definition. Thus in Theorem 5.2 we may regard $A^{-1/p}$ to be well defined for all nonsingular $A \in \mathbb{C}^{nn}$. Similar remarks apply to $\log A$ in the next theorem.

THEOREM 5.3 Let $A \in \mathbb{Z}$. Then the following are equivalent:

(a) $A \in \mathbf{M}$,

(b) $\log A \in \mathbb{Z}$,

(b) There is a $B \in \mathbb{Z}$ for which $e^B = A$.

Proof Corollary (3.6) yields (a) \Rightarrow (b) and since (b) \Rightarrow (c) is trivial, we need only prove that (c) \Rightarrow (a).

So let (c) hold for some $B \in \mathbb{Z}$.

Put B = tI - P where $t \in \mathbb{R}$ and $P \ge 0$. Then

 $A^{-1} = e^{-B} = e^{-t}e^{P} \ge 0,$

and $A \in \mathbf{M}$ by Lemma (5.1).

The substance of Theorems (5.2) and (5.3) will now be generalized. The function $z^{-1/p}$ and $\log z$ which occur there are totally oscillating at 1 and (as will shortly be shown) $A \in \mathbf{M}^*$ implies $g(A) \ge 0$ for every function g(z) analytic in U which is totally oscillating at 1. But the desired converse implication may fail. For example let A = -I and $g(z) = z^{-2}$. Then $A \in \mathbb{Z}^*$ and g(z) is totally oscillating at 1. Also $g(A) \ge 0$ but $A \notin \mathbf{M}^*$. Thus we are led to the following concept.

DEFINITION 5.4 Let V be an open set in \mathbb{C} which contains the set $U = \{z \in \mathbb{C} : |z - 1| < 1\}$. We call (f(z), g(z)) a reciprocating pair of

1

functions (on V) if

(a) f(z) is an entire function which is totally nonnegative at 1,

(b) g(z) is a function analytic in V which is totally oscillating at 1 and g(1) = 1,

(c) $f(g(z)) = z^{-1}$, for $z \in V$.

(Observe that (b) and (c) imply that f(1) = 1).

Examples 5.5

(a) Let p be a positive integer. Then (z^p, z^{-p}) where q = 1/p, are a reciprocating pair on $\mathbb{C}\backslash\mathbb{R}_-$.

(b) Let k > 0 and let $f(z) = e^{k(z-1)}$ and $g(z) = 1 - k^{-1}\log z$. Then (f(z), g(z)) are a reciprocating pair on $\mathbb{C}\setminus\mathbb{R}_{-}$.

THEOREM 5.6 Let (f(z), g(z)) be a reciprocating pair of functions. Let $A \in \mathbb{Z}^*$. Then the following are equivalent:

(a) $A \in \mathbf{M}^*$,

(b) $(g(A) \text{ is defined and}) g(A) \ge I$,

(c) there is a $B \ge I$ for which $f(B) = A^{-1}$.

Proof (a) \Rightarrow (b). Since spec $A \subseteq U \subseteq V$ the function g(A) is defined. Since g(1) = 1, we have $g(A) = I + \sum_{r=1}^{\infty} b_r P^r$, where $b_r = (-1)^r g^{(r)}(1)/r! \ge 0$, cf. (3.3) and (3.4). Hence $g(A) \ge 1$.

(b) \Rightarrow (c). By (5.4c), $f(g(A)) = A^{-1}$ cf. [5, Theorem 5, p. 602].

(c) \Rightarrow (a). Suppose that B = I + Q, $Q \ge 0$, and $f(B) = A^{-1}$. Then $A^{-1} = f(I + Q) = \sum_{r=0}^{\infty} d_r Q^r$, where $d_r = f(r)(1)/r! \ge 0$, r = 0, $1, \ldots$. Hence $A^{-1} \ge 0$. By Lemma (5.1) it follows that $A \in \mathbf{M}$.

Our proof shows that the implications $(a) \Rightarrow (b) \Rightarrow (c)$ hold for functions g(z) satisfying (5.4b) and that the implication $(c) \Rightarrow (a)$ holds for functions f(z) satisfying (5.4a) and f(1) = 1.

The assumption that f(z) is entire cannot be omitted from the hypotheses of Theorem (5.6). For the pair $((2-z)^{-1}, 2-z)$ satisfies all other conditions for a reciprocating pair and if A = I - P, where $P \ge 0$, then $B \equiv g(A) = I + P \ge I$. Clearly $f(B) = A^{-1}$, if A is non-singular. Thus no conclusion on $\rho(P)$ can be drawn.

Note added in proof. As an application of a spectral theorem in two variables Hartwig [14] has obtained a general result which contains our Lemma 4.2 as a special case.

References

 G. Alefeld and N. Schneider, On square roots of M-matrices, Lin. Alg. Appl. 42 (1982), 119-132.

- [2] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, *Lin. Alg. Appl.* 26 (1979), 203-241.
- [3] T. Ando, Inequalities for M-matrices., Lin. Multilin. Alg. 8 (1980), 291-316.
- [4] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic (1979).
- [5] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience (1958).
- [6] K. Fan, Inequalities for M-matrices, Indag. Math. 26 (1964), 602-610.
- [7] F. R. Gantmacher, The Theory of Matrices, Chelsea (1959).
- [8] C. R. Johnson, Inverses of M-matrices, Lin. Alg. Appl. 47 (1982), 195-216.
- [9] A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comm. Math. Helvetici 10 (1937), 69-96.
- [10] H. Schneider, Geometric conditions for the existence of positive eigenvalues of matrices, Lin. Alg. Appl. (Letters) 38 (1981), 253-271.
- [11] Olga Taussky, Research problem, Bull. Amer. Math. Soc. 64 (1958), 124.
- [12] R. S. Varga, Nonnegatively posed problems and completely monotonic functions, Lin. Alg. Appl. 1 (1968), 329-347.
- [13] D. V. Widder, The Laplace Transform. Princeton Univ. Press (1946).
- [14] R. E. Hartwig, Applications of the Wronskian and Gram matrices of $\{t^i e^{\lambda_k t}\}$, Lin. Alg. Appl. 43 (1982), 229–241.