Linear and Multilinear Algebra, 1983, Vol. 13, pp. 185-201 0308-1087/ 83/1303- 0185 \$18.50/ 0 © 1983 Gordon and Breach Science Publishers, Inc. Printed in the United States of America

Analytic Functions of M-Matrices and Generalizations

K

MIROSLAV FIEDLER

Czechoslovak Academy of Sciences, Institute of Mathematics, Zitna 25, 11567 Praha 1, Czechoslovakia

and

HANS SCHNEIDER*

Mathematics Deparlment, University of Wisconsin, Madison, WI 53706, USA

(Received December 23, 1981)

Dedicated to Ky Fan

We introduce the notion of positivity cone **K** of matrices in \mathbb{C}^{n} and with such a **K** we associate sets Z and M . For suitable choices of K the set M consists of the classical (non-singular) *M*-matrices or of the positive definite (Hermitian) matrices. If $A \in M$ and $1 \leq p \leq 3$ we prove that there is a unique $B \in \mathbf{M}$ for which $B^p = A$. If $p > 3$, this uniqueness theorem is false for general M and we prove a weaker result. We extend the result that for a Z-matrix *A* we have $A^{-1} \ge 0$ if and only if *A* is an *M*-matrix. Under an additional hypothesis on the positivity cone, we exhibit a class of entire functions *f(z)* such that for $A \in \mathbb{Z}$ we have $A \in \mathbb{M}$ if and only if there is a $B \in \mathbb{K}$ for which $f(B) = A^{-1}$.

§l. INTRODUCTION

Since their introduction as objects of study by Ostrowski [9], M-matrices have received a great deal of attention. A summary of the literature may be found in [4] and we choose to mention here just one of several papers by Fan on this topic, [6].

[·]The research of this author was partly supported by the NSF under grants MCS 78-01087 and MCS 80-26132 and by the Deutsche Forschungsgemeinschaft (BRD) while on leave at the Mathematisches Institut der Universität, Würzburg, West Germany.

Here we shall consider some problems on analytic functions of M-matrices and M-matrix will mean *non-singular* M-matrix throughout. We investigate the existence and uniqueness of roots of an M -matrix which are also M -matrices. We find new characterizations of the set of M-matrices as a subset of the set of Z-matrices. We introduce generalization of M-matrices for which our results are proved.

We shall now summarize our paper in greater detail. In §2 we introduce generalizations of Z-matrices and M-matrices associated with certain cones of matrices which we call positivity cones. Thus for each positivity cone **K** we define the sets $Z = Z(K)$ and $M = M(K)$. If K consists of the (elementwise) nonnegative matrices, then Z and M are the sets of Z -matrices and M -matrices, respectively (and we reserve the terms *nonnegative matrix, Z-matrix* and *M-matrix* for this classical case). If K is the set of positive semi-definite (Hermitian) matrices, then Z is the set of Hermitians and M is the set of positive definite matrices. Thus we give a unified treatment of results on M-matrices and positive definite matrices and thereby respond to a research problem raised by Olga Taussky [II]. We also use a certain positivity cone to obtain a counterexample in §4.

In §3 we prove some very straightforward results on analytic functions $f(z)$ such that $f(A) \in M$ or $f(A) \in Z$ whenever $A \in Z$. For technical reasons, we confine ourselves to the subset Z^* of Z consisting of matrices *A* for which $A \leq I$ in the order induced by **K**. If **M** is the set of M-matrices and all orders of square matrices are considered we have a characterization of analytic functions $f(z)$ with the property described. Examples of such functions $f(z)$ are z^q , $0 < q < 1$ and $log z$. For these particular functions it is known that $f(A)$ is a Z-matrix when \vec{A} is an M-matrix. Ando [3] obtained these implications as special cases of very interesting results on Pick functions of M-matrices. However, our class of functions does not coincide with the Pick functions.

The results of §3 show that if $A \in \mathbf{M}$, $p > 1$, and $B = A^{1/p}$ then $B \in M$. In §4 we investigate uniqueness properties and we show that for $1 \leq p \leq 3$, $B = A^{1/p}$ is the unique matrix in M that $B^p = A$. For $p > 3$ we prove a weaker theorem: $B = A^{1/p}$ is the unique matrix for which $B^p = A$ and B, B^2, \ldots, B^m belong to **M**, where *m* is the integer satisfying $p/3 \le m \le (p/3) + 1$. Let $p > 3$. If M is the set of positive definite matrices, then roots within M are unique. However we give an example of a positivity cone K such that for the corresponding set M there is an $A \in M$ with at least $2^{(n-1)}$ matrices $B \in M$ for which $B^p = A$. We also show that for $n \ge 3$ and $p > 12$ there exist distinct M-matrices B_0 , B_1 in \mathbb{R}^n such that $B_0^p = B_1^p$ is again an M-matrix.

Let A be a Z-matrix. It is very well known that A is a (nonsingular) *M*-matrix if and only if $A^{-1} \ge 0$. It is easy to find functions $g(z)$ such that $g(A) \ge 0$ if A is an M-matrix but where the converse implication may be false, e.g. for $g(z) = z^{-2}$. A class of such functions was introduced by Varga $[12]$, cf. $[4, pp. 142-146]$ (who also obtained a converse by considering the *series expansion* rather than the function itself). We are thus led to §5 to the search for functions $g(z)$ for which $A \in M$ if and only if $A \in K$. Our class of functions is described in terms of what we call reciprocating pairs of functions ($f(z)$, $g(z)$). Examples are $(z^p, z^{-1/p})$, p a positive integer and $(e^{k(z-1)}, 1 - k^{-1} \log z)$ where $k > 0$. For M-matrices, the case $g(z)$ $= z^{-1}$ is classical and the special case of $g(z) = z^{-1/2}$ of our result is known, and was recently proved by E. Alefeld and N. Schneider [I] by different methods.

§2. POSITIVITY CONES AND ASSOCIATED SETS

We begin with some definitions. By $\mathbb R$ we denote the real field, and by C the complex field. As usual, \mathbb{C}^n will denote the space of complex *n*-tuples, and \mathbb{C}^{n} the set of all $n \times n$ matrices with elements in \mathbb{C} . We use \mathbb{R}^n and \mathbb{R}^{nn} similarly.

A *cone* K is a non-empty subset of a (usually complex) vector space which is closed under addition and multiplication by nonnegative reals. The cone **K** is pointed if $P \in K$ and $P \in -K$ imply $P = 0$, cf. [4, p. 2]. A pointed cone K partially orders the vector space, viz. $P \geqslant Q$ defined by $P - Q \in \mathbf{K}$ is a partial order which is compatible with addition and multiplication by nonnegative scalars.

We now introduce a definition which is fundamental for our results.

DEFINITION 2.1 A pointed, closed cone **K** in \mathbb{C}^{nn} such that

(a) $I \in \mathbf{K}$,

(b) If $P \in \mathbf{K}$ then $P' \in \mathbf{K}$, $r = 1, 2, \ldots$,

will be called a *positivity cone of matrices.*

Henceforth K will always denote a positivity cone of matrices and

we partially order \mathbb{C}^{n} with respect to **K**. (We may write $P \ge 0$ for $P \in K$ even though we reserve the *words* nonnegative matrix for the classical case.)

Suppose $P \ge 0$ and let $\omega(P)$ be the cone of all polynomials $\sum_{r=0}^{m} C_r P^r$ where $c_r \ge 0$, $r = 0, 1, \ldots, m$. Then $\omega(P) \subseteq K$ and hence also $\overline{\omega}(P) \subset K$, where $\overline{\omega}(P)$ is the closure of $\omega(P)$. Hence, $\overline{\omega}(P)$ is pointed and the spectral radius $p(P)$ of P belongs to spec P (the spectrum of P), see [10, Theorem 5.2].

We call $\rho(P)$ the *Perron-Frobenius* root of *P*. Hence $A = sI - P$, where $s \in \mathbb{R}$ and $P \ge 0$ has an eigenvalue $\alpha(A)$ such that $\alpha(A)$ $=$ min ${Re \lambda : \lambda \in \text{spec } A}$. We call $\alpha(A)$ the *minimal eigenvalue* of $A = sI - P$.

DEFINITION 2.2 Let K be a positivity cone of matrices. We put

(a) $\mathbf{Z} = \{A \in \mathbb{C}^{nn} : A = sI - P, s \in \mathbb{R}, P \in \mathbf{K}\},\$ (b) $\mathbf{Z}^* = \{ A \in \mathbf{Z} : A \leq I \},\$ (c) $M = \{A \in \mathbb{Z} : \alpha(A) > 0\},\$ (d) $M^* = Z^* \cap M$.

Our notation does not indicate the dependence of Z, M, etc. on K. But K may be considered fixed throughout. Nor do we indicate the order *n* of our matrices. But here also, *n* may be considered fixed, except in one theorem. We give some examples of possible choices for K.

Example 2.3 (i) Let K_1 be the cone of all (elementwise) nonnegative matrices in \mathbb{C}^{n} , viz. $P \in \mathbf{K}_1$ if $p_{ii} \geq 0$, $i, j = 1, \ldots, n$. Then \mathbf{Z}_1 and M_1 are respectively the sets of Z-matrices and (non-singular) M-matrices as defined in Berman-Plemmons [4].

(More generally we could choose K to be the cone of matrices which map a proper cone in \mathbb{R}^n into itself, see [10] for definition of proper cone.)

(ii) Let K_2 be the cone of positive semi-definite (Hermitian) matrices. Then \mathbb{Z}_2 is the set of all Hermitian matrices and \mathbf{M}_2 the set of positive definite matrices.

(iii) Let $\mathbf{K}_3 = \mathbf{K}_1 \cap \mathbf{K}_2$.

(iv) Let $n \ge 2$. Let K_4 be the cone of all diagonal matrices P with $p_{11} \geqslant |p_{ii}|$, $i = 2, \ldots, n$. (Note that $p_{11} \geqslant 0$). Then \mathbb{Z}_4 consists of all diagonal matrices *A* with $a_{11} \in \mathbb{R}$ and either $a_{11} = a_{ii}$ or $a_{11} < \text{Re } a_{ii}$, $i = 2, \ldots, n$. Also $A \in M_4$ if and only if $A \in \mathbb{Z}_4$ and $a_{11} > 0$. Observe that \mathbb{Z}_4 is not closed in \mathbb{C}^{nn} .

We shall use the subscript 1, 2, 3, 4 to refer to the cones, etc., in the above example. Note that for $K = K_i$, $i = 1, 2, 3, 4$ we have a property stronger than (2.1) which will be needed in §5:

Condition 2.4 If *P,* $Q \in K$ and *P, Q commute then* $PQ \in K$ *.*

We observe that if $P \in \mathbb{C}^m$ and $\overline{\omega}(P)$ is pointed, then $\mathbf{K} = \overline{\omega}(P)$ obviously satisfies the conditions (2.1) and (2.4).

The following lemma is obvious.

LEMMA 2.5 Let $A \in \mathbb{Z}$ *(where Z corresponds to a positivity cone K). Then the following are equivalent.*

(a) $A \in M$, (b) *All eigenvalues of A have positive real part.* •

§3. PRELIMINARY RESULTS ON ANALYTIC FUNCTIONS

If $g(z)$ is a single-valued function analytic in an open subset V of the complex plane and $A \in \mathbb{C}^{n}$ has spec $A \subseteq V$, then we define $g(A)$ as in Dunford-Schwartz [5, p. 557]. Thus we choose any polynomial $p(z)$ with $p^{(r)}(a) = g^{(r)}(a)$ for $a \in \text{spec } A$ and $r = 0, 1, \ldots, n$. For the Jordan form $QAQ^{-1} = \sum_{i=1}^{s} \bigoplus (\alpha_i I_i + N_i)$ where I_i is an identity matrix and N_i is nilpotent, we define

$$
Qg(A) Q^{-1} = \sum_{i=1}^s \bigoplus \left(\sum_{r=0}^\infty \frac{1}{r!} p'(a_i) N'_i \right).
$$

We shall be particularly interested in analytic functions whose derivatives at 1 satisfy certain properties.

DEFINITION 3.1 Let $f(z)$ be a function analytic at 1.

(a) We call $f(z)$ *totally nonnegative at* 1 if

$$
f^{(r)}(1) \geq 0, \quad \text{for} \quad r = 0, 1, \ldots
$$

(b) We call *f(z) totally oscillating at* 1 if

 $(-1)^{r} f^{(r)}(1) \ge 0, \quad \text{for} \quad r = 0, 1, \ldots$

The terms absolutely monotonic have been used in a manner related to our totally nonnegative and totally oscillating cf. Widder [13, p. 144-145], Varga [12] and [4, p. 142].

By U we shall henceforth denote the set

$$
U = \{ z \in \mathbb{C} : |z - 1| < 1 \}. \tag{3.2}
$$

If $g(z)$ is an analytic function in *U* then for $|x| < 1$

$$
g(1-x) = \sum_{r=0}^{\infty} b_r x^r = g(1) - \sum_{r=1}^{\infty} c_r x^r
$$

where

$$
-c_r = b_r = (-1)^r \frac{g^{(r)}(1)}{r!}, \qquad r = 1, 2, \ldots
$$
 (3.3)

Hence $g(z)$ is totally oscillating if and only if $b_r \geq 0$, $r = 0, 1, \ldots$. Also, $g'(z)$ is totally oscillating if and only if $c_r \ge 0$, $r = 1, 2, \ldots$ If $A \in \mathbf{M}^*$, then $A = I - P$, where $P \ge 0$ and $\rho := \rho(P) < 1$. Hence $\sum_{r=1}^{\infty} c_r P^r$ converges and

$$
g(A) = g(I) - \sum_{r=0}^{\infty} c_r P^r
$$
 (3.4)

We have proved (i) of the following simple theorem.

THEOREM 3.5 Let $A \in M^*$ with minimal eigenvalue α . Let $g(z)$ be *function analytic in* U *such that g'(z) is totally oscillating at* I. *Then*

- (i) $g(A) \in \mathbb{Z}$,
- (ii) $g(\alpha)$ *is the minimal eigenvalue of* $g(A)$ *.*
- (iii) $g(A) \in M$ if and only if $g(\alpha) > 0$.

Proof (i) was proved before the statement of the theorem. (ii) We have

$$
spec\ g(A) = \{ g(\lambda) : \lambda \in spec A \}.
$$

Hence $g(\alpha)$ is an eigenvalue of $g(A)$. If $A = I - P$ and $\lambda = 1 - \mu$ \in spec *A*, then $\mu \in$ spec *P*, and so $|\mu| \le \rho < 1$. Hence

$$
|g(1)-g(\lambda)| = \left|\sum_{r=1}^{\infty} c_r \mu'\right| \leq \sum_{r=1}^{\infty} c_r \rho' = g(1) - g(\alpha)
$$

since $\alpha = 1 - \rho$. Thus Re $g(\lambda) \ge g(\alpha)$, for $\lambda \in \text{spec } A$, and this proves (ii).

(iii) is an immediate consequence of (ii). \blacksquare

If
$$
z = re^{i\theta}
$$
, where $r \ge 0$, $-\pi < \theta = \arg z \le \pi$, we define
 $\log z = \log r + i\theta$

where $\log r$ is real, and, for $p \in \mathbb{R}$,

$$
z^p = r^p e^{ip\theta}.
$$

Thus $\log z$ and z^p are analytic in C with the negative axis and 0 removed. If $0 < q < 1$, then $g(z) = \log z$ and $g(z) = z^q$ have $g'(z)$ totally oscillating at 1 and $g'(1) > 0$. We thus have the following corollaries, which are obtained from Theorem (3.5) by consideration of $s^{-1}A$ where *s* is sufficiently large to ensure $s^{-1}A \in M^*$.

COROLLARY 3.6 *Let* $A \in M$. *Then* $log A \in \mathbb{Z}$ and $log A \in M$ if and *only if* $\alpha > 1$, where α is the minimal eigenvalue of A.

COROLLARY 3.7 Let $A \in M$ and let $0 < q < 1$. Then $A^q \in M$.

For $A \in M_1$, it was noted by Ando [3] that $log A \in \mathbb{Z}_1$ and A^q \in M₁, if $0 < q < 1$. As remarked in our introduction, his proof uses Pick functions, though a remark of his suggests he was aware of the above simple argument with Taylor expansions. See also Johnson [8]. Similar results for M_2 are also known, e.g. Ando [2].

In the rest of this section we consider the classical case; viz. $\mathbf{K} = \mathbf{K}_1$. If $A \in \mathbb{R}^{n}$, we define the (directed) graph $G(A)$ in the normal way, viz. $G(A)$ has as its vertex set $\{1, \ldots, n\}$ and (i, j) is an edge of $G(A)$ if and only if $a_{ii} \neq 0$, cf. [4, p. 29]. (Usually the definition is given for nonnegative A , but here it is convenient to apply it also to other matrices). A *class* of *A* (or strongly connected component of $G(A)$ is characterized as being a subset of $\{1, \ldots, n\}$ which is maximal with respect to the property that it is either a singleton or else there is a path (directed sequence of edges) from each element of the subset to every other element. The graph *G(A)* is called *essentially transitive* if, for $i \neq j$, (i, j) is an edge of $G(A)$ whenever there is a path from *i* to *j* in $G(A)$. The set of classes of *A* will be called the *class structure* of *A*, cf. [4, p. 42]. If $P \ge 0$ (elementwise) and $r \ge 1$ it is easy to see that (i, j) is an edge of $G(P')$ whenever there is a path from i to j in G(P) consisting of *r* edges. It follows that each class of *pr* is contained in a class of P. Hence we can easily prove the following lemma which is related to known results, e.g. Johnson [8].

LEMMA 3.8 *Let P be a nonnegative matrix and let*

$$
Q=\sum_{r=0}^{\infty}c_rP',
$$

where c_r \ge 0, *for* $r = 1, 2, \ldots$ *If c₁* $>$ 0 *then P and Q have the same*

class structure. If $c_r > 0$, $r = 1, 2, \ldots$, *then* $G(Q)$ *is essentially transi-*192 M. FIEDLER AND H. SCHNEIDER

class structure. If $c_r > 0$, $r = 1, 2, ...,$ then $G(Q)$ is essentially transi-

iive.

We have the following completion of Theorem (3.5) and Corollaries (3.6) and (3.7).

THEOREM 3.9 *Let* $A \in M_1^*$. Let $g(z)$ be a function analytic in U such *that g'(z) is totally oscillating at* 1. If $g'(1) > 0$ *then A and g(A) have* the same class structures. If $g^{(r)}(1) \neq 0, r = 1, 2, \ldots$, then the graph of $g(A)$ is transitive. In particular $log A$ and A^q , where $0 < q < 1$, have *the same class structure as A and their graphs are essentially transitive.*

Proof Follows immediately from Lemma (3.8) since $g(z) = c_0$ – $\sum_{r=1}^{\infty} c_r$, where $c_r > 0$, $r = 1, 2, \ldots$.

We end this section by showing that there is a converse to Theorem (3.5) provided that we consider all orders of square matrices. Thus the totally oscillating functions arise naturally in the type of problem we are considering.

THEOREM 3.10 *Let g(z) be a function analytic in* U. *Then the following are equivalent:*

- (a) *g'(z) is totally oscillating at* I,
- (b) *For all orders of square matrices,* $A \in M^*$ *implies* $g(A) \in \mathbb{Z}$.

Proof In view of Theorem (3.5), we need only prove that (b) implies (a). We assume that $(-1)^{s}g^{(s)}(1) < 0$ for some $s, s \ge 1$, and we shall construct an $A \in M_1^*$ for which $g(A) \notin \mathbb{Z}_1$. We let $n > s$ and we put $A = I - J$, where J is the matrix with entry 1 everywhere in the first super-diagonal and entry 0 elsewhere. Then we define *B* by

$$
B = g(A) = c_0 I - \sum_{r=1}^{n-1} c_r J^r,
$$

where $-c_r = (-1)^r g^{(r)}(1)/(r!)$, $r = 1, ..., n-1$ and $c_0 = g(1)$. Hence $b_{1s} = -c_s > 0$ and so $g(A) \notin \mathbb{Z}_1$.

We remark that it is easy to find functions which satisfy the hypothesis of Theorem (3.10) which are not Pick functions, e.g. $g(z) = 1 - (1 - z)^3$. Of course, Ando [3] obtains many properties for Pick functions in addition to $g(A) \in \mathbb{Z}_1$.

§4. UNIQUENESS OF ROOTS OF MATRICES IN M

In the last section we showed that $A^{1/p} \in M$ if $A \in M$ and $p > 1$. In this section we investigate the uniqueness of the solution of $B^p = A$ for $B \in M$. If B and C are commuting matrices satisfying certain conditions, we have $(BC)^p = B^p C^p$. Some restrictions are clearly necessary in this identity for, according to our definition in §3, the corresponding result does not even hold for all complex numbers β , γ , e.g. if $\beta = \gamma = e^{4i\pi/5}$ and $p = 5/2$ then $\beta^p = \gamma^p = 1$, but $(\beta, \gamma)^p = -1$. However $(\beta \gamma)^p = \beta^p \gamma^p$ if $|\arg \beta + \arg \gamma| < \pi$ and so it is natural to assume a restriction on the spectra of B and C . However, even then the identity is not self evident, and we supply a proof in the form of a sequence of two lemmas. The proof of the first of these is based on a suggestion of H. W. Knobloch.

For commuting indeterminates *x*, *y*, *z*, we let $C||x||$ or, $C||x, y||$ or *C[x, y,z]* be the rings of formal powers series in *x*, or *x, y* or *x, y,z* respectively, with coefficients in C. If $F(x) \in \mathbb{C}[[x]]$, we say that $F(x)$ represents the analytic function $\alpha \rightarrow F(\alpha)$ if for α in some neighborhood of the origin $F(\alpha)$ converges.

LEMMA 4.1 *Let x and y be commuting indeterminates and let* $F(x)$ $= 1 + {n \choose 1}x + {n \choose 2}x^2 + \cdots$ *in* $\mathbb{C}[[x, y]].$ *Then*

$$
F(x)F(y) = F(x + y + xy).
$$

Proof Let *z* be an indeterminate which commutes with *x* and *y.* **In** *Cax,* y, *zb* define

$$
F(xz)F(yz) = \sum_{r=0}^{\infty} P_r(x, y)z^r,
$$

$$
F(xz + yz + xyz^2) = \sum_{r=0}^{\infty} Q_r(x, y)z^r,
$$

where the $P_r(x, y)$ and $Q_r(x, y)$ are in $\mathbb{C}[[x, y]]$. Evidently the $P_r(x, y)$ and $Q_r(x, y)$ are polynomials. Let α , β , γ be in the neighborhood $V = \{z \in \mathbb{C} : |z| < 1/4\}$ of 0. Since $F(\delta) = (1 + \delta)^p \delta = \alpha \gamma$, $\delta = \beta \gamma$ or $\delta = \alpha \gamma + \beta \gamma + \alpha \beta \gamma^2$ we have

$$
F(\alpha\gamma)F(\beta\gamma)=F(\alpha\gamma+\beta\gamma+\alpha\beta\gamma^2).
$$

But the corresponding series converge absolutely and hence we may

rearrange terms to obtain

$$
\sum_{r=0}^{\infty} P_r(\alpha, \beta) \gamma' = \sum_{r=0}^{\infty} Q_r(\alpha, \beta) \gamma'.
$$

Thus $\sum_{r=0}^{\infty} P_r(\alpha, \beta) z^r$ and $\sum_{r=0}^{\infty} Q_r(\alpha, \beta) z^r$ represent the same analytic function. Since this holds for all $\alpha, \beta \in V$, we now deduce that $P_r(x, y) = Q_r(x, y)$. Hence $F(xz)F(yz) = F(xz + yz + xyz^2)$. The lemma follows on replacing *z* by 1. •

LEMMA 4.2 *Let B, C be commuting nonsingular matrices in* \mathbb{C}^{nn} and *suppose, that for* $\beta \in \text{spec } B$, $\gamma \in \text{spec } C$. $|\arg \beta + \arg \gamma| < \pi$. Let $p \in \mathbb{R}$. Then $B^p C^p = (BC)^p$.

Proof Since B and C commute there is a nonsingular $Q \in \mathbb{C}^{nn}$ such that

$$
QBQ^{-1} = \sum_{i=1}^{s} \oplus \beta_i (I_i + X_i)
$$

$$
QCQ^{-1} = \sum_{i=1}^{s} \oplus \gamma_i (I_i + Y_i)
$$

where $\beta_i \in \text{spec } B$, $\gamma_i \in \text{spec } C$, *I_i* is an identity matrix and X_i, Y_i are commuting strictly upper triangular matrices of the same order as I_i , $i=1,\ldots,s$. Since

$$
QB^{p}Q^{-1} = (QBQ^{-1})^{p} = \sum_{i=1}^{s} \bigoplus \beta_{i}^{p} (I_{i} + X_{i})^{p},
$$

$$
QC^{p}Q^{-1} = (QCQ^{-1})^{p} = \sum_{i=1}^{s} \bigoplus \gamma_{i}^{p} (I_{i} + Y_{i})^{p},
$$

it is enough to prove the lemma for matrices of form $B = I + X$, $C = I + Y$ where *X*, *Y* are commuting strictly upper triangular matrices. Evidently $BC = I + U$, where $U = X + Y + XY$ and U is also nilpotent. But then

$$
Bp = I + {p \choose 1}X + {p \choose 2}X^2 + \cdots
$$

since *X* is nilpotent, and a similar expansion holds for C^p and $(BC)^p$. The lemma now follows immediately from Lemma (4.1) .

For $0 < \theta \leq \pi$, we define a sector in the complex plane

$$
S(\theta) = \{0 \neq z \in \mathbb{C} : -\theta < \arg z < \theta\}.
$$

A matrix *A* is called *positively stable* if spec $A \subseteq S(\pi/2)$, the open right half plane.

LEMMA 4.3 Let $A \in \mathbb{C}^{nn}$ be positively stable and let $p \ge 1$. Then spec $A^{1/p} \subset S(\pi/2p)$ and $B = A^{1/p}$ is the unique matrix such that $B^p = A$ *and* spec $B \subseteq S(c\pi/2p)$ where $c = \min(3, 2p - 1)$.

Proof Let $B = A^{1/p}$. Clearly spec $B \subset S(\pi/2p)$. Let $C \in \mathbb{C}^m$ satisfy spec $C \subseteq S(c\pi/2p)$ and $C^p = A$. Then C commutes with A and hence also with B. Since C is non-singular we may put $D = C^{-1}B$. Since B and C commute and

$$
|\arg \beta - \arg \gamma| < \frac{\pi}{2p} + \frac{(2p-1)\pi}{2p} = \pi
$$

it follows by Lemma 4.2 that $D^p = (C^{-1})^p B^p = (C^p)^{-1} B^p = I$. Further every eigenvalue of *D* is of form $\delta = \gamma^{-1}\beta$, where $\beta \in \text{spec } B$ and $\gamma \in \text{spec } C$. Since $\delta^p = 1$ and

$$
|\arg \delta| = |\arg \beta - \arg \gamma| < \frac{\pi}{2p} + \frac{3\pi}{2p} = \frac{2\pi}{p}
$$

we must have $\delta = 1$. Next, every matrix satisfying $D^p = 1$ is similar to a diagonal matrix [7, p. 100]. Hence $D = I$ and we deduce that $C=B.$

THEOREM 4.4 *Let* $A \in \mathbf{M}$ *and let* $1 \le p \le 3$ *. Then* $B = A^{1/p}$ *is the unique matrix in* **M** *satisfying* $B^p = A$.

Proof By Corollary (3.7), $B \in M$. From the definition of c it follows that $c\pi/2p \ge \pi/2$. Hence uniqueness follows from Lemma *Proof* By Corollary (3.7), $B \in M$. From the definition of c it follows that $c\pi/2p \ge \pi/2$. Hence uniqueness follows from Lemma (4.3).

THEOREM 4.5 *Let* $A \in M$ *and let* $p > 3$ *. Then* $B = A^{1/p}$ *is the unique matrix in* M *satisfying*

(a) $B^p = A$,

(b) B, B^2, \ldots, B^m are in **M**, where *m* is the integer satisfying $p/3 \leq m \leq (p/3)+1$.

Proof We repeat the first part of the proof of Theorem (4.4) Thus $B = A^{1/p}$ satisfies $B^p = A$. Further, by Corollary (3.7), $B^k = A^{kq}$ $E = M, k = 1, ..., m$, since $mq < (1/3) + q < 1$, where $q = 1/p$. Now suppose that $C \in \mathbb{R}^{nm}$ satisfies (a) and (b). From (b) we obtain successively spec $C \subseteq S(\pi/2)$, spec $C \subseteq S(\pi/4)$, ..., spec $C \subseteq$ $S(\pi/2m)$. Since $m \ge p/3$, clearly $\pi/2m \leq 3\pi/2p$. Thus spec C $\leq S(c\pi/2p)$, where $c = \min(3, 2p - 1) = 3$. It now follows from Lemma (4.3) that $C = B$.

The question arises to what extent $B \in M$ and $B^p = A \in M$ is sufficient to ensure $B = A^{1/p}$ even when $p > 3$. When $K = K_2$ the result is true and well known. (The proof depends on the observation that if D is a diagonal matrix with positive diagonal elements, then $UD^pU^{-1} = V D^pV^{-1}$ implies $UDU^{-1} = V D V^{-1}$). By considering the case $K = K_3$ we thus have the following corollary.

COROLLARY 4.6 *Let A be a positive definite Z-matrix and let* $p > 1$. *Then the unique positive definite matrix B satisfying* $B^p = A$ *is B* $= A^{1/p}$ and B is also a Z-matrix.

For general **K** some further conditions are required for uniqueness. We show this by means of an example which is easily understood from the diagram below.

Example 4.7 (i) Let $n \ge 2$ and $p > 3$. We put $\beta = \frac{2\pi}{1 + p}$ and $\gamma = -2\pi/p(1 + p)$. Then it is easy to show that $0 < \beta < \pi/2$, $3\pi/2$ $\langle \cos \beta \rangle = 2\pi - \beta \langle 2\pi$. Hence $0 \langle \cos \beta \rangle = \cos \beta$. Also $0 \langle -\gamma \rangle \langle \beta \rangle$

M-MATRICES 197

and so $\cos \gamma > \cos \beta$. Now choose c so that $0 < c < \cos \beta$. Let *B* be a diagonal matrix in \mathbb{R}^{n} for which $b_{11} = c$ and either $b_{ii} = e^{i\beta}$ or $b_{ii} = e^{i\gamma}, i = 2, \ldots, n$. Then $B \in M_4$. Let *A* be the diagonal matrix given by $a_{11} = c^p < \cos \beta$, and $a_{ii} = e^{ip\beta}$, $i = 2, \ldots, n$. Thus $A \in \mathbf{M}_4$. Since $e^{ip\beta} = e^{ip\gamma}$, there are at least $2^{(n-1)}$ matrices B in M₄ such that $B^p=A$.

(ii) In the above example it is possible to choose p and c so that $A \in M_4^*$, $B \in M_4$, but $B \notin M_4^*$. Let $p > 5$. Then $0 < \beta <$ $\pi/3$. Choose c such that $\sqrt{2}$ $\sqrt{1-\cos \beta} < c < \cos \beta$ but $c^p <$ $\sqrt{2} \sqrt{1 - \cos \beta}$. Then define *B* by $b = c$, $b = e^{i\beta}$, $i = 2, \ldots, n$ and *A* as above.

We shall show that for $n \geq 3$ and real p, $p > 12$, there exist two different M-matrices (viz. in M_1) B_0 , B_1 and an M-matrix A such that $B_0^p = B_1^p = A$. It is enough to consider the case $n = 3$.

Example 4.8 Let

$$
X = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}.
$$

Then

$$
X^{2} = -\frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.
$$

Let $p > 12$ and put $e^{2\pi i/p} = c + is$, where $c, s \in \mathbb{R}$. Since *X* is similar to the diagonal matrix diag($0, i, -i$), it is easy to prove that

$$
W = I + sX + (1 - c)X^2
$$

satisfies $W^p = I$. Let $\epsilon > 0$ and

$$
B_0 = \epsilon I - X^2,
$$

\n
$$
B_1 = B_0 w = \epsilon I + s(1 + \epsilon)X - (c + \epsilon c - \epsilon)X^2.
$$

Then

$$
A = B_0^p = B_1^p = \epsilon^p I + ((1 + \epsilon)^p - \epsilon^p)X^2.
$$

Thus B_0 and A are M-matrices and so is B_1 provided that

$$
\frac{s(1+\epsilon)}{\sqrt{3}} \leq \frac{c(1+\epsilon)-\epsilon}{3}.
$$

Since $s/c = \tan(2\pi/p) < 1/\sqrt{3}$, the inequality holds for sufficiently small positive ϵ .

C. R. Johnson (private communication) has informed us that he has found a similar example. He has also shown that a 3×3 *M*matrix has a unique *pth* root which is an *M*-matrix when $p \le 12$.

§s. CHARACTERIZATIONS OF M

In this entire section we suppose that the positivity cone K of matrices satisfies condition (2.4). We shall extend the well-known result that for $A \in \mathbb{Z}_1$ we have $A \in \mathbb{M}_1$ if and only if $A^{-1} \in \mathbb{K}_1$. We first show that this result holds for general K.

LEMMA 5.1 *Let* $A \in \mathbb{Z}$. *Then* $A \in \mathbb{M}$ *if and only if* A^{-1} *exists and* $A^{-1} \in K$.

Proof Let $A \in \mathbf{M}$. Then $A = t(I - P)$, where $t > 0$, $P \ge 0$ and $p(P) < 1$. Hence $A^{-1} = t^{-1} \sum_{r=0}^{\infty} P^r \ge 0$. Conversely, let $A = (sI - P)$ and $A^{-1} \ge 0$. By [10, Thm. 5.2], there exists an $F, 0 \ne F \subseteq \overline{\omega}(P) \subseteq \mathbf{K}$ such that $AF = (sI - P)F = (s - \rho)F$. Thus $F = (s - \rho)A^{-1}F$ where $\rho = \rho(P)$. Since $AF = FA$, the matrices A^{-1} and *F* commute and hence $A^{-1}F \in \mathbf{K}$. But **K** is pointed, and so $s - \rho > 0$. Hence $A \in \mathbf{M}$.

We have actually shown the stronger result that $A \in M$ implies that $A^{-1} \ge \epsilon I$ for some $\epsilon > 0$. We may now use the results of §3 to characterize M as a subset of Z. We shall write $A^{-1/p} \in M$ to mean that $A^{-1/p}$ is defined and $A^{-1/p} \in M$, etc.

THEOREM 5.2 *Let* $A \in \mathbb{Z}$ *and let* p *be a positive integer. Then the following are equivalent:*

- (a) $A \in M$, (b) $A^{1/p} \in M$, (c) *There is a B* \in **M** for which $B^p = A$, (d) There is an $\epsilon > 0$ for which $A^{-1/p} \geq \epsilon I$, (e) There is an $\epsilon > 0$ and a $C \geq \epsilon I$ for which $C^p = A^{-1}$, (f) $A^{-1/p} \ge 0$, (g) *There is a* $C \ge 0$ *for which* $C^p = A^{-1}$. *Proof* First we prove $(a) \Rightarrow (b) \Rightarrow (d) \Rightarrow (f) \Rightarrow (g) \Rightarrow (a)$:
- (a) \Rightarrow (b) By Corollary (3.7).

M-MATRICES 199

 $(b) \Rightarrow (d)$ Apply Lemma (5.1) and the remark following its proof to $A^{1/p}$.

 $(d) \Rightarrow (f) \Rightarrow (g)$ Trivial.

(g) \Rightarrow (a) Since *p* is a positive integer $A^{-1} = C^p \ge 0$. Then use Lemma (5.1).

Next we show $(b) \Rightarrow (c) \Rightarrow (e) \Rightarrow (g)$:

 $(c) \Rightarrow (e)$ Apply Lemma (5.1) and the remark following to B. The other implications are obvious.

Technically $A^{-1/p}$ has not been defined if *A* has a negative eigenvalue, for the function $z^{-1/p}$ is not analytic on the negative axis, cf. our definition in §3. However, given any nonsingular \vec{A} , by cutting the complex plane along the ray $\arg z = \pi + \epsilon$, where $\epsilon \ge 0$ and ϵ is sufficiently small, we may assume that $z^{-1/p}$ is analytic for all $\lambda \in \text{spec}A$ and coincides there with our previous definition. Thus in Theorem 5.2 we may regard $A^{-1/p}$ to be well defined for all nonsingular $A \in \mathbb{C}^{n}$. Similar remarks apply to $\log A$ in the next theorem.

THEOREM 5.3 *Let* $A \in \mathbb{Z}$ *. Then the following are equivalent:*

- (A) $A \in M$,
- (b) $log A \in \mathbb{Z}$,
- (b) *There is a B* \in **Z** *for which* $e^{B} = A$ *.*

Proof Corollary (3.6) yields (a) \Rightarrow (b) and since (b) \Rightarrow (c) is trivial, we need only prove that $(c) \Rightarrow (a)$.

So let (c) hold for some $B \in \mathbb{Z}$.

Put $B = tI - P$ where $t \in \mathbb{R}$ and $P \ge 0$. Then

 $A^{-1} = e^{-B} = e^{-t}e^{P} \ge 0,$

and $A \in M$ by Lemma (5.1).

The substance of Theorems (5.2) and (5.3) will now be generalized. The function $z^{-1/p}$ and $\log z$ which occur there are totally oscillating at 1 and (as will shortly be shown) $A \in \mathbf{M}^*$ implies $g(A) \ge 0$ for every function $g(z)$ analytic in *U* which is totally oscillating at 1. But the desired converse implication may fail. For example let $A = -I$ and $g(z) = z^{-2}$. Then $A \in \mathbb{Z}^*$ and $g(z)$ is totally oscillating at 1. Also $g(A) \ge 0$ but $A \notin M^*$. Thus we are led to the following concept.

DEFINITION 5.4 Let V be an open set in $\mathbb C$ which contains the set $U = \{z \in \mathbb{C} : |z - 1| < 1\}$. We call $(f(z), g(z))$ a *reciprocating pair of*

 \hat{z}

ŧ.

functions (on *V*) if

(a) $f(z)$ is an entire function which is totally nonnegative at 1,

(b) $g(z)$ is a function analytic in V which is totally oscillating at 1 and $g(1) = 1$,

(c) $f(g(z)) = z^{-1}$, for $z \in V$.

(Observe that (b) and (c) imply that $f(1) = 1$).

Examples 5.5

(a) Let *p* be a positive integer. Then (z^p, z^{-p}) where $q = 1/p$, are a reciprocating pair on $\mathbb{C}\setminus\mathbb{R}_-$.

(b) Let $k > 0$ and let $f(z) = e^{k(z-1)}$ and $g(z) = 1 - k^{-1} \log z$. Then $(f(z), g(z))$ are a reciprocating pair on $\mathbb{C}\backslash\mathbb{R}_-$.

THEOREM 5.6 *Let* $(f(z), g(z))$ be a reciprocating pair of functions. Let $A \in \mathbb{Z}^*$. Then the following are equivalent:

(a) $A \in M^*$,

(b) $(g(A)$ *is defined and*) $g(A) \geq I$,

(c) *there is a B > I for which* $f(B) = A^{-1}$ *.*

Proof (a) \Rightarrow (b). Since spec $A \subseteq U \subseteq V$ the function $g(A)$ is defined. Since $g(1) = 1$, we have $g(A) = I + \sum_{r=1}^{\infty} b_r P^r$, where $b_r =$ $(-1)^{r}g^{(r)}(1)/r! \ge 0$, cf. (3.3) and (3.4). Hence $g(A) \ge 1$.

(b) \Rightarrow (c). By (5.4c), $f(g(A)) = A^{-1}$ cf. [5, Theorem 5, p. 602].

(c) \Rightarrow (a). Suppose that *B* = *I* + *Q*, *Q* \ge 0, and *f*(*B*) = *A*⁻¹. Then $A^{-1} = f(I + Q) = \sum_{r=0}^{\infty} d_r Q^r$, where $d_r = f(r)(1)/r! \ge 0$, $r = 0$,
1, ... Hence $A^{-1} \ge 0$. By Lemma (5.1) it follows that $A \in M$. 1, ... Hence $A^{-1} > 0$. By Lemma (5.1) it follows that $A \in \mathbf{M}$.

Our proof shows that the implications $(a) \Rightarrow (b) \Rightarrow (c)$ hold for functions $g(z)$ satisfying (5.4b) and that the implication (c) \Rightarrow (a) holds for functions $f(z)$ satisfying (5.4a) and $f(1) = 1$.

The assumption that $f(z)$ is entire cannot be omitted from the hypotheses of Theorem (5.6). For the pair $((2 - z)^{-1}, 2 - z)$ satisfies all other conditions for a reciprocating pair and if $A = I - P$, where $P \ge 0$, then $B \equiv g(A) = I + P \ge I$. Clearly $f(B) = A^{-1}$, if *A* is nonsingular. Thus no conclusion on $\rho(P)$ can be drawn.

Note added in proo}. As an application of a spectral theorem in two variables Hartwig [14] has obtained a general result which contains our Lemma 4.2 as a special case.

References

[I] G. Alefeld and N. Schneider, On square roots of M-matrices, Lin. Alg. Appl. **42** (1982), 119- 132.

- [2] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, *Lin. Alg. Appl.* 26 (1979), 203-241.
- [3] T. Ando, Inequalities for M-matrices., *Lin. Multilin. Alg.* 8 (1980), 291-316.
- [4] A. Berman and R. J. Plemmons, *Nonnegative Matrices in the Mathematical Sciences,* Academic (1979).
- [5] N. Dunford and J. T. Schwartz, *Linear Operators, Part I,* Interscience (1958).
- [6] K. Fan, Inequalities for *M*-matrices, *Indag. Math.* **26** (1964), 602-610.
- [7] F. R. Gantmacher, *The Theory of Matrices,* Chelsea (1959).
- [8] C. R. Johnson, Inverses of *M*-matrices, *Lin. Alg. Appl.* **47** (1982), 195-216.
- [9] A. M. Ostrowski, Uber die Determinanten mit uberwiegender Hauptdiagonale, *Comm. Math . Helvetici* **10** (1937), 69- 96.
- [10] H. Schneider, Geometric conditions for the existence of positive eigenvalues of matrices, *Lin. Alg. Appl. (Leiters)* 38 (1981), 253-271.
- [II] Olga Taussky, Research problem, *Bull. Amer. Math. Soc.* 64 (1958), 124.
- [12] R. S. Varga, Nonnegatively posed problems and completely monotonic functions, *Lin. Alg. Appl.* 1 (1968), 329-347.
- [13] D. V. Widder, *The Laplace Transform*. Princeton Univ. Press (1946).
- [14] R. E. Hartwig, Applications of the Wronskian and Gram matrices of $\{t^i e^{\lambda_k t}\}$, Lin. *Alg. Appl.* 43 (1982), 229-241.