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We introduce the notion of positivity cone K of matrices in enn and with such a K we 
associate sets Z and M. For suitable choices of K the set M consists of the classical 
(non-singular) M-matrices or of the positive definite (Hermitian) matrices. If A EM 
and I .;; p " 3 we prove that there is a unique B EM for which BP = A . If P > 3, this 
uniqueness theorem is false for general M and we prove a weaker result. We extend the 
result that for a Z-matrix A we have A - I ;. 0 if and only if A is an M-matrix. Under 
an additional hypothesis on the positivity cone, we exhibit a class of entire functions 
f(z) such that for A E Z we have A EM if and only if there is aBE K for which 
f(B) = A -I . 

§l. INTRODUCTION 

Since their introduction as objects of study by Ostrowski [9], 
M-matrices have received a great deal of attention. A summary of the 
literature may be found in [4] and we choose to mention here just one 
of several papers by Fan on this topic, [6]. 

·The research of this author was partly supported by the NSF under grants MCS 
78-01087 and MCS 80-26132 and by the Deutsche Forschungsgemeinschaft (BRD) 
while on leave at the Mathematisches Institut def Universitat, Wiirzburg, West 
Germany. 
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Here we shall consider some problems on analytic functions of 
M-matrices and M-matrix will mean non-singular M-matrix through
out. We investigate the existence and uniqueness of roots of an 
M-matrix which are also M-matrices. We find new characterizations 
of the set of M-matrices as a subset of the set of Z-matrices. We 
introduce generalization of M-matrices for which our results are 
proved. 

We shall now summarize our paper in greater detail. In §2 we 
introduce generalizations of Z-matrices and M-matrices associated 
with certain cones of matrices which we call positivity cones. Thus for 
each positivity cone K we define the sets Z = Z(K) and M = M(K). If 
K consists of the (elementwise) nonnegative matrices, then Z and M 
are the sets of Z-matrices and M-matrices, respectively (and we 
reserve the terms nonnegative matrix, Z-matrix and M-matrix for this 
classical case). If K is the set of positive semi-definite (Hermitian) 
matrices, then Z is the set of Hermitians and M is the set of positive 
definite matrices. Thus we give a unified treatment of results on 
M-matrices and positive definite matrices and thereby respond to a 
research problem raised by Olga Taussky [II]. We also use a certain 
positivity cone to obtain a counterexample in §4. 

In §3 we prove some very straightforward results on analytic 
functions J(z) such that J(A) EM or J(A) E Z whenever A E Z. For 
technical reasons, we confine ourselves to the subset Z* of Z consist
ing of matrices A for which A ,.;; I in the order induced by K. If M is 
the set of M-matrices and all orders of square matrices are considered 
we have a characterization of analytic functions J(z) with the property 
described. Examples of such functions J(z) are zq, 0 < q < I and 
logz. For these particular functions it is known that J(A) is a 
Z-matrix when A is an M-matrix. Ando [3] obtained these implica
tions as special cases of very interesting results on Pick functions of 
M-matrices. However, our class of functions does not coincide with 
the Pick functions. 

The results of §3 show that if A EM, P > 1, and B = A l i p then 
B E M. In §4 we investigate uniqueness properties and we show that 
for I ,.;; p ,.;; 3, B = A l i p is the unique matrix in M that BP = A. For 
p > 3 we prove a weaker theorem: B = A lip is the unique matrix for 
which BP = A and B,B 2

, ••• ,Bm belong to M, where m is the 
integer satisfying p /3 ,.;; m < (p /3) + I. Let p > 3. If M is the set of 
positive definite matrices, then roots within M are unique. However 
we give an example of a positivity cone K such that for the corre-
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sponding set M there is an A EM with at least 2(n - l ) matrices 
B EM for which BP = A. We also show that for n ;;. 3 and p > 12 
there exist distinct M-matrices Bo ,B I in IRn such that B6 = Bf is again 
an M-matrix. 

Let A be a Z-matrix. It is very well known that A is a (non
singular) M-matrix if and only if A - I ;;. O. It is easy to find functions 
g(z) such that g(A) ;;. 0 if A is an M-matrix but where the converse 
implication may be false, e.g. for g(z) = z -2. A class of such func
tions was introduced by Varga [12], cf. [4, pp. 142-146] (who also 
obtained a converse by considering the series expansion rather than 
the function itself). We are thus led to §5 to the search for functions 
g(z) for which A EM if and only if A E K. Our class of functions is 
described in terms of what we call reciprocating pairs of functions 
(f(z), g(z)). Examples are (zP, z - lip), P a positive integer and 
(e k(z-I), \ - k-Ilogz) where k > O. For M-matrices, the case g(z) 
= z - I is classical and the special case of g(z) = z - 1/2 of our result is 
known, and was recently proved by E. Alefeld and N. Schneider [I] 
by different methods. 

§2. POSITIVITY <?ONES AND ASSOCIATED SETS 

We begin with some definitions. By IR we denote the real field, and 
by C the complex field. As usual, en will denote the space of complex 
n-tuples, and cnn the set of all n X n matrices with elements in C. We 
use IRn and IRnn similarly. 

A cone K is a non-empty subset of a (usually complex) vector space 
which is closed under addition and multiplication by nonnegative 
reals. The cone K is pointed if P E K and P E - K imply P = 0, cf. 
[4, p. 2]. A pointed cone K partially orders the vector space, viz. 
P ;;. Q defined by P - Q E K is a partial order which is compatible 
with addition and multiplication by nonnegative scalars. 

We now introduce a definition which is fundamental for our 
results. 

DEFINITION 2.1 A pointed, closed cone K in cnn such that 

(a) IE K, 
(b) If P E K then P' E K, r = 1,2, ... , 

will be called a positivity cone of matrices. 

Henceforth K will always denote a positivity cone of matrices and 
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we partially order cnn with respect to K. (We may write P ;;. ° for 
P E K even though we reserve the words nonnegative matrix for the 
classical case.) 

Suppose P ;;. ° and let w(P) be the cone of all polynomials 
'L";=ocrr where Cr ;;. 0, r = 0, 1, ... , m. Then w(P) ~ K and hence 
also w(P) ~ K, where w(P) is the closure of w(P). Hence, w(P) is 
pointed and the spectral radius p(P) of P belongs to specP (the 
spectrum of P), see [10, Theorem 5.2]. 

We call p(P) the Perron-Frobenius root of P. Hence A = sl - P, 
where s E IR and P ;;. ° has an eigenvalue a(A) such that a(A) 
= min {ReA : A E spec A } . We call a(A) the minimal eigenvalue of 
A = sl - P. 

DEFINITION 2.2 Let K be a positivity cone of matrices. We put 

(a) Z = {A E en: A = sl - P, s E IR, P E K}, 
(b) Z* = {A EZ:A ~ I}, 
(c) M = {A E Z: a(A) > O}, 
(d) M* = Z* n M. 

Our notation does not indicate the dependence of Z, M, etc. on K. 
But K may be considered fixed throughout. Nor do we indicate the 
order n of our matrices. But here also, n may be considered fixed, 
except in one theorem. We give some examples of possible choices 
for K. 

Example 2.3 (i) Let KI be the cone of all (elementwise) nonnega
tive matrices in en, viz. P E KI if Pi} ;;' 0, i,j = 1, ... , n. Then ZI 
and MI are respectively the sets of Z-matrices and (non-singular) 
M-matrices as defined in Berman-Plemmons [4]. 

(More generally we could choose K to be the cone of matrices 
which map a proper cone in IRn into itself, see [10] for definition of 
proper cone.) 

(ii) Let K2 be the cone of positive semi-definite (Hermitian) matri
ces. Then Z2 is the set of all Hermitian matrices. and M2 the set of 
positive definite matrices. 

(iii) Let K3 = KI n K2 . 

(iv) Let n ;;. 2. Let K4 be the cone of all diagonal matrices P with 
PII ;;. Ipiil, i = 2, ... , n. (Note that PII ;;. 0). Then Z4 consists of all 
diagonal matrices A with a II E IR and either a II = aii or a II < Re aii' 
i = 2, ... , n. Also A E M4 if and only if A E Z4 and all> 0. Observe 
that Z4 is not closed in cnn. 
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We shall use the subscript 1,2,3,4 to refer to the cones, etc., in the 
above example. Note that for K = Ki , i = 1,2,3,4 we have a property 
stronger than (2.1) which will be needed in §5 : 

Condition 2.4 If P, Q E K and P, Q commute then PQ E K. 

We observe that if PEen and w(P) is pointed, then K = w(P) 
obviously satisfies the conditions (2.1) and (2.4). 

The following lemma is obvious. 

LEMMA 2.5 Let A E Z (where Z corresponds to a positivity cone K). 
Then the following are equivalent. 

(a) A EM, 
(b) All eigenvalues of A have positive real part. • 

§3. PRELIMINARY RESULTS ON ANALYTIC FUNCTIONS 

If g(z) is a single-valued function analytic in an open subset Vof 
the complex plane and A E cnn has specA s V, then we define g(A) 
as in Dunford-Schwartz [5, p. 557]. Thus we choose any polynomial 
p(z) with p(rl(a) = g(r)(a) for a E specA and r = 0, 1, ... , n. For the 
Jordan fonn QA Q -, = L~=' GJ (aJi + Ni) where Ii is an identity 
matrix and N; is nilpotent, we define 

Qg(A)Q-' = i*' GJC~o ), pr(a;)N;'). 

We shall be particularly interested in analytic functions whose deriva
tives at 1 satisfy certain properties. 

DEFINITION 3.1 Let fez) be a function analytic at 1. 

(a) We call fez) totally nonnegative at 1 if 

1'r\l) ~ 0, for r = 0, 1, ... 

(b) We call f( z) totally oscillating at 1 if 

( - 1)' l' r)( 1) ~ 0, for r = 0, 1, ... 

The terms absolutely monotonic have been used in a manner 
related to our totally nonnegative and totally oscillating cf. Widder 
[13, p. 144-145], Varga [12] and [4, p. 142]. 

By U we shall henceforth denote the set 

U = {z E C : \z - 1\ < l}. (3.2) 
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If g(z) is an analytic function in U then for Ixl < I 
00 00 

g(I - x) = 2: brx r= g(I) - 2: crx r 

r=O r=' 
where 

r = 1,2, . .. . (3.3) 

Hence g(z) is totally oscillating if and only if br ;;. 0, r = 0, I, ... . 
Also, g'(z) is totally oscillating if and only if cr ;;' 0, r = 1,2, .... If 
A E M*, then A = 1- P, where P ;;. ° and p:= p(P) < I. Hence 
2/:'= ,crpr converges and 

00 

g(A) = g(l) - 2: crr (3.4) 
r=O 

We have proved (i) of the following simple theorem. 

THEOREM 3.5 Let A E M* with minimal eigenvalue a. Let g(z) be 
function analytic in U such that g'(z) is totally oscillating at I. Then 

(i) g(A) E Z, 
(ii) g(a) is the minimal eigenvalue of g(A). 
(iii) g(A) EM if and only if g(a) > 0. 

Proof (i) was proved before the statement of the theorem. 
(ii) We have 

spec g(A) = {g('\) :'\ E specA}. 

Hence g( a) is an eigenvalue of g(A). If A = 1- P and ,\ = I - IL 
E specA, then IL E specP, and so I ILl .;; p < I. Hence 

I g(I) - g('\)1 = I ,~, CrILrl .;; ,~, crpr = g(I) - g( a) 

since a = I - p. Thus Re g('\) ;;. g( a), for ,\ E spec A , and this proves 
(ii). 

(iii) is an immediate consequence of (ii). • 

If z = reiO
, where r ;;. 0, - 'TT < f) = argz .;; 'TT, we define 

Iogz = logr + if) 

where log r is real, and, for p E IR, 

zP = rPe ipO• 
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Thus 10gz and zP are' analytic in C with the negative axis and 0 
removed. If 0 < q < 1, then g(z) = logz and g(z) = zq have g'(z) 
totally oscillating at 1 and g'(l) > O. We thus have the following 
corollaries, which are obtained from Theorem (3.5) by consideration 
of s - 'A where s is sufficiently large to ensure s - 'A E M*. 

COROLLARY 3.6 Let A EM. Then 10gA E Z and 10gA E M if and 
only if a > 1, where a is the minimal eigenvalue of A. • 

COROLLARY 3.7 Let A EM and let 0 < q < 1. Then A q EM. • 

For A EM" it was noted by Ando [3] that 10gA E Z, and A q 

E M" if 0 < q < 1. As remarked in our introduction, his proof uses 
Pick functions, though a remark of his suggests he was aware of the 
above simple argument with Taylor expansions. See also Johnson [8]. 
Similar results for M2 are also known, e.g. Ando [2]. 

In the rest of this section we consider the classical case; viz. 
K = K,. If A E IRnn

, we define the (directed) graph G(A) in the normal 
way, viz. G(A) has as its vertex set {I, ... , n} and (i, j) is an edge of 
G(A) if and only if a ij =t= 0, d. [4, p. 29]. (Usually the definition is 
given for nonnegative A , but here it is convenient to apply it also to 
other matrices). A class of A (or strongly connected component of 
G(A» is characterized as being a subset of {I, . . . , n} which is 
maximal with respect to the property that it is either a singleton or 
else there is a path (directed sequence of edges) from each element of 
the subset to every other element. The graph G(A) is called essentially 
transitive if, for i =t= j, (i, j) is an edge of G(A) whenever there is a 
path from i to j in G(A). The set of classes of A will be called the class 
structure of A, d . [4, p. 42]. If P > 0 (elementwise) and r > I it is easy 
to see that (i, j) is an edge of G(pr) whenever there is a path from i to 
j in G(P) consisting of r edges. It follows that each class of pr is 
contained in a class of P. Hence we can easily prove the following 
lemma which is related to known results, e.g. Johnson [8]. 

LEMMA 3.8 Let P be a nonnegative matrix and let 

where cr ;;> 0, for r = 1,2, . ... If c, > 0 then P and Q have the same 
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class structure. If Cr > 0, r = 1,2, .. . , then G( Q) is essentially transi
~. . 

We have the following completion of Theorem (3.5) and Corollaries 
(3.6) and (3.7). 

THEOREM 3.9 Let A E Mi. Let g(z) be a function analytic in U such 
that g'(z) is totally oscillating at 1. If g'(l) > 0 then A and g(A) have 
the same class structures. If g( r) (l) =1= 0, r = I, 2, . . . , then the graph of 
g(A) is transitive. In particular IogA and A q, where 0 < q < 1, have 
the same class structure as A and their graphs are essentially transitive. 

Proof Follows immediately from Lemma (3.8) since g(z) = Co -

2:~= ,cr ' where cr > 0, r = 1, 2, . . . . • 

We end this section by showing that there is a converse to Theorem 
(3.5) provided that we consider all orders of square matrices. Thus the 
totally oscillating functions arise naturally in the type of problem we 
are considering. 

THEOREM 3.10 Let g(z) be a function analytic in U. Then the follow
ing are equivalent: 

(a) g'(z) is totally oscillating at I , 
(b) For all orders of square matrices, A E Mi implies g(A) E Z,. 

Proof In view of Theorem (3.5), we need only prove that (b) 
implies (a). We assume that (- IYg( S) (l) < 0 for some s, s ;> 1, and we 
shall construct an A E Mi for which g(A) fl. Z,. We let n > s and we 
put A = 1 - J, where J is the matrix with entry I everywhere in the 
first super-diagonal and entry 0 elsewhere. Then we define B by 

n-i 

B = g(A) = coI- 2: cJr, 
r= I 

where - Cr = (-IYg(r)(I)/(r!), r = I, ... , n - 1 and Co = g(\). 
Hence b"s = - Cs > 0 and so g(A) fl. Z,. • 

We remark that it is easy to find functions which satisfy the 
hypothesis of Theorem (3.10) which are not Pick functions, e.g. 
g(z) = I - (l - zl Of course, Ando [3] obtains many properties for 
Pick functions in addition to g(A) E Z,. 
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§4. UNIQUENESS OF ROOTS OF MATRICES IN M 

In the last section we showed that A I I p EM if A EM and p > 1. 
In this section we investigate the uniqueness of the solution of BP = A 
for B E M. If Band C are commuting matrices satisfying certain 
conditions, we have (BCY = BPCP. Some restrictions are clearly 
necessary in this identity for, according to our definition in §3, the 
corresponding result does not even hold for all complex numbers [3, y, 
e.g. if [3 = y = e4i7r 

1 5 and p = 5/2 then /3P = yP = I, but ( [3, y Y = - 1. 
However ([3yY = /3PyP if larg [3 + arg yl < 1T and so it is natural to 
assume a restriction on the spectra of Band C. However, even then 
the identity is not self evident, and we supply a proof in the form of a 
sequence of two lemmas. The proof of the first of these is based on a 
suggestion of H. W. Knobloch. 

For commuting indeterminates x, y,z, we let C[x] or, C[x, y] or 
C[x,y,z] be the rings of formal powers series in x, or x,y or x,y,z 
respectively, with coefficients in C. If F(x) E C[x], we say that F(x) 
represents the analytic function a ~ F( a) if for a in some neighbor
hood of the origin F(a) converges. 

LEMMA 4.1 Let x and y be commuting indeterminates and let F(x) 
= I + (f)x + (nx2 + ... in C[x, yD. Then 

F(x)F(y) = F(x + Y + xy). 

Proof Let z be an indeterminate which commutes with x and y. In 
Cax, y, zb define 

00 

F(xz)F(yz) = ~ P,(x, y)z', 
,=0 

00 

F(xz + yz + xyz2) = ~ Q,(x,y)z', 
,=0 

where the P,(x, y) and Q,(x, y) are in C[x, yD. Evidently the P,(x, y) 
and Q,(x, y) are polynomials. Let a, [3, y be in the neighborhood 
V = {z E C: Izl < 1/4} of O. Since F(8) = (1 + 8Y 8 = ay, 8 = [3y or 
8 = ay + [3y + a[3y2 we have 

F( ay)F( [3y) = F( ay + [3y + a[3y2). 

But the corresponding series converge absolutely and hence we may 
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rearrange terms to obtain 
00 00 

~ Pr(ex, (3)Yr= ~ Qr(ex, (3)Yr. 
r=O r=O 

Thus ~~OPr( ex, (3)z r and ~~o Qr( ex, (3)z r represent the same ana
lytic function. Since this holds for all 0:, f3 E V, we now deduce that 
PrCx, y) = QrCx, y). Hence F(xz)F(yz) = F(xz + yz + xyz2). The 
lemma follows on replacing z by 1. • 

LEMMA 4.2 Let B, C be commuting nonsingular matrices in cnn and 
suppose, that for f3 E spec B, Y E spec C. I arg f3 + arg Y I < 7T. Let 
p E IR. Then BPcP = (BCY. 

Proof Since Band C commute there is a nonsingular Q E cnn 

such that 
s 

QBQ -I = ~ tB f3i( I; + Xi) 
i=1 

s 

QCQ-I = ~ tBYi(li + Yi ) 

i=1 

where f3i E specB, Yi E spec C, Ii is an identity matrix and Xi' Yi are 
commuting strictly upper triangular matrices of the same order as Ii' 
i = 1, ... , s. Since 

s 

QBPQ -I = ( QBQ -I{ = ~ tB f3f(li + X,f, 
i= 1 

s 

QcPQ -I = ( QCQ -I)P = ~ tByf(li + Yi l, 
i= 1 

it is enough to prove the lemma for matrices of form B = I + X, 
C = I + Y where X, Yare commuting strictly upper triangular matri
ces. Evidently BC = 1+ U, where U = X + Y + XY and U is also 
nilpotent. But then 

BP = 1+ ( nx + ( nX2 + ... 

since X is nilpotent, and a similar expansion holds for CP and (BCY. 
The lemma now follows immediately from Lemma (4.1). • 
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For 0 < e <;;; 7T, we define a sector in the complex plane 

S (e) = {O * z E C : - e < arg z < e }. 
A matrix A is called positively stable if specA k S(7T /2), the open 
right half plane. 

LEMMA 4.3 Let A E en be positively stable and let p ;;. I. Then 
spec A l i p k S(7T /2p) and B = A lip is the unique matrix such that 
BP = A and specB k S(c7T/2p) where c = min(3,2p - I). 

Proof Let B = A l i P. Clearly specB k S(7T /2p). Let C E en sat
isfy specC k S(c7T/2p) and CP = A. Then C commutes with A and 
hence also with B. Since C is non-singular we may put D = C -lB. 
Since Band C commute and 

7T (2p - 1)7T 
larg ,8 - argyl < 2p + 2p = 7T 

it follows by Lemma 4.2 that DP = (C - IYBP = (CP) - IBP = I. Fur
ther every eigenvalue of D is of form 8 = Y - 1,8, where,8 E spec Band 
Y E spec C. Since 8P = I and 

larg 8 1 = larg,8 - argyl < ~ + 37T = 27T 
2p 2p P 

we must have 8 = I. Next, every matrix satisfying DP = I is similar to 
a diagonal matrix [7, p. 100]. Hence D = I and we deduce that 
C=B. • 

THEOREM 4.4 Let A EM and let I <;;; P <;;; 3. Then B = A l i p is the 
unique matrix in M satisfying BP = A. 

Proof By Corollary (3.7), B EM. From the definition of c it 
follows that C7T /2p ;;;. 7T /2. Hence uniqueness follows from Lemma 
~~ . 
THEOREM 4.5 Let A EM and let p > 3. Then B = A l i p is the unique 
matrix in M satisfying 

(a) BP=A, 
(b) B, B 2, ... , B m are in M, where m is the integer satisfying 

p/3 <;;; m « p/3)+1. 
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Proof We repeat the first part of the proof of Theorem (4.4) Thus 
B = A lip satisfies BP = A. Further, by Corollary (3.7), Bk = A kq 
EM, k = 1, ... , m, since mq < (1/3) + q < 1, where q = lip. Now 
suppose that C E wn satisfies (a) and (b). From (b) we obtain 
successively specC <: S('lT/2), specC <: S('lT/4) , ... , specC <: 
S('lT/2m). Since m;;;' p/3, clearly 'IT/2m.,;; 3'lT/2p. Thus specC 
<: S(c'lT / 2p), where c = min(3,2p - 1) = 3. It now follows from 
Lemma (4.3) that C = B. • 

The question arises to what extent B EM and BP = A EM is 
sufficient to ensure B = A l i p even when p > 3. When K = K2 the 
result is true and well known. (The proof depends on the observation 
that if D is a diagonal matrix with positive diagonal elements, then 
UDPU- I = VDPV- I implies UDU- I = VDV- I

) . By considering the 
case K = K3 we thus have the following corollary. 

COROLLARY 4.6 Let A be a positive definite Z-matrix and let p > 1. 
Then the unique positive definite matrix B satisfying BP = A is B 
= A l ip and B is also a Z-matrix. • 

For general K some further conditions are required for uniqueness. 
We show this by means of an example which is easily understood 
from the diagram below. 

Example 4.7 (i) Let n ;;;. 2 and p > 3. We put f3 = 2'lT /(1 + p) and 
y = -2'lT/p(l + p). Then it is easy to show that 0 < f3 < 'IT/2, 3'lT/2 
< pf3 = 2'lT - f3 < 2'lT. Hence 0 < cos f3 = cos pf3. Also 0 < - y < f3 
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and so cos y > cos {3. Now choose c so that 0 < c < cos {3. Let B be a 
diagonal matrix in IRnn for which b 11 = c and either bii = e if3 or 
bii = eir, i = 2, ... , n . Then B E M4 • Let A be the diagonal matrix 
given by all = c P < cos (3, and aii = e ipf3 , i = 2, ... , n. Thus A E M4 . 

Since e ipf3 = eiP"l, there are at least 2(n - l) matrices B in M4 such that 
BP=A. 

(ii) In the above example it is possible to choose p and c so 
that A EM:, B E M4 , but B t1. M:. Let p > 5. Then 0 < {3 < 
'IT /3. Choose c such that 1i)1 - cos {3 < c < cos {3 but cP < 
Ii b- cos {3. Then define B by b = c, b = e if3 , i = 2, . . . , nand 
A as above. 

We shall show that for n ;;;. 3 and real p, p > 12, there exist two 
different M-matrices (viz. in M l ) Bo , B l and an M-matrix A such that 
Bg = Bf = A. It is enough to consider the case n = 3. 

Example 4.8 Let 

X~ ~H 1 
- I 1 

° 1 . 
- 1 0 

Then 

X' ~ - .1 [ - i - 1 
- I 1 2 - 1 . 

3 _ I - 1 2 

Let p > 12 and put e27Ti
/ p = c + is, where c,s E IR. Since X is similar 

to the diagonal matrix diag(O, i, - i), it is easy to prove that 

W = I + sX + (I - c)X 2 

satisfies WP = I. Let f > 0 and 

Bo = d - X 2
, 

Bl = Bow = d + s(1 + f)X - (c + fC - f)X2. 

Then 

A = Bo = Bf = fPI + (I + f)P - fP)X 2. 

Thus Bo and A are M-matrices and so is B 1 provided that 

s(1 + f) c(1 + f) - f 
--- " ---::----If 3 
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Since s / c = tan(2'1T / p) < 1/ If, the inequality holds for sufficiently 
small positive E. 

C. R. Johnson (private communication) has informed us that he 
has found a similar example. He has also shown that a 3 X 3 M
matrix has a unique pth root which is an M-matrix when p ,;;; 12. 

§s. CHARACTERIZATIONS OF M 

In this entire section we suppose that the positivity cone K of 
matrices satisfies condition (2.4). We shall extend the well-known 
result that for A E ZI we have A E MI if and only if A -I E K I . We 
first show that this result holds for general K. 

LEMMA 5.1 Let A E Z. Then A E M if and only if A - I exists and 
A -I E K. 

Proof Let A EM. Then A = t(I - P), where t > 0, P ;;. 0 and 
p(P) < 1. Hence A -I = t -IL~Opr ;;. O. Conversely, let A = (sf - P) 
and A -I ;;. O. By [10, Thm. 5.2], there exists an F, 0 =1= F <;;;: w(P) <;;;: K 
such that AF = (sf - P)F = (s - p)F. Thus F = (s - p)A -IF where 
p = p(P). Since AF = FA, the matrices A -I and F commute and 
hence A -IF E K. But K is pointed, and so s - p > O. Hence A EM . 

• 
We have actually shown the stronger result that A EM implies that 

A -I ;;. El for some E > O. We may now use the results of §3 to 
characterize M as a subset of Z. We shall write A -lip EM to mean 
that A -lip is defined and A -l i p EM, etc. 

THEOREM 5.2 Let A E Z and let p be a positive integer. Then the 
following are equivalent: 

(a) A EM, 
(b) A l i p EM, 
(c) There is aBE Mfor which BP = A, 
(d) There is an E > 0 for which A -lip;;. El, 
(e) There is an E > 0 and a C ;;. El for which C P = A - I, 

(f) A - lip ;;. 0, 
(g) There is a C ;;. 0 for which CP = A -I. 

Proof First we prove (a)=> (b) => (d) => (f)=> (g) => (a): 

(a)=>(b) By Corollary (3.7). 
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(b) ~ (d) Apply Lemma (5.1) and the remark following its proof to 
A l i P. 

(d)~(f)~(g) Trivial. 
(g) ~ (a) Since p is a positive integer A - I = cp ;;. O. Then use 

Lemma (5.1). 
Next we show (b)~(c)~(e)~(g) : 

(c)~(e) Apply Lemma (5.1) and the remark following to B. The 
other implications are obvious. • 

Technically A - l i p has not been defined if A has a negative 
eigenvalue, for the function z - l i p is not analytic on the negative axis, 
cf. our definition in §3. However, given any nonsingular A, by cutting 
the complex plane along the ray argz = 'IT + t:, where t: ;;. 0 and t: is 
sufficiently small, we may assume that z - l i p is analytic for all 
A E specA and coincides there with our previous definition. Thus in 
Theorem 5.2 we may regard A - l i p to be well defined for all nonsin
gular A E cnn

• Similar remarks apply to logA in the next theorem. 

THEOREM 5.3 Let A E Z. Then the following are equivalent: 

(a) A EM, 
(b) logA E Z, 
(b) There is aBE Z for which e B = A. 

Proof Corollary (3 .6) yields (a)~(b) and since (b)~(c) is trivial, 
we need only prove that (c)~(a). 

So let (c) hold for some B E Z. 
Put B = tI - P where t E IR and P ;;. O. Then 

A - I = e - B = e -Ie P ;;. 0, 

and A EM by Lemma (5.1). • 
The substance of Theorems (5.2) and (5.3) will now be generalized. 

The function z - l i p and logz which occur there are totally oscillating 
at 1 and (as will shortly be shown) A E M* implies g(A) ;;. 0 for every 
function g(z) analytic in U which is totally oscillating at I. But the 
desired converse implication may fail. For example let A = - I and 
g(z) = z-2. Then A E Z* and g(z) is totally oscillating at 1. Also 
g(A) ;;. 0 but A fl M*. Thus we are led to the following concept. 

DEFINITION 5.4 Let V be an open set in C which contains the set 
U = {z E C: Iz - 11 < 1}. We call (j(z), g(z» a reciprocating pair of 
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Junctions (on V) if 

(a) J(z) is an entire function which is totally nonnegative at 1, 
(b) g(z) is a function analytic in V which is totally oscillating at 1 

and g(1) = 1, 
(c) J(g(z» = z -I, for z E V. 

(Observe that (b) and (c) imply thatJ(1) = 1). 

Examples 5.5 

(a) Let p be a positive integer. Then (zP,z -P) where q = 1/ p, are a 
reciprocating pair on C\[]L . 

(b) Let k > ° and letJ(z) = ek(z-I) and g(z) = 1 - k-Ilogz. Then 
(j(z), g(z» are a reciprocating pair on C\[IL. 

THEOREM 5.6 Let (j(z), g(z» be a reciprocating pair oj junctions. Let 
A E Z*. Then the Jollowing are equivalent: 

(a) A EM*, 
(b) (g(A) is deJined and) g(A) ~ I, 
(c) there is a B ~ I Jor which J(B) = A -I . 

ProoJ (a)~(b). Since specA sUs V the function g(A) is de
fined. Since g(l) = 1, we have g(A) = I + L~ Ar, where br = 

( - lYg(r)(1)/ r! ~ 0, d. (3.3) and (3.4). Hence g(A) ~ 1. 
(b)~(c). By (5.4c),J(g(A» = A - I cf. [5, Theorem 5, p. 602]. 
(c)~(a). Suppose that B = 1+ Q, Q ~ 0, and J(B) = A -I. Then 

A - I = J(I + Q) = L':'=odrQr, where dr = J(r)(1)/ r! ~ 0, r = 0, 
1, .. .. Hence A - I > 0. By Lemma (5.1) it follows that A EM. • 

Our proof shows that the implications (a)~(b)~(c) hold for 
functions g(z) satisfying (5.4b) and that the implication (c)~(a) 
holds for functions J(z) satisfying (5.4a) and J(1) = 1. 

The assumption that J(z) is entire cannot be omitted from the 
hypotheses of Theorem (5.6). For the pair «2 - z)-1,2 - z) satisfies 
all other conditions for a reciprocating pair and if A = 1- P, where 
P ~ 0, then B == g(A) = 1+ P ~ I . Clearly J(B) = A -I, if A is non
singular. Thus no conclusion on p(P) can be drawn. 

Note added in proo}. As an application of a spectral theorem in two 
variables Hartwig [14] has obtained a general result which contains 
our Lemma 4.2 as a special case. 
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