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ALGORITHMS FOR TESTING THE DIAGONAL SIMILARITY 
OF MATRICES AND RELATED PROBLEMS* 

GERNOT M. ENGELt AND HANS SCHNEIDER* 

Abstract. A simple algorithm is presented for testing the diagonal similarity of two square matrices 
with entries in a field. Extended forms of the algorithm decide various related problems such as the 
simultaneous di_gonal similarity of two families of matrices, the existence of a matrix in a subfield diagonally 
similar to a given matrix, the existence of a unitary matrix similar to a given complex matrix, and the 
corresponding problems for diagonal equivalence in place of diagonal similarity. The computational 
complexity of our principal algorithm is studied, programs and examples are given. The algorithms are 
based on the existence of a canonical form for diagonal similarity. In tpe first part of the paper theorems 
are proved which establish the existence of this form and which investigate its properties. 

1. Introduction. In this paper we present a simple algorithm for testing the 
diagonal similarity of two square matrices with entries in a field IF. Extended forms 
of our algorithm decide the simultaneous diagonal similarity of two families of rna trices, 
the existence of a matrix in a sub field diagonally similar to a given matrix and, if IF is 
the real or complex field, the existence of a real orthogonal or unitary matrix diagonally 
similar to a given matrix. Another modification of our algorithm tests the diagonal 
equivalence of two rectangular matrices. There exist extensions for diagonal 
equivalence which correspond to the extensions described above in the case of diagonal 
similarity. 

After the appropriate definitions (§ 2), we develop the theory on which our 
algorithm is based (§ 3 and § 4). We show that for A E IFnn

, the set of n x n matrices 
with elements in IF, there exists a canonical form for diagonal similarity. We denote 
this form by A F, since it depends on a choice of a spanning forest F for the graph 
G(A) of A considered as an undirected multigraph. Further, we give a simple 
construction ' for a diagonal matrix X such that XAX- 1 = AF and we write X = 
X(A, F, U) since X also depends on a choice of a set of representatives U for the 
connected components of For G(A). Thus, for A, BE IF nn

, the matrices A and Bare 
diagonally similar if and only if G(A)=G(B) and AF =BF or, equivalently, HF is a 
{a, 1} matrix where H=AGB is the Hadamard quotient defined in [lJ or § 3. Thus 
we have the following simple procedure to test diagonal similarity of A and B: 

(1) Check whether G(A) == G(B). 
(2) If so, choose a spanning forest F for G(A) and a set U of representatives 

for the connected components of G(A). 
(3) For H = A GB, oompute X = X(H, F, U). 
(4) Check whether XHX-1 

E {a, 1ym. 
Adetailed description of the algorithm and a study of its computational complexity 
is given in § 5. In § 6 we briefly indicate applications which are more fully described 
in our technical report with the same title as this paper. 

The relationship between cyclic products and diagonal similarity which is crucial 
to our theory can be traced back as far as Fiedler-Ptak [4 J. Theorems with proofs on 
which algorithms may be based are given in [6J, e.g. Theorem 3.17, though no actual 
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algorithm is to be found in that paper. The cycles used in these papers are of a 
restricted type which occur in the evaluation of determinants; i.e., an arc (i, j) is 
traversed only from i to j. In view of this, unless there is an irreducibility condition 
on the matrix, any algorithm based on these results requires the determination of the 
Frobenius block form of the matrix. For the special problem of diagonal similarity to 
a unitary matrix an interesting algorithm of this type is to be found in Berman-Parlett
Plemmons [1]. The use of general cycles to prove results on diagonal similarity occurs 
in [6]. Though the proofs in that paper are geometric and existential, it is these features 
which allow us here to develop constructive proofs and algorithms which do not 
require the Frobenius block form. The corresponding tool is a spanning forest of an 
undirected multigraph, which has already been mentioned and which is simple to 
compute. Thus our algorithm appears to have computational advantages. 

2. Definitions. 
DEFINITION 2.1. Formally, a (simple, directed) graph G is a pair G = (I, E) of 

finite sets with E ~ I x I. The elements of I are called the vertices of G, and the 
elements of E the arcs of G. We represent graphs in the usual way, see, e.g., Fig. 1, 
where e1 = (1, 2), etc. 

3 FIG. 1 

4 

• 
5 

• 

Since this graph will be used as an example several times, we shall call it G*. 
Although in Fig. 1 we use arrows to represent arcs, we give the symbols i ~ j and j ~ i 
somewhat different meanings in the text. A link in G is a triple A = (i, j, 6) where 
(i, j) E E and 6 = ± 1. 

If 6 = + 1, (6 = -1) we call i the start (end) and j the end (start) of A. Intuitively, 
we may consider (i, j, + 1) as the arc (i, j) traversed from i to j, and (i, j, -1) as the 
same arc, traversed from j to i. Thus it is natural to represent (i, j, + 1) by i ... j and 
(i,j, -1) by j~i. 

A chain in G is a sequence a = (A 10 ••• , As) of links in G for which the end of 
Ap is the start of Ap+1, p = 1, ... ,s -1. The start i of a is the start of AI, the end j of 
a is the end of As. We also say that a is a chain from i to j. Our notation for links is 
immediately extended to chains, as we illustrate by means of examples from the graph 
G* of Fig. 1: 

Thus 
a =3~1~2~2, 

respectively stand for the chains 

a = ((1,3, -1), (1,2, +1), (2, 2, +1)), 

(3 = ((1,3, -1), (2, 1, -1), (2,2, + 1)) 

from 3 to 2. Observe that a traverses the arc (1,2), while (3 traverses the arc (2, 1). 
Thus the concept of chain formalizes the notion of putting a pencil on a vertex of a 
graph represented as in Fig. 1 and moving it in or against the direction of a sequence 
arcs to another vertex. 
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Let a = (A b •.. ,As) be a chain in G. We call a a simple chain if the starts of 
Ab' .. ,As are pairwise distinct. We call a a closed chain if the start and end of a 
coincide. A simple closed chain is called a cycle. 

If a = (A b ••. ,As) and {3 = (A s+l, ... ,As+!) are chains such that the end of a 
coincides with the start of {3 then a{3 denotes the chain (A b •.• , As+t). If A = (i, j, + 1) 
is a link then A -1 = (i, j, -1) and if a is the chain above then a -1 = (A;l, ... , A 1"1). It 
will also be convenient to regard 0 as the empty chain from any vertex to itself. 

DEFINITION 2.2. A sub graph of G = (I, E) is a graph G' = (I', E') such that I' s I, 
E'sE. WI:; write G' s G. Let F = (I', E'). We call F a forest if F has no cycles. A 
maximal forest F contained in G is called a spanning forest, viz. F is a forest and if 
F' is a forest for which F sF's G then F' = F. It is well known that every graph 
G = (I, E) has a spanning forest F = (I', E') and that I' = I. 

DEFINITION 2.3. A graph G = (I, E) is connected if for each pair of vertices {i, j} 
there is a chain in G from i to j. (Observe that a graph with a single vertex is connected 
since 0 is a chain). A maximal connected subgraph of G is called a component of 
G. A connected forest is called a tree, a connected spanning forest of G is called a 
spanning tree of G. The components of a forest are trees. 

For example, a component of the graph of G* of Fig. 1 is G! = ({4, 5}, {e6})' A 
spanning forest of this graph has components Gf = ({I, 2, 3}, {et, e2}) and G!. 

Let G be a graph with components Gt. ... , Gt• If ip is a vertex of Gp, p = 1, ... , t 
we call U = {it. ... , ip } a set of representatives for G. If F is a spanning forest for G, 
then U is also a set of representatives for F. For example U* = {I, 4} is a set of 
representatives for (G* and) the spanning forest F*. 

If F is a tree and i, j are vertices in F, then it is easy to see that there is a unique 
simple chain in F from i to j. If G is a graph, F a spanning tree for G and e = (i, j) 
an arc of G which is not in F, (write e E G\F) then there is a unique cycle l' = 
(A, Al, ... ,As) such that A = (i, j, + 1) and (At. ... ,As) is a chain in F. We call this 
cycle the canonical cycle for e with respect to F. 

3. Main theoretical results. Subsequently, IF will be a field and IFnn the set of all 
(n x n) matrices with entries in IF. 

DEFINITION 3.1. Let A, B E IFnn. Then A is diagonally similar to B if there exists 
a (nonsingular) diagonal matrix X in IF nn for which XAX- 1 = B. 

DEFINITION 3.2. Let A E IFnn. Let (n) = {I, ... ,n}. We define the graph G(A) = 
(I, E) of A thus: 

1= (n), (i,j)eE if atj 'F 0, i,j=I,···,n. 

DEFINITION 3.3. Let A E IFnn and let a = (At. •.. ,As) be a chain in G(A), where 
Ap = (ip, jp, E p), p = 1, ... , s. Then the chain product 7T '" (A) is defined by 

If 0 is the empty chain, 7T0(A) = 1. If a{3 is defined then 7T",(3(A) = 7T",(A)7T(3(A) and 
7T",-l(A) = 7T",(A)-l. If a is a cycle we call7T,,,(A) a cycle product, etc. 

Example 3.4. Let 

0 1 2 0 0 
3 4 5 0 0 

A*= 0 0 0 0 0 
0 0 0 0 6 

0 ° 0 0 ° Then G(A)=G*. 
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Consider the chains a=3~1~2~2, and (3=3~1~2~2. Then 1r",(A)= 
- 1 d (A) -1-1 

a13 a 12a 22 an 1r(3 =a13 a 21 a22' 

DEFINITION 3.5. LetA Elf"". LetF be a spanning forest for G(A) = G. We define 
the canonical form AF = C = C(A, F) of A (with respect to F) thus : For 1 ~ i, j ~ n, 

if (i, j) e G, 

if (i,j) EF, 

if (i, j) E G\F, 

where "y is the canonical cycle for (i, j) with respect to F. 
DEFINITION 3.6. Let F be a spanning forest for the graph G(A), where A Elf"". 

Let U = {ih ••. , it} be a set of representatives for G(A); cf. Definition 2.3. We define 
a transforming matrix X = X (A, F, U) by Xi = X(3 (A), where, for j in the component 
G p of G(A), we denote by {3 the unique simple chain in F from ip E U to j. (Thus 
Xj = 1 if j E U, for then (3 = 0 .) 

Example 3.7. For the matrix A * of Example 3.4, andF* and U* as in Definition 
2.3, o 1 1 o o 

3 4 5 0 0 2 

A}= 0 0 0 0 0 
0 0 0 0 1 

0 0 0 0 0 

1 0 0 0 0 
0 1 0 0 0 

X*=X(A*,F, U) 0 0 2 0 0 
0 0 0 1 0 
0 0 0 0 6 

Note that X* A *(X*)-l =A~. We now prove that this is true in general. 
THEOREM 3.8. Let A E IF"". Let F be a spanning forest for the graph of G(A) and 

let U be a set of representatives for G(A ). If AF is the canonical form of A with respect 
to F, and X = X(A, F, U) is a transforming matrix, then XAX- = A F. 

Proof. Let C = A F. 
(i) If (i, j) e G(A), then evidently Cij = O. 

(ii) Let (i, j) = e E F, sayeE Fp, 1 ~p ~ t. Let {3i. {3J be the unique simple chains 
from ip to i and j respectively. Then either {3j = (3;(i ~ j) or {3i = (3J(j ~ i). Hence either 
Xi = x;aii or Xi = xja i/. It follows that XiaijX ,I = 1. 

(iii) Let (i, j) E G \F. Then the vertices i, j belong to a common component Fp of 
F. If {3i, {3i are defined as above, then we may write {3; = 8{3; and {3; = 8{3;, where the 
chains {3; and {3; have no common link. Hence 

1r", (A) = aij1r (3;(A)-l 1r (3; (A) = alj1r(3I(A)-l 1r(3 , (A) = XiaijX i1. 
The matrix AF is indeed a canonical form for A under diagonal similarity. This will 
be shown in the next corollary. 

COROLLARY 3.9. Suppose that A, BE IF"". Let F be a spanning forest for G(A). 
Then the following are equivalent. 

(i) A is diagonally similar to B, 
(ii) G(A) = G(B) and AF =BF. 
Proof. (ii) => (i). ByTheorem3.8,A is diagonally similar toAF andB is diagonally 

similar to B F • Hence A is diagonally similar to B. 
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(i)? (ii). Let A be diagonally similar to B. Evidently G(A) = G(B) and 7Ty(A) = 
11' y (B) for all cycles 'Y in G. Hence by definition of A F, it follows that AF = B F. 

We state our next corollary in terms of the Hadamard quotient A 8B of two 
matrices A, B; cf. [1]. 

DEFINITION 3.10. Let A, B EII:nn and suppose that O(A) = G(B). Then the 
Hadamard quotient H = A 8B is defined by 

h .. = {aii/bij if (i,j)EG(A), 
IJ ° otherwise. 

It is clear that YAy-1=B is equivalent to Y(A8B)y-1E{0, 1rn. Also, a {a, 1}
matrix is in canonical form. Thus, we obtain our chief theoretical tool as an immediate 
application of Corollary 3.9. 

COROLLARY 3.11. Let A, BE IFnn. Let F be a spanning forest for G(A), with U a 
set of representatives for G(A). The following are equivalent. 

(i) A is diagonally similar to B. 
(ii) G(A) = G(B) and A 8B is diagonally similar to a {a, l}-matrix. 

(iii) G(A) = G(B) and (A 8B)F is a {a, l}-matrix. 
(iv) G(A) =G(B) and if X =X(A8B,F, U) thenXAX-1 =B. 
Our algorithm is based on the equivalence of (i) and (iv) ~f the above theorem. 

It rests on the computation of X =X(A8E, F, U) and X(A8B)X-1. Even though 
there may be other diagonal matrices Y such that YA y-1 = B, we emphasize that 
either XAX- 1 =B or else A is not diagonally similar to B. We now determine those 
Y for which Y A y-1 = B. 

THEOREM 3.12. Let A, B E IFn". Let F be a spanning forest for G (A) with com
ponents F l, ... ,F, and let U be a set of representatives for G(A). Let Ye IF"" be diagonal. 
The following are equivalent. 

(i) YAy-l=B. 
(ii) G(A) = G(B) and, for i EFp and ip E U, Yi = YipXi' where X =X(A8B,F, U). 
Proof. (ii)? (i). Suppose j e Fpo Then aii = ° hence also bij = ° and so Yiaiiy;l == bij' 

If ' F, h -1 -1 -1 b J E p, t en YiaijY j = YipXiaijXjY ip = XiaijX j = ij. 
(i)? (ii). Evidently G(A) = G(B). Since i EFp, there exists a simple chain 'Y from 

ip to i. Let H =A8B. Then YHy- 1 =XHX-1. Hence Yip7Ty(H)yi1 =7Ty(YHy- 1) = 
7Ty(XHX-1) = Xip7Ty(H)xi1. But Xip = 1 and Xi = 7Ty(H). Hence Yi = YipXi. 

COROLLARY 3.13. Let A, B E IF nn and suppose that A is diagonally similar to B. 
Let F be a spanning forest for G(A) and U a set of representatives for G(A). Then 
X = X(H, F, U), where H = A 8B, is the unique matrix which satisfies XAX- 1 = B 
and Xi = 1 for i E U. 

The impact of Corollary 3.13 is this. If A is diagonally similar to B, then the 
matrix X which is given by our algorithm and which satisfies XAX- 1 = B is in fact 
independent of the choice of the spanning forest F. Another immediate corollary to 
Theorem 3.12 is the following result, proved by a different method in [6, Prop. 2.3]. 

COROLLARY 3.14. Let A, Be IFM and suppose that A is diagonally similar to B. 
Then the following are equivalent. 

(i) YA y-l = B implies that Y = cX(A 8B, F, U) where ° ~ c ElF. 
(ii) G(A) = G(B) is connected. 

4. Applications. 
4.1. Simultaneous diagonal similarity. 
DEFINITION 4.1. Let P be an index set, and let A (pl, B(p) e IF"", for pEP. Then 

the families {A (p): peP}, {B (p) : ~ e P} are simultaneously diagonally similar if there 
is a diagonal matrix X elF"", XA p)X- l = B(P)' for all peP. 



434 GERNOT M. ENGEL AND HANS SCHNEIDER 

Our algorithm can easily be adapted to test for the simultaneous diagonal similarity 
of finite families of matrices. There is no difficulty in proving the underlying theorem 
when the index set P is infinite. 

DEFINITION 4.2. Let {H(p): pEP} be a family of matrices in IF"". We call the 
family semiconstant if it satisfies the following condition: 

For q,p EP, and l~bj~n either hI!) = hI'!) or h\!)h\,!) =0. 

In this case the supremum matrix S = S(H(p) : pEP) is defined thus: 
For i, j = 1, ... , n, 

{ 
h (1') if there exists PEP for which h \f) ,e 0, 

Sij = ° IJ otherwise. 
THEOREM 4.3. Let {A (p): pEP}, {B(p): pEP} be two families of matrices in IF"". 

Then the following are equivalent. 
(i) The families are simultaneously diagonally similar. 

(H) (a) G(A (p) = G(B(p), for pEP. 
(b) If H(p) =A (p)EJB(p), then {H(p): pEP} is a semiconstant family of 

matrices. 
(c) Let S = S(HP: pEP} be the corresponding supremum matrix, and let F be 

a spanning forest of G(S). Then the canonical/arm SF e {a, I}"". 
Proof. (ii) ~ (i). Let XSX- l 

E {a, I}"". Then either Sij = XjX i l or sij = 0, i, j = 
1, ... ,n. Hence, for each PEP, hI!) = xixil or hlf) = 0, i, j = 1, ... ,n. It follows that 
b (p) (p) -1 .. 1 

ij = Xja jj x j ,I, ] = ,"', n. 
(i) ~ (ii). Evidently G(A (p) = G(B(P), for pEP. By assumption there exists a 

diagonal YEIF"" for which YA(p)y-l=B(p), for pEP. Hence YH(p)y-l={O, I}"", 
for peP. Thus either hlf) =Yiyil or hlf) =0, l~i, j~n. Hence {H(P):PEP} is 
semi-constant. Let S be the corresponding supremum matrix. It follows that YSy- l 

E 

{a, I}, but then SF(YSy-l)F E {a, I}"". 
In order to test whether SF E {a, I}"", we need merely to construct a transforming 

matrix X = xes, F, U). Hence we have an effective test for simultaneous diagonal 
similarity. 

4.2. Diagonal similarity to a matrix with elements in a subgroup. It is easily seen 
that all our previous results hold when IF is a (multiplicative) Abelian group with 0, 
viz. IF\{O} is an Abelian group and Oc = ° = cO for all c E IF. In our next theorem we 
shall explicitly assume that IF is an Abelian group with ° and 1F1 will be a subgroup 
with 0. As an example, IF can be chosen to be a field and 1F1 a sub field, e.g., IF is the 
real field and 1F1 the rational field. In another important example IF consists of the 
reals (rationals) and 1F1 of the nonnegative reals (rationals). 

THEOREM 4.4. Let IF be an Abelian group with ° and let 1F1 be a subgroup with 
0. Let A E IF". Then the following are equivalent. 

(i) For some diagonal matrix X elF"", XAX- l 
E IF~". 

(H) AF En". 
Proof. (ii) ~ (i). Trivial, since AF = (XAX-l)F' 
(i) ~ (H). Suppose that XAX-l 

E 1Ft. Then for every cycle l' of G(A) we have 
1T,,(AF) = 1T,,(A) = 1T,,(XAX~l) e 1F1. Since 0, 1 e IFlo it follows that AF e 1Ft. 

At this point it is appropriate to state an easy result that will be used in § 4.3. 
With the notation of Theorem 4.4, we observe that H e IF~" implies that X = 
X (H, F, U) e IF~". The rest of the proof follows from Corollary 3 .11. 

THEOREM 4.5. Let IF and 1F1 be defined as in Theorem 4.4. Let A, Be IF"". Then 
the following are equivalent. 



TESTING THE DIAGONAL SIMILARITY OF MATRICES 

(i) There is a diagonal matrix Y E IF~" for which YA y - l 
= B. 

(ii) (a) G(A) = G(B). 
(b) (A GB)F E {O, 1}"". 
(c) A GB E lF~n . 

(iii) Conditions (ii) (a), (b) hold and 
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(c) X(A8B, F, U)EIF~n where, as usual, F is a spanning forest for G(A) 
and U a set of representatives for G(A) . 

Thus our algorithm tests, for example, if two real matrices are similar by means 
of a diagonal matrix with positive diagonal entries. 

4.3. Diagonal similarity to a unitary matrix. We now prove results for real or 
complex matrices related to those in [1]. We shall give necessary and sufficient 
conditions for a complex matrix to be diagonally similar via a . complex diagonal 
similarity to a unitary matrix and for a real matrix to be diagonally similar via a real 
similarity to an orthogonal matrix. Our results can be stated as one theorem, since a 
unitary matrix with real entries is of course orthogonal. We call a matrix Y nonnegative 
if all its entries are nonnegative and we write Y ~ O. 

THEOREM 4.6. Let IF = IR or IF = C, and let A E IFnn. Then the following are 
~~~ . 

(i) There exists a unitary matrix B E IF"" such that A and B are diagonally similar. 
(ii) (a) A is nonsingular. 

(b) YA -1 y - l = A * ,for some diagonal Y E IF"n where Y ~ O. 
Proof. (i) => (ii). Let B = ZAZ- l be unitary. Then (ii) (a) evidently holds. Let 

Y = Z* Z. Then Y ~ O. Since ZA -1 z-1 = (ZAZ- l
)-1 = B - 1 = B* = (ZAZ- l )* = 

(Z-I)*A *Z* it follows that YA -l y -l ==A *. 
(ii) => (i). Let Z E IFn", where Z is diagonal and satisfies ZZ* = Y. It is easily 

checked that ZAZ- l is unitary. 
By combining Theorems 4.5 and 4.6 we obtain a corollary on which an algorithm 

may be based. 
COROLLARY 4.7. Let IF = IR or IF = C, and let A E IFnn. Then the following are 

equivalent. 
(i) There exists a unitary matrix B E IF"n such that A and B are diagonally similar. 

(ii) (a) A is nonsingular. 
(b) G(A - 1) = G(A *). 
(c) If X =X(A -IGA*,F, U), thenX~O and XA -IX -l =A*. 

The non negativity condition in (ii) (c) cannot be omitted in the above. For let 
IF = IR, and let a, b E IF be positive numbers with a 2 - b 2 = 1. Let 

Then XA -IX == A * where X = diag (1, -1), so that all other conditions in (ii) are 
satisfied. But every real orthogonal matrix is of the form 

with c2 +d2 = 1. Let l' be the cycle 1-.2 -.1. Then 7Ty (A) > 0 and 7Ty (C) ~ O. Hence 
A cannot be diagonally similar to a real orthogonal matrix. The matrix A is diagonally 
similar to the complex orthogonal (not unitary) matrix 

B == [i~ -i:l 
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Indeed XAX- 1 = B where X = diag (1, i). The results of this subsection hold for all 
fields IF with involution, viz. with an automorphism a - ii. The elements in IF of form 
qij play the role of the nonnegative elements. 

4.4. Diagonal equivalence. Let A, BE IF"" ', the set of n x n' matrices. We call A 
diagonally equivalent to B if there exists a (nonsingular diagonal X E IFnn

, Y E IF" ''' ' for 
which XA y- 1 = B . 

For A E IF"" ' let 
A ] E IF"+" ',,,+"', 

0"," , 

where the orders of the a matrices are indicated by subscripts. Let BE IF""', X ElF"", 
YEIF"'"', where X, Yare diagonal. As observed in [6, p. 212], XAy-1=B if and 
only if ZA +Z- l =B+, where Z =XEB Y. It follows that our theorems have analogues 
for diagonal equivalence. The graph G (A +) is in fact the bipartite graph of A; d. [6]. 
It follows that our algorithm can easily be extended to test for the diagonal equivalence 
of pairs of matrices in IF nn

', the simultaneous diagonal equivalence of two families of 
matrices, diagonal equivalence to a matrix in a subfield and diagonal equivalence to 
unitary matrix, see [1, Thm. 1]. Since only a-elements are introduced in going from 
A to A + the algorithms for diagonal equivalence are of the same complexity as those 
for diagonal similarity. Further theoretical details are omitted. 

5. The principal algorithm. Figure 2 is a structured narrative description of an 
algorithm to calculate the canonical form and transformation matrix of Definitions 
3.5 and 3.6. Figure 3 is a computer implementation of this algorithm in APLGOL 
computer language [5]. 

Numbers are placed on the left-hand side of corresponding steps in the two listings. 

PROCEDURE AF~CANONICAL4FORH AI 
,. 1. INI TIAL IZE 

BEGIN • 
[1] X(1,2,3,4,5,6,7, •.• ,n)~1; 
[2] FOREST~1,2,3,4,5, ••. , n; 

END; 
,. 2. TRAVERSE FOREST 

[3] WHtLE FOREST IS NONENP(Y DO 
BEGIN 

[4,51 Remove an ele~ent from FOREST and define TREE 
to be a li~t who~e only entry i~ thi~ element; 

,. 3. TRAVERSE TREE 
REPEAT 

[6,71 Remove an element fro~ TREE and ~et BRANCH 
equal to thi~ element; 

[61 Search the row indexed by BRANCH for 
nonzero ele~ent~ whose coluMn index i~ in FOREST. 
Set BRANCHES equal to this index set; 

[91 IF BRANCHES IS HONEHPTY THEN 
BEGIN 

[101 X(BRANCHES)~A(BRANCH;BRANCHES).X(BRANCH)' 
[11,121 Remove indices in BRANCHES from 

FOREST and place in TREE; 
END; 

[e l
] Search the column indexed by BRANCH for 

nOnZerO elemen~s whose row index is in FOREST 
and Se~ Branches equal to ~his index Set' 

[9 1 ] IF BRANCHES IS NONEHPTY THEN 
BEGIN 

[10 1
] X(BRANCHES)~X(BRANCH)~A(BRANCHES'BRANCH)' 

[11 1 ,12 1 ] Rem~ve indiceS in BRANCHES from 
FOREST and place in TREE' 

ENDJ 
[13] UNTIL TREE !S EHPTYI 

END; 
[14] Print the diagonal of the trlln~forming matrix X(1,2,3, ..... ,n)J 
[15] Take the Hadamard product of A with t~e outer product of 

-1 -1 
X(1) ... X(n) lind X(1) ..... X(n) to form AFI 

[16] Print the canonical form AF, 
END PROCEDURE 

Flo. 2 
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[2] 
[3] 

[4] 
[5] 

[6] 
[7] 

[ 13] 

TESTING THE DIAGONAL SIMILARITY OF MATRICES 

eROCEDURE AF~CANONICALAFORN A.FOREST.TREE.BRANCH1 
X~(l"A)'l; 
FOREST~I ,x; 
~HILE ('FOREST)~O QO 

BEGIN 
TREE~l tFOREST: 
FOREST~l~FOREST: 
/i.EPEAT 

BRANCH~ltTREE: 
TREE~l ~ TREE: 
1 TRAVERSE.A[BRANCH:]1 

1 TRAVERSE .A[ : BRANCH ]: 
UNTIL ClTRE£)-O: 

END: 
[14] D~X; 
[15.16] D~AF~AxX·.+X; 

. END eROCEDURE 
eROCEDURE E TRAVERSE VECTOR.BRANCHES1 

BRANCHES~(VECTOR[FOREST]~O)/FOREST' 
IF ('BRANCHES)~O IHEN 

[10.10 1 ] 

[11.11 1 ] 

[12.12 1 ] 

BEGIN 
X[BRANCHES]~X[BRANCH]xVECTOR[BRAHCHES]*E' 
TRff~TRff.BRANCHfS; 
FOREST~(~FORfSTEBRANCHES)/FORfST: 

END: 
END eROCfDURE 

FIG. 3 

437 

Computational complexity. If A is a n x n matrix such that G(A) has t com
ponents then the execution of this algorithm results in 6n - 2t storage operations, 
n - t multiplications or divisions, and fewer then 2n + t + n 2 but more then 4n + t -1 
logical operations. Table 1 provides a statement by statement accounting of the 
complexity. 

Steps 1 and 2 are not included in this accounting since the vectors X and FOREST 
can be initialized prior to execution. 

Logical operations are simplified by avoiding the concepts used in analyzing 
directed graphs. The algorithm involves only straightforward pointer maintenance. 
Backtracking and recursive executions is avoided. In addition this algorithm does not 
require precomputation of the column numbers of the nonzeros in each row as is the 
case in many algorithms in combinatorial matrix theory, e.g., the Duff-Reid 
implementation of Tarjan's algorithm for the block triangulization of a matrix [2]. 

Statement 
number 

(3) 
(4) 
(5) 
(6) 
(7) 
(13) 
(9,9') 
(10,10') 
(11,11') 
(12,12') 
(8,8') 

Total 

Number of 
storage operations 

n 
n 

n-t 
n-t 
n-t 
n-I 

6n -2t 

TABLE 1 

Number of 
mUltiplications 

or divisions 

n-I 

n -I 

Number of logical 
operations 

n 
2n 

n -1 ~logical op~ nXn-n 

4n + 1-1 ~logical op~2n +1+n 2 
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6. Applications. We have applied the algorithm of § 5 for finding the canonical 
form under diagonal similarity to yield the tests shown in Table 2. 

TABLE 2 

Test 

Diagonal similarity of a pair of matrices 

Simultaneous diagonal similarity of a 
family of matrices 

Diagonal similarity of a real matrix to 
an orthogonal matrix 

Extensions of the three algorithms 
above to the correspondin'g algorithms 
for diagonal equivalence 

Justification 

Corollary 3.11 

Theorem 4.3 

Corollary 4.7 

§ 4.4 

The first of these algorithms is described in Fig. 4 in APLGOL notation. Detailed 
descriptions of some other algorithms are contained in the authors' technical report. 

.. 
EROCEDURE A DIAGONALASIHILARITYATEST B.HF: 

AVERIFY GeA)= GeB) 
IF ~/.eA~O)=(B~O) [HEN 

BEGIN 
A CONPUTE THE HADANARD QUOTIENT FOR A AND B· 
H+-fHB+B= 0; 
A CONPUTE THE CANONICAL FORN HF 
HF+-CANONICALAFORH H; • 
A VERIFY ALL THE ENTRIES OF HF ARE EITHER ZERO OR ONE 
IF ~/.HFEO.1 [HEN 

BEGIN 
D+-'HATRICES ARE DIAGONALLY SIHILAR': 
A PRINT OUT THE DIAGONAL OF THESINULARITY TRANSFORHATION 
D+-X: 

,ND 
,LSE 

D+-'NATRICES ARE NOT DIAGONALLY SINILAR'; 
,ND 

,LSE 
D+-'THE GRAPHS OF THE NATRICES ARE UNEQUAL': 

,ND eROCEDURE 
FIG. 4 
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