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THE ~ROWTH OF POWERS OF A NONNEGATIVE MATRIX* 

SHMUEL FRIEDLANDi' AND HANS SCHNEIDERi' 

Abstract. Let A be a nonnegative n x n matrix. In this paper we study the growth of the powers A no, 

m = 1,2, 3, . . . when p(A) = 1. These powers occur naturally in the iteration process 

which is important in applications and numerical techniques. Roughly speaking, we analyze the asymptotic 
behavior of each entry of A on. We apply our main result to determine necessary and sufficient conditions for 
the convergence to the spectral radius of A of certain ratios naturally associated with the iteration above . 

1. Introduction. Let A be a nonnegative n x n matrix. In the ite'ration process 

(1.1) 

which is important in applications and numerical techniques, the powers A III, m = 1, 
2, ... occur naturally. in this paper, we study the growth of the~e powers. In the 
literature there are several studies of the growth of A m when the efementary divisors 
belonging to the spectral radius p(A) of A are linear. For example, see Gantmacher [7, 
Chap. 13, § 5-7] Varga [19, pp. 32-34] when A is irreducible, and Meyer-Plemmons 
[10] when Iimm_oo A m exists. We deal here with the general nonnegative case, when the 
elementary divisors belonging to p(A) may have degrees greater than 1. At the cost of 
ignoring nilpotent A, where the problem is trivial. we assume that p(A) > O. 

For a complex n x n matrix A, with p(A) = 1, there is a least integer k for which 
m -kA m is bounded, m = I, 2, .... However, even in the simple case of an imprimi­
tive, irreducible nonnegative A, limm -oollm -kA 11111 and, a fortiori limm_oo m - kA "', do not 
in general exist. To obtain precise results fpr general nonnegativ~ A with p(A) = 1, 
it is thus necessary to introduce some smoothing. For example, in [14] Rothblum 
considered Cesaro means of powers of A. In this paper we study the growth of 

(1.2) B(m)=A m(I+···+A Q
-

1
), m=1,2,"', 

where q isa certain positive integer. 
After some preliminaries in § 2, we u~e elementary analytic methods in § 3 to prove 

a theorem on the growth of B(m). As corollary, we obtain a known theorem on the index 
of the eigenvalue 1 of A, d. Schaefer [17, Chap. 1, Thm. 2.7]. We also give a local form 
of the theorem; that is, we show that for 1 ~ i, j ~ n there exist integers k = k(i, j) and 
q = q(i, j) > 0 such that the element b~,!,) of the matrix given by (1.2) satisfies 

(1.3) I· -kb(m) 0 1m m . ij > . 
m-OO 

The analytic results of § 3 motivate the investigations in the rest of the paper. 
The main thrust of the paper is the use of the graph structure of the matrix A to 

decrease the integer q(i,j) and to determine the integer k(i,j) in (1.3). The requisite 
graph theoretic concepts are developed in § 4, and in § 5 we state our main result, 
Theorem (5.10). As a corollary, we obtain a striking theorem on the index of 1 due to 
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Rothblum [13]. Our results are related to those of U. G. Rothblum [14], [15], and in 
some instances, would also follow from his. But where Rothblum considers A qm, m = 
1,2, ... , we consider B(m} and this allows us to choose a smaller integer q. Our 
definitions of qU, j) involves the greatest common divisor (g.c.d.) of certain periods 
where one might expect the least common multiple (I.c.m.). Consider the example 

0 1 0 0 1 
1 0 0 0 0 

A= 0 0 0 1 0 
0 0 0 0 1 
0 0 1 0 0 

Then, by direct computation, for 1 ~ i, j ~ 2, limm _ oo b~j) = 1, where B!m} = 
Am (1 + A). Thus k(i, j) = 0, and we may choose qU, j) = 2 if 1 ~ i, j ~ 2. Similarly 
k( ' ')-0 (. ')-3'f3< ' ' <5 Y I' -I (m}-!'fl< ' <2 3<'<6 d I, ] - , q I, ] - I = I, ] = . et Im m _ oo m a ij - 6 I = I = , = ] = , an so 
we have k(i, j) = 1, qU, j) = 1. We might add that it may be possible that our choice of 
q(i, f) can be improved in the general case where we use an l.c.m. of certain g.c.d.'s. 

In § 6, we apply our results to the iteration process (1.1) for any nonnegative matrix 
A satisfying p (A) > O. For x ~ O,x ;t. 0 denote 

(1.4i) ;(x) = sup V.t: p..x ~ Ax}, 

( 1.4ii) R (x) = inf{p..: p..x ~ Ax}. 

In Theorem 6.8, we find necessary and sufficient conditions for r(A m x ) and R (A Inx ) to 
converge to the spectral radius of A. We show that whether or not this happens depends 
only on what is in general a small part of the vector x. In § 7, we show that a theorem due 
to D. H. Carlson [3] on the existence of nonnegative solutions y for (1 - A)y = x, x ~ 0, 
p(A) = 1 is a consequence of our main results and we extend the theorem. 

2. Preliminaries. 
Notations. Let q; (1), q;(2), ... , be a sequence of nonnegative numbers and k ~ 0 be 

an integer. 

(2.1) (i) q;(m) = O(m k) will denote that q;(m)/mk, m = 1, 2,· .. , is bounded. 
(ii) q;(m)=o(m k) will denote that limm ..... oo q;(m)/mk =0. 

(iii) q; (m) = m k will denote that limm ..... oq q;(m)/ m k exists and is positive. 
(iv) The above notations will also be used for·k = -1, -00. In case that k =-1 

q;(m) = O(m k), q;(m) = o(mk), q;(m) = ' m k will each indicate that there 
exists p, O<p<l, such that q;(m)p-:n. =O(I). In case that k=-oo the 
above notations will mean that q;(m) = 0 for all sufficiently large m. (Thus 
q;(m)=m-oo implies q;(m)=m-I

.) 

(v) The notation A(m) = m k will be used for a sequence of nonnegative 
matrices A(I), A(2), ... to indicate the relation holds for each element. 

Combinatorial result. Let r ~ 0 and t > 0 be integers. Then 

(2.2) r~= 
PI +"'+Pr=r 

where the summation is taken over all nonnegative integers PIt ... , P, whose sum is r. 
That is, C is the number of collections of r objects chosen from t distinct objects, with 
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repetitions allowed. It is well-known that 

(2.3) r;=(r+~-I). 

A simple way to prove this equality is by considering the coefficient of xr of both sides of 
the identity 

oo(r+t-l)r (00 r)-' L x = L x 
r=O r . r=O 

which is derived from (l-x)-'=(l-x)-l···(I-x)-I. For a purely combinatorial 
proof see for example Brualdi [2, p. 37]. For t = 0 the above formula implies ro = 1 for 
all r~O. 

We shall also need some results on the convergence of series. 
LEMMA 2.4. Given integers k ~ 1, q > 0, and let bp ~ 0, p = 0, 1, 2, ... be a sequence 

such that 

(2.5) lim p-(k-IJ(bp + ... + bp+q-d = v, 
p-+oo 

where q > 0; Then 

(2.6). I· -k ~ b v 1m· m ~ P=-k' 
m-+OO p=l q 

Proof. EI~mentary. Alternatively, check that cm.p = m -kkpk-t satisfies the 
assumptions of Hardy [8, Thm .. 2, p. 43]. 0 

LEMMA 2.7. Suppose (2.5) holds. If limm-+oo am = u then 

I. -k ~" uv . 1m m ~ apUm-p=-k . 
m-+oo pel q 

(2.8) 

Proof. According to Hardy [8, Thm. 16, p. 64] 

(2.9) I. L;=l apbm_p 
1m - m = U 

m-+oo Lp=t bp 

since 
b b b 2 (k-lJ 0< m < m+"'+ m+q-I<_·_v_m_,---.:-

=L:'-I bp L;=l bp = v(2kq) lm k ' 

and the last expression tends to O. If we apply (2.6) to (2.9) we obtain (2.8). 0 

3. Analytic approach. By~, resp. e, we denote the real, resp. complex field, and by 
~+ the nonnegative numbers. The set of real, resp. complex, nonnegative r x n matrices 
willbe denoted by ~rn, resp. ern, ~';. We also write A ~ 0 for A E ~'; (A is nonnegative) 
and A >0 when A is positive (aii >0,; = 1,' .. ,r, j = 1, ... ,n). 

Let A E e"". By spec A we denote the set of eigenvalues of A. Suppose that 
spec A = {A 10 ••• , Ar}, where the Aa are pairwise distinct. It is known (d. Gantmacher 
[7, Chap. 5, § 3]) that there exist nonnegative integers p.t. ... ,pr and unique matrices 
Z(a

P) E enn
, '(3 = 0, ... ,POI' ex = 1, ... , r which are linearly independent such that for 

each polynomial f( T), 

(3.1) 



188 SHMUEL FRIEDLAND AND HANS SCHNEIDER 

The Z(",{3) are polynomials in A, P'" + 1 is the size of a largest Jordan-block belonging to 
A",. The columns of Z("'P,,) are eigenvectors of A corresponding to the eigenvalue Aer, the 
rank of Z"'P" is equal to the number of Jordan blocks of size POI + 1 corresponding to Aer. 
(The simplest way to obtain (3.1) is by assuming that A is in Jordan form.) As usual we 
define 

index (A",) = P'" + 1. 

That is, POI + 1 is the multiplicity of AOI in the minimal polynomial of A. We shall also use 
a localized index. For 1 ~ i, j ~ n we put 

indexii(AOI) = 1 +max{p: z~i(3);6 0, p = 0, ... ,p"'}' 

where indexii(AOI) = ° if Z \j(3) = 0, P = 0, ... ,POI' If A E C" and m is any integer we shall 
denote the elements of Am by a ~i\ 1 ~ i, j ~ m. 

Let A E IR:". We assume throughout the normalization p(A) = 1. It is well-known 
(see Frobenius [6], Gantmacher [7, Chap. 13], Berman-Plemmons [1, Chap. 2]) that if A 
is an eigenvalue of A and IA 1 = 1, then A is a root of 1. Hence, there is a positive integer q 
such that A q = 1, for all A E spec A, IA 1 = 1. The smallest such integer q will be called the 
period of A. If q = 1, A will be called aperiodic. For an irreducible and aperiodic matrix 
A ~ 0, the Frobenius theorem and the formula (3.1) imply 

lim Am =ZOO»O, 
m->"" 

where Al = 1, see for example Berman-Plemmons [1, Chap. 2, Thm. 4.1]. Theorem 3.4 
extends the above equality in a local way. Part (i) of the theorem is an extension of the 
known inequality apparently due to Schaefer [16, Thm. 2.4, p. 264], 

(3.2) index (A) ~ index (1) if IA 1 = 1, 

for nonnegative matrices; see also Schaefer [17, Chap. 1, Thm. 2.7], Berman-Plem­
mons [1, Chap. 1, Thm. 3.2]' This result and part (i) of Theorem 3.4 could easily be 
deduced from the classical Pringsheim theorem on analytic functions; e.g., see Titch­
marsh [18, p. 214]. The use of the Pringsheim theorem in analyzing the spectral 
properties of nonnegative matrices can be traced back to Ostrowski [11] (see also Karlin 
[9] and Schaefer [16, Appendix] for the infinite dimensional case). See Friedland [5] for 
a detailed analysis of the Pringsheim theorem for rational functions which has certain 
analogs to the Frobenius theorem. For sake of completeness we bring a short and 
elementary independent proof of Theorem 3.4. To do so we need an easy lemma which 
probably is known. 

LEMMA 3.3. Let A"" Z"" a = 1, ... , r be complex numbers, where the AOI are pairwise 
distinct. If limm->,x,(I:=l A;z",) exists, then z'" = ° if IA",I ~ 1, AOI ;61. 

Proof. Since limm->oo A:' exists for IA", 1 < 1 or A", = 1, without loss of generality we 
may assume. that IA",I ~ 1, A", ;61, 11'= 1, ... ,r. Put z = (zt. ... ,Zr)' E e' and u 1m

) = 

(um, ... , Um+r-l)', where Um = I:=l A;z",. Let A = diag{A 1, ••. , Ar} E err and let V = 

(VOl{3)~ E err be the Vandermond matrix given by V"'{3 = A~-t, a, p = 1, ... ,r. Then 

u(m) = VArnz. 

The assumption of the lemma implies that limm->oou 1m
) exists. Since V is nonsingular, 

limm->oo A m z = limm->oo V-1u(m) and so z = 0. 0 
THEOREM 3.4. Let A E IR:" where p(A) = 1. Let 1 ~ i, j;;:; n. 
(i) If A E spec A, IA 1 = 1, then indexii (A) ~ indexii (1). 

(ii) Let q be a positive integer such that A q = 1 if A E spec A, IA 1 = 1 and indexii(A) = 



POWERS OF A NONNEGATIVE MATRIX 189 

indexij(1). Put k + 1 = indexij(1) and let 

B (m) = Am(I + . . . +A q
- 1). 

Then blt ' "" mk. In particular, alt l # o(mk) if k 6;0. 
Proof. (i) Let {A 1> •• • ,Ar} be the eigenvalues with IAa 1 = 1, a = 1, . .. ,r, where the 

Aa are pairwise distinct. Let 

d + 1 = max {indexij {Aa}: a = 1, ' .. ,r}. 

If d = -1 then there is nothing to prove. So assume that d 6; O. Suppose that Z a == z~jd) # 
o for a = 1, .. . ,s where 1 ~s ~r and Z)jd) = 0 for a = s + 1, . .. ,r. It follows immedi­
ately from (3.1) that 

' ml d( ~ m-d) (d) a ij =m a::lA a za +om . . 

Hence, by Lemma (3.3), a)j") # o(m d). 
Let q be a positive integer such that A~ = 1, a =1, ... ,s. Define 

lPm(T) = Tm(1 + T + ... + Tq
-

1). 

If we take the dth derivative of lPm (T), we obtain 

for any fixed T, ITI~I, and also lPm-d(Aa)=O for IAal =l, Aa#l, 1~a~s. Put 
B(m ) = lPm(A). By (3.1) and the equality above we have 

(3.5) b ~j") = mdCt lPm - AAa)za) +o(m d). 

Now suppose that indexij(1)<d+1. Then (3.5) implies that b )j") =o(m d). But blj'" = 

a)J"' + . .. + a~j" +q-ll 6; a)j") 6; 0, and this is a contradiction. Thus d = k and this proves 
(i) . 

(ii) Suppose that AI=; 1. If k = -1,by an argument like that above, a)j" ) = blj" ) "" 
k . . 

m . Let k 6; O. By (3 .5) and the preceding argument we obtain . 

b (m) k (k) ij=mqzl+om , 

where Z 1 = Z ~ > O. This proves (ii). 0 
We now state a global version of Theorem 3.4 (ii) which follows immediately from 

Theorem 3.4. 
THEOREM 3.6. Let A E lR:n where peA) = 1. Let q be a positive integer such that 

A q = 1 if A E spec A, IA 1 = 1 and index (A) = index (1) = k + 1. Let 

Then 

(3.7) 

where F 6; 0 and F is not identically zero. 
It should be noted that the assumption that A is nonnegative was used crucially in 

the proof of Theorems 3.4 arid 3.6. For example, let A = - I; then there are no k, q for 
which the limit of (3.7) exists and is nonzero. Also, the assumption that peA) = 1 is used 
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in an essential way. Let 

A = [~ ~]. 
Then limm ... c:c p(A)-2m A 2m (I + A) and limm ... oo p(A)-<2m+l)A 2m+l(I + A) exist, but are 
distinct . It follows that no k, q exist for which Iimm ... oo p(A)- "'m -kB(m) exists and is 
nonzero. 

Our subsequent work discusses the nature of k, q and F 

4. Graph theoretical concepts. Let A E ~:n and let peA) > O. We may assume, 
without loss of generality, that after simultaneous permutations of rows and columns, A 
is in the Frobenius [6] normal form which can be found in many references, e.g., 
Gantmacher [7, Vol. II, p. 75]. Thus 

(4.1) . A,"], 
A ...... 

where the diagonal blocks A",,,, a = 1, . .. , 11 are irreducible and all subdiagonal blocks 
are O. (The 1 x 1 matrix 0 is considered to be irreducible.) 

Let A be in Frobenius normal form (4.1). Then the (reduced) graph G(A) of A is a 
subset of (II)X(II), where (1I)={1,· ·· ,1I} and G(A)={(a,p)E(II)X(II):A"(3r"O}. 
(Observe that many authors would call G(A) the arcset of the graph (11), G(A)), but we 
have no need to mention the vertex set (II) explicitly.) 

If (a, P) E G(A), we call (a, P) an arc of G(A). If (a, P) is an arc of G(A), then 
a -;[:p; also (a, a) E G(A), l-;[:a -;[:11, unless A"" is the 1 x 1 matrix o. Thus we define a 
(simple) path from a to pin G(A) to be a sequence 7T = (ao, ... , as), where either s ~ 1, 
l-;[:a == ao<·· . <as = p -;[:11 and (ai-I> aj)E G(A), i = 1,·· ., s, ors = Oanda =ao= p 
and (a, a) E G(A). The support of 7T is the set supp 7T = {ao, .. . ,as} s;; {I, . .. , II}. We 
always assume that the aj, i = 0, ... , s, have been listed in strictly ascending order. 

If 1-;[: a -;[: 11, then we call a a singular vertex (of G(A)) if p(A",,) = p-(A). (This 
terminology is consistent with that of Richman-Schneider [12].) Let 1 -;[: a -;[: p -;[: 11. For 
any path 7T from a to p in G(A), let k( 7T) + 1 be the number of singular l' in the support 
of 7T. (Thus note each distinct l' is counted only once in k(7T) + 1.) Let aio < ah < ... < 
aik' where k = k(7T), be all singular vertices in supp 7T. We set 

(4 .2) k(a, P) = max {k(7T): 7T is a path from a to pin G(A)}. 

If there is no path from a to p in G(A) we put k(a, p) = -00. We shall call k(a, p)the 
singular distance from a to p. If (i, i) is a position in A"" and (j, j) a position in A(3(3 then 
we shall also call k[i, j] = k(a, P) the singular distance from i to j (note our use of square 
brackets). 

A path 7T from a to p will be called a maximal path if the number of singular 
vertices in the support of 7T is k(a, P) + 1. Let 1-;[: a, p -;[:11. Let ~(a, /3) be the set of 
maximal paths from a top. For each 7T E ~(a, P) let q(7T) be the g.c.d. of perieds of Ayy 
with l' E supp 7T and singular (viz. p(Ayy) = peA)). 

Then we define 

(4.3) q(a, P) = l.c.m. {q(7T): 7T E ~(a, P)}. 

We shall call q(a, P) the local period of (a, P). If k(a, P) < 0 then q(a, P) = 1. Also if 
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(i, i) is a position in Aaa and (j, j) is a position in Ai3i3 then we shall pu t q (ex, (3) = q [i, j1, 
the local period of (i, j). 

S. The main results. Let A E /R:", where p(A) = 1, be in Frobenius normal form 
(4.1). It follows from the Perron-Frobenius theory for nonnegative matrices" e.g., 
Gantmacher [1, Chap. 13J that there is a diagonal matrix X with positive diagonal 
elements so that, upon replacing A by X-lAX, 

(5.1) 

where A~a is a stochastic matrix, 

(5.2) 1 ~ex <(3 ~ II, 

where 1> 0' and 0' > max {P(Aaa): p(Aaa) < 1, ex = 1, ... , 11} if such ex exist. Here II II"" 
is the l",,-operator norm, 

IIZII"" = max {.£ IZijl: i = 1, ... ,r} for Z E /R'". 
}=l 

The diagonal matrix X can be constructed as follows. Let uCa) be a positive vector 
satisfying Aaau(a) =p(Aaa)u(a). Denote by Xa a diagonal matrix, whose diagonal 
entries are the elements of uta). Then X is of the form diag {Xl. eX2, ... , e V-1X,,} for 
some small enough positive e. In our subsequent proofs we may assume that A has been 
normalized as above. 

Let 1T' be a path in G(A). Denote by s + 1 the cardinality of supp 1T'. That is 

(5.30 supp 1T' = {Po, ... , {3s}, 

We define the path matrix A(1T') by 

Au( 1T') = Ai3ii3i' 

1 ~{30<{32 < ... <(3s ~ 11. 

i =0," " s, 

(5.3ii) A i.i+ l (1T') = Ai3ii3i+" i = 0, ... ,s -1, 

Aij( 1T') = 0, i, j = 0, ... , s otherwise, 

(5.3iii) A(1T') = (A ij (1T'm. 

Thus A (1T') is in Frobenius normal form and has s + 1 irreducible diagonal blocks 
Au(1T') = A i3..a" i=O,"', s. To avoid ambiguity, we write A(1T')~j) for the (i,j) block 
component of A( 1T' )m, i, f = 0, ... , s. 

We now prove a sequence of lemmas for the path matrix A(1T') of a given path. 
LEMMA 5.4. Let A E /R:" where p (A) = 1. Let 1 ~ ex, (3 ~ 11 and 1T' be a path in G (A) 

from ex to (3. Put k = k (1T'), where k( 1T') + 1 is the number of singular vertices in supp 1T'. If 
A(1T') is the path matrixgiven by (5.3), then IIA(1T')&'.:')lioo:= O(mk). . 

Proof We note that 

(5.5) 

So 

PO+···+p.=·m-s 

Suppose first that 1T' does not contain singular vertices, i.e., k = -1. Then 
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where r; is given by (2 .3). As r;' -s;;:; m s we immediately deduce 

for any T, U < T < 1. 
m -+ OO 

Suppose now that k ~ 0. Then 

Hence 

m -s 
_ s "ru rm-s-u m-s-u 
- U £.. k+l s-k U . 

u= o 

IIA (Tr )~7 )"oo ;;:; rk'+-t( Jo r ;_kU'·+s) . 

The la:st se'ries converg,es by the ratio test and rk':t;;:; m k. This establishes the 
lemma. 0 

LEMMA 5.6. Let the assumptions of Lemma 5.4 hiJld. Assume furthermore that k ~o, 
i.e., the support of Tr contains singular vertices. Then, for sufficiently large tn, . 

(5 .7) 
2(s+l)(n - lJ 

" A(' ) ( m ~n > G k £.. Tr Os = m, 
j = O 

where G is a positive matrix. 
Proof. Let 

i = 1, .. . ,s. 

Since Aii (Tr) is irreducible, and its dimension does not exceed n, we have B ii(Tr) > 0, 
Wielandt (20], Berman-Plemmons (1 , Chap. 2, Thm. 1.3]. Clearly (5.5) implies, for 
t = 2(s + l)(n -1), 

t 

L A( Tr )~,;,+j) ~ n - (s+!) L Boo( Tr )Aoo( Tr )POBoo( Tr )Ao! (Tr)B 1! (Tr)A flB lI( Tr) ... 
j=O PO+"'+ps=m - s 

. A s- 1.s( Tr )Bss( Tr )A~;( Tr )Bss( Tr). 

For i, j = 0, . . . , s, let Eij be the matrix all of whose entries equal 1 and whose dimension 
is that of Aij(Tr). Clearly Boo(Tr)~cbEoo, BssCTr)~c~Ess where co,c~ > o. Since 
Ai. i+1(Tr);eO, we have 

where Ci > 0, i = 1, ... , s -1, and hence, for some c > 0, 

r 

(5.8) L A(Tr)~~,+j)~c L EooAoo(TrjPoEo,'" ,Es-1 .. ,Ass(TrjP'Ess' 
j=1 Po+" '+ps = m -s 

In the inequality (5.8) we may restrict the sum on the right-hand side by letting pj = ° if 
p(Ajj (-7T)) < 1. So let Yo < ... < Yk be the subscripts of Aii which are singular vertices 
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where c' > ° and the £ i.i +}, i = -1, . . . ,k are matrices all of whose entries are 1. But 
Au( 1T) is a stochastic matrix, i = 0, . .. , k, whence Au( 1T)p°£i,i+1 = £i.i+l, i = 0, .. . , k.1t 
follows that 

r 
'" A( )(m+i) > 2rm- sG '-- 1T Os = k+ 1 , 

i =O 

where G > 0. The lemma now follows from (2 .3) since rzl-s~!mk for sufficiently large 
m. 0 

LEMMA 5.9. Letthe assumptions of Lemma 5.4 hold, and suppose that k = k(1T) ~o. 
Let q = q (1T) be the g.c.d. of periods of An for singular y E supp 1T. Let 

B( 1T )(m) = A( 1T)m(I ,+ A( 1T) + .. . + A( 1T)q-l). 

(i) If (i, j) is any position in A( 1T )os then, in A( 1T), indexii (1) = k + 1. 
(") b( )(m) k 11 1T ii = m . 
Proof. (i) Let k* + 1 = indexii (1) in A( 1T) . By Theorem 3.4 th@re is a positive integer 

q* such that for 

B*( 1T )(m) = A{ 1T)m(I + A( 1T) + ... + A(1T )q"-I), 

we have b*(1T)~t) = m k
". But k * > k contradicts Lemma 5.4. Since the sum in (5.7) can 

be majorized by a sum of terms of the form B *( 1T) b~'+i ), j = 0, . .. ,2(s + 1)(n -1), it 
follows that k* < k contradicts Lemma 5.6. Hence k * = k. 

(ii) Now suppose that A E spec A (1T), IA 1= 1 and indexii (A) = indexii (1) = k + 1 in 
A(1T). Then 

indexii (A) ~ index (A) ~ mult {'\), 

where mult (A) is the algebraic multiplicity of A in A{1T) . But, by the Perron-Frobenius 
theorem for irreducible matrices, 

mult (A) ~ mult (1) = k + 1. 

Hence mult (A) = k + 1 and, by Perron-Frobenius, A is an eigenvalue of every An for 
which y is singular. It follows that A q = l,where q = q(1T) . Hence the conditions of 
Theorem 3.4 (ii) are satisfied and the lemma follows. 

We state our main result. 
THEOREM 5.10. Let A be nonzero n X n matrix normalized by the condition 

p(A) = 1. Assume 1 ~ (, j ~ n. Let k = k(i, j] be the singular distance from i to j and 
q = q[i, j] be the local period of (i, j). Put B (m) = A m(I + A + ... + A q-I). Then bl7) = 

k m. 
Proof. As usual, we assume that A is in the Frobenius form (4.1). Suppose that (i, j) 

is a position in A a /3.Denote by II(a, (3) the set of all paths connecting a to {3. Then we 
obviously have 

A~8) = L A(1T)~;'t'1T) ' 
1T E n(a./3 ) 

So 

B~8) = L B(1T));;'/'T )' 
'!T E n (a. /3) 
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Assume first that k = k(7T) = -00; then, clearly, B~p) = A~p) = O. If k = -1 ~ k(7T) then 
5 . I' h h A( )(m) -1 S A(m) -1 d . A(m) B(m) Lemma .4 Imp les t at eac 7T 0.(1T) == m . 0 a(3 == m an agam a(3 = a(3· 

Assume now that k~O. If k > k(7T), Lemma 5.4 implies that B(7r)g:(~) = O(m k). 
However, if k = k(7T), then according to Lemma 5.9limm ... oo m-kB(7T)h7(1T) = FOS<7T) >0 
as q(n) divides q(a,p)=q[i,j]. By the definition of k(a,p) there exists 7TEl1(a,p) 
such that k(7T) = k(a, P). SO limk ... oo m-kB~p) =Faf3 >0. 0 

COROLLARY 5.11. Under the conditions of Theorem 5.10, 

fall) == m(k+l). 
p=1 

Proof. For k ~ 0, the result is immediate by Lemma 2.4. If k = -l,then by Theorem 
5.10 the nonnegative series above converges. The assumption k = -1 implies that at 
least one term is positive. Finally if k= -00, alf) = 0, p = 1, 2, ... , and the result 
follows. 0 

Comparing Theorems 3.4 and 5.10 we first deduce a local version of Rothblum's 
equality and then the equality itself. 

THEOREM 5.12. Let A E ~~n where p(A) = 1. Assume that 1 ~ i, j~ n; then 

indexij (1) = k[i, j] + 1. 

COROLLARY 5.13 (Rothblum [13]). Let A E ~~n where p(A) = 1. Then index (1) = 
maxl::;;i.j~n indexij (1) = maxl:ai,j;5n k[i, j] + 1. 

6. Convergent iterative methods for the spectral radius of a nonnegative matrix. 
Let A E ~~n and assume that p (A) > O. Let r(x) and R (x) be defined as in (1.4), Clearly 
O~r(x)~R(x)~ +00. It is obvious that 

r(x) ~ r(Ax) ~ R(Ax) ~R(x). 

So the sequence r(A mx), m = 0, 1, ... is an increasing sequence bounded above· by.' 
R (x), and the sequence R (A m x ), m = 0, 1, ... is a decreasing sequence bounded below 
by r(x);. 

In [4], Collatz observed that, for A E ~~n and x > 0, 

(6.1) r(x) ~p(A) ~ R(x), 

and when A is irreducible, this inequality is valid for all x ~ 0, x ~ 0; see Wielandt [20],. 
Varga [19, p. 32]. Thus the question arises when, for A ~ 0 and x ~ 0, x ~ 0, 

(6.2) 
m ... oo m ... oo 

Wielandt's [20] characterization of p(A) for irreducible A easily implies that (6.2) 
holds for primitive A and all x E ~~, X ~O, x ~ 0 (cf. Varga [19, p. 34]). This result 
follows from the fact that . 

m ... oo 

when A is primitive, where Z = uv l, v> 0, Au = p(A)u, v> 0, vIA = p(A)v l, vlu = 1. If 
A is irreducible but imprimitive then (6.2) does not hold unless x is orthogonal on all 
eigenvectors of A I corresponding to'\ such that 1,\ 1 = p(A) and'\ ~ p(A). We shall show 
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that this condition can be put in equivalent forms. If A is irreducible and of period q, 
then by simultaneous permutations of rows and columns we now put A into the form 

0 A12 0 0 
0 0 A 23 0 

(6.3) 

0 0 0 A q - 1,q 

Aq1 0 0 0 

where the diagonal blocks 0 are square (see Frobenius [6], Gantmacher [7, Vol II, p. 
62], Berman-Plemmons [1, Chap. 2, Thm. 2.20]). 

LEMMA 6.4. LetA be an irreducible nonnegative matrix of period q in form (6.3), and 
suppose thatp(A)=1. LetvIA=v', Au=u, where v>O, u>O, v 'u-=1, A'yi=c,/yi, 
j = 1, . . . ,q -1, w = e 2

'fri/
q
. Let 0 y':. x E IR: be partitioned conformally with A, x' = 

(X(1)' • • • ,x(q»' Then the following are equivalent 
(i) limm-+ooA mx = (v'x)u, 

(ii) limm -+ oo A mx exists, 
(iii) x'/ =0, j = 1, " " q -1, 
(iv) v:l)X(l) = .. . = vtq)X(qh 

(v) limm -+oo R(A m x ) = limm-+oo rCA m x ) = 1, 
where v' = (V(1Jo ••• , v(q» has been partitioned conformally with A. , 

Proof. We first derive a formula for A mx, m = 1, 2, . . .. Let w be a primitive qth 
root of unity. It is well-known that the eigenvalues of A on the unit circle are Aa = w a 

-1, 

a = 1, ... ,q and that each Aa is a simple zero of the characteristic polynomial. It 
follows, in the notation of § 3, that pa = 0, a = 1, ... , q and that 

z(aO) = D a- 1 uv'D 1-a, a = 1,'" ,q, 

a ;= 1, . .. , q, 

where 

D= 
[

Ill wI22 0 l 
o 'w q - 1I

qq 
, 

and Iaa is an identity matrix of the same order of A aa, a = 1, ... , q. 
Hence by (3.1), 

q - 1 
Am = L wmaDauv'D-a +0(1); 

a=O 

and so 

q-1 
(6.5) Amx = L w maaa(D au)+o(1), 

a=O 

where 

(6.6) a = 0,' . . , q-1. 

Let 
I 

c(J = V«(J+1)X«(J+1), f3 = 0, ... , q - 1. 
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Then it follows immediately from (6.6) that 

(6.7) q-I . _ ~ -a.13 
a =0,' ", q -1. aa. - L. W Cp, 

13=0 

We now prove the equivalence of our five conditions. We show (i) => (ii) => (iii) => 
(iv)=>(i) and (i)=>(v)=>(iv). 

(i) => (ii). Trivial. 
(ii) => (iii). Since limm _ co A mx exists, limm ... co v 'D -a. Am x also exists, a = 

0, ... ,q -1. But vlu > 0, and hence ao: = xlya. = 0, a = 1, ... , q -'-1 by Lemma 3.3. 
(iii) => (iv). Consider the identity (6.7). Since the Vandermonde matrix 

-1/2( -a.13) {3 ° 1" h . I a. ° q W ,a, =,"', q - IS umtary t e assumption aa. = x y = ,a = 
1, ... , q -1 implies that Co = Cl = ... = Cq-lo which proves (iv). 

(iv)=> (i). If (iv) holds, then Co = Cl = ... = Cq_1 and (6.7) implies al = ... = aq_1 = 0. 
This establishes (i) in view of (6.5) and (6.6). 

(i)=> (v). Trivial, since vlx > ° and u > 0. 
(v) => (i). Let m =ql+r, O:§r:§q-1. Then (6.5) implies 

lim A q/+,x = x('>, 
/_co 

for some Xl') ~ 0, x(') #- 0. Also 

r = 0, .. " q-1 

r=O,"', q -1, 

As A q is a direct sum of q irreducible and primitive matrices the assumption x ~ 0, x#-O 
implies that lim/_co (A q)/x = x(O) #- 0. Obviously x(O) ~ 0. 

Now (v) implies that 

X°:§ x(!) = Ax°:§ x(O), 

whence x(!) = x(O) and thus Xl') = x(O) for r = 1, ... , q -1. So limm ... co A mx = x(O) and (i) 
follows. 0 

In what follows, we give necessary and sufficient conditions on a reducible matrix A 
to satisfy (6.2). To do so we need a few more graph theoretical concepts. 

Let G be a graph on (v) = n, ... , v}. Let! be a nonvoid subset of (v). Then a E Jis 
called a final state with respect to J if for any {3 #- a and (a, (3)E G, (3i J. Denoting by 
fJP(J) the set of all final states with respect to J. If J = (v), then a is called a finalstate, i.e., 
(a, (3) E G implies that (3 = a. Define 

d({3, J) = max {k((3, a): a E fJP(J)}. 

If J=(v), then write d({3) instead of d({3, (v». Let -A~O be a reducible matrix. We 
assume that A is in the Frobenius form (4.1). 

As in § 4, denote by G(A) the (reduced) graph of A. Let x ~ 0, x#- 0. Partition x 
conformably with A given by (4.1). That is Xl = (x(l), ... ,x(,,». The support of x is the 
set supp x = {a 10 ••• , as} s.; {I, ... , v} such that x(i) #- ° ifand only if i E supp x. We shall 
always assume that ai, i = 1, ... , s have been listed in strictly ascending order. 

THEOREM 6.8. Let A E lR~n, p(A) > 0. Assume that A is in the Frobenius form (4.1). 
Moreover, if Aii is imprimitive then Au is the Frobenius form (6.3). Let x ~ 0, x #- 0. Then 
(6.2) holds if and only if any final state a with respect to the support of x satisfies 

(i) a is a singular vertex (i.e., p(Aa.o:) = p(A», 
(ii) either Aa.a. is primitive, or Aa.a. and X(o:) satisfy the condition (iv) of Lemma 6.4. 
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Proof. Without loss of generality we may assume that peA) = 1. Next we note that 

(6.9) (A m ) ~ A(m) x'" = I... ",fJx(fJ)· 
fJESUpp .. 

Suppose that a E $i(supp x). Then 

(Amx)", =A;:'x(",). 

By the definition of R (x) and r(x) we have 

rCA mx)A mx;§A m+lx ;§R(A mx)A mx. 

So 

rCA mx )A:",x(",);§ A;:,+l x("');§ R (A mx )A;:'x(",). 

Hence, since A",,,, is irreducible, by (6.1), 

rCA mx);§ r(A:",X(a»;§p(A",,,,);§ R(A;:'x(",»;§ R(A mx). 

Assume now that (6.2) holds. Then for any final state a with respect to supp x, we must 
have 

m .... OO m-:-+CO 

So a is a singular vertex. If A",,,, is imprimitive, then the condition (v) of Lemma 6.4 
holds. Hence, A",,,, and x("') satisfy (iv) of Lemma 6.4. This proves one direction of our 
theorem. 

Assume now that if a E $i(supp x) then p(A",,,,) = 1; and if A",,,, is not primitive then 
A",,,, and XC",) satisfy the condition (iv) of Lemma 6.4. 

Let 1;§ /3 ;§ v. Let d = d (/3,J). By our assumption, d ~ -1. If d = -00, then 
(Amx)fJ =0, m = 1, 2,···.1f d"?;O, then 

m-d(Amx)fJ=m-d L A~':)x",+o(1), 
"'EK 

where K = {a: k(/3, a) = d}. Clearly K £ $i(supp x). Thus, to show 

(6.10) 

it is enough to prove 

(6.11) 

lim m-d(A mX)fj >0, 
m .... OO 

-dA(m) ° m . fJ"'x",> 

for a E $i(supp x):k(/3, a) = d. To prove (6.11), letD be the matrix obtained from A by 
setting D",,,, = ° and D-ys = A-ys in all other cases, 1;§ y, 8;§ v. We then have 

-dA(m) _ -d ~ D(m-p)AP 
m fJ'" x'" - m I... 13'" "''''Xa • 

p=o 

Since in D, the singular distance from /3 to a is d -1, we have, by Corollary 5.11, 

m 

11·m m-d ~ D(m-p ) U. >0 
I... 13'" =13"', 

m-+OO p=O 

and by Lemma (6.4) 

lim A~",x", = v'" > 0. 
p .... oo 
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It easily follows from Lemma 2.7 that 

. -dA(m) 1 U 0 hm m /3a Xa = -d /JaVa> • 
m .... oo 

Thus, for each {3, 1 ;;'ii {3 ;;'ii v, either (A m X )/3 = 0, m = 1,2, ... or (6 .10) is satisfied. From 
this (6.2) follows immediately. 0 

COROLLARY 6.12. Let A E IR:", p(A) > O. Assume that A is the Frobenius form 
(4.1). Let J be an nonempty set of (v). Then for any x ~ 0 whose support is the set J, (6.2) 
holds if and only if for all final states a with respect to J, p(Aaa) = piA) and Aaa is 
primitive. 

COROLLARY 6.13. Let A E 1R1", p(A) >0. Assume that A is in the Frobenius form 
(4.1). Then for any x ~O, x;z!: 0, (6.2) holds if and only if for each a, a = 1, ... , v, 
p(Aaa) =p(A) and Aaa is primitive. 

7. Nonnegative solutions of (I - A)y = x. As an application of our results we give a 
simple proof of a theorem concerning nonnegative solutions y of (I - A) y = x for given 
x ~ O. For 1 ;;'ii a, {3 ;;'ii v we shall say that (3 has access to a in G(A) if there is a path from 
(3 to a in G(A), viz., k({3, a) ~-l. 

THEOREM 7.1. Let A E IR:" with p(A)= 1, and suppose that A is in the Frobenius 
normal form (4.1). Let x E IR:. Then the following are equivalent: 

(i) thereis ayE 1R1 such that (I ~ A)y = x; 
(ii) no singular vertex (3 has access in G(A) to any a E supp x; 

(iii) limm .... oo (I + ... + A m)x exists; 
(iv) limm-+oo A mx = O. 

Further, if (iii) holds and y = Iimm -+ oo (I + A + . . . + A m)x, then (I - A)y = x and 

(7.2) 

(7.3) 

Y/3 = 0 if {3 does not have access to any a E supp x, 

Y/3 > 0 if (3 has access to some a E supp X. 

Proof. Let SCm ) = I +A + ... +A m. If 1;;'ii{3;;'ii v, then 

{7.4) 
aesuppx 

and, by Corollary 5.11, for k = k({3, a) ~ -1, 

(7.5i) 
m .... OO 

while for k ({3, a) = ~OC>, 

(7.5ii) S~':) = U/3a = 0, m = 1, 2, 3,···. 

We shall prove (i) => (ii) => (iii) => (i), (iii) => (iv) => (ii). 
(i)=> (ii). Suppose that (I - A)y = x, where y ~O. Then 

S(m )x = (I - A m+ l)y;;'ii y. 

Let {3 be a singular vertex. If {3 has access to a, then k = k ({3, a) ~ 0 and, by (7.4) 
and (7.5), 

> (s(m) ) > I (k+llU Y/3= x /J=2m /3axoc 

for large m. Hence Xoc = 0 and a~ supp x. 
(ii) => (iii). Suppose (ii) holds and let 1 ;;'ii {3 ;;'ii a. 
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If a E supp x, then k = k ({3, a) = -1, or k = -00. Hence, Iimm -co s~,::) Xa = U~aXa 
exists for a E supp Xa' So, by (7.5), limm _ co S(m lx exists. 

( "')~I') L I' S,m' CI I >0 S' AS,m, S(m+l) 111 -?' ,I. et y = Imm _ oc x . ear y y =. !nce x = x - x, y 
satisfies (1- A)y = x. This proves (i). 

(iii) ~ (iv). Trivial. 
(iv) ~ (ii) . Suppose that (iv) holds but that (ii) is false. Then there exists a singular {3 

and an a E supp x such that k ({3, a) ~ O. Let q = q ({3, a) be the local period and let 
B(m )=Am(l+" ·+Aq

-
I
). Then limm_coB(m\=O. But by Theorem 5.10 for all 

sufficiently large m, 

(B
(m) ) >B(m) > k 

X ~ = ~a Xa = em Xa , 

where e > 0, and Xa :;f; O. This is a contradiction, and the implication is proved. 
To complete the proof of the theorem observe that, for y = lim m _ co s(m )x, 

y~ = L U~axa 
Ol ESUpPX 

in view of (ii) and (7.5). Since U~a > 0, if {3 has access to a and U~a = 0 otherwise, we 
immediately obtain (7.2) and (7.3). 0 

The equivalence of conditions (i) and (ii) in Theorem 7.1 is due to D. H. Carlson 
[3]. We remark that Carlson also showed that if a nonnegative solution y of (1- A)y = x 
exists, then the solution satisfying (7.2) and (7.3) is unique. It should be observed that 
the assumption that A is in Frobenius normal form is not needed for conditions (i), (iii) 
and (iv) of Theorem 7.1, which may easily be proved equivalent directly. Conditions (iii) 
and (iv) are equivalent for general A E IRnn and x E IRn. We observe that for 

A = [~ ~]. x = [~]. 
there is ayE IRn such that (I - A)y = x; yet the equivalent conditions (ii), (iii) and (iv) 
do not hold. Clearly, no y satisfying (I - A)y = x can be nonnegative. 
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