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ABSTRACT 

Let IF be field, and let A and B be n X n matrices with elements in IF. Suppose 
that A is completely reducible and that B is symmetric. If the principal minors of A 
determined by the 1- and 2-circuits of the graph of B and by the chordless circuits of 
the graph of A are equal to the corresponding principal minors of B, then A is 
diagonally similar to B; and conversely. 

1. INTRODUCTION 

Let A and B be completely reducible matrices with elements in a field. 
Then A and B are diagonally similar if and only if each circuit product of A 
equals the corresponding circuit product of B: see Bassett, Maybee, and 
Quirk [1, Proposition 2] and Fiedler and PtaIc [4, Theorem 3.1]; see also [2, 
Corollary 4.4], [5]. Diagonal similarity of A and B immediately implies that 
each prinCipal minor of A equals the corresponding principal minor of B, but 
results in the converse direction are not yet well understood. A result of this 
type is essentially to be found in [3, Corollary 6.7]: If A and B are completely 
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reducible matrices with elements in the complex field and B is an M-matrix, 
then A is diagonally similar to an M-matrix. In this note an example is given 
showing that the equality between corresponding principal minors of A and 
B does not guarantee that A is diagonally similar to B or Bt: see Remark and 
Example 3.7(ii). However, if we replace the requirement that B be an 
M-matrix by the requirement that B be symmetric, then equality between 
corresponding principal minors is equivalent to the diagonal similarity of A 
and B. In fact, a stronger result is proved, for the condition of equality need 
not be imposed on all principals minors, but only on minors determined by 
certain classes of circuits: see our main result, which is stated in the abstract 
and as Theorem 3.5. 

Our theorem is an easy consequence of some lemmas. The techniques of 
proof of these lemmas are graph theoretic, and they employ the concept of a 
chordless circuit of a graph. 

Our result suggests problems which we call inverse minor problems; see 
Problem 4.2. 

2. NOTATION AND DEFINITIONS 

Throughout this paper n will denote a fixed positive integer and < n > = 
{l, .. . ,n}. 

DEFINITION 2.1. 

(i) A (directed) graph G is a subset of <n>X <n >. If (i,j)EG, we call 
(i, j) an arc of G. [Note that G corresponds to the arcset of the graph 
«n>,G) as defined by most authors.] 

(ii) Gn=<n>X<n>. 
(iii) A graph G is symmetric if (i, j) E G implies that (j , i) E G. 
(iv) Let s be a positive integer. A circuit of G of length s (or s-circuit) is 

a sequence 'Y=(iI, ... ,is) of distinct integers in <n> such that for k=l, ... ,s, 
(ik, ik+ 1) E G, where is +1 = i I· We call (ik, ik+ 1) an arc of V'Y, and ik a vertex of 
'Y,k=l, ... ,s. We put 1'YI=s. Also y={iI, ... ,is } is called the support of 'Y . 
We identify (iI, ... ,i') and (ik, ... ,is,iI, ... ,ik-I)' k=2, ... ,s. 

(v) If 'Y = (iI' ... , i.) is a circuit of G, then 'Y -1 is the circuit (is, is-I' ... , iI) 
of Gn • 

(vi) Let 'Y be a circuit of G. A chord of 'Y is an arc (i, j) of G such that i 
and i are distinct vertices of 'Y, but neither (i, j) nor (j, i) is an arc of 'Y. 

(vii) A circuit 'Y of G is chordless if there is no chord of 'Y. 

REMARK 2.2. 

(i) If 'Y is a 1-, 2-, or 3-circuit of G, then 'Y is chordless. If G = Gn , then 
the converse holds. 
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(ii) If y is a chordless circuit of G, and a is a circuit of G such that ii ~ y, 
then 1 a I..;; 2 or a = y or a = y - 1. 

(iii) If f3 is a circuit of G, there is a chordless circuit y of G such that 
y~tJ. 

(iv) If G is a symmetric graph, then every arc of G lies on a chordless 
circuit. 

Henceforth, IF will denote a field, and IFnn the set of all n X n matrices 
with elements in IF. If 0 c w ~ < n ) , then A [w] is the principal submatrix of A 
lying in the intersection of the rows and columns indexed by w in their 
natural orders. A principal minor is the determinant of a principal submatrix. 
The matrices A and B in IFnn are diagonally similar if there exists a 
nonsingular diagonal matrix X in IFnn for which XAX -1 = B. 

DEFINITION 2.3. Let A E IFnn. 

(i) The graph G(A) of A is defined by 

G(A) = {(i,f) E <n ) X <n) :ai;¥=O}. 

(ii) The matrix A is said to be combinatorially symmetric if G(A) is a 
symmetric graph. 

(iii) The matrix A E IFnn is called completely reducible if every arc of 
G(A) is the arc of a circuit of G(A). 

(iv) If y=(i1, ... ,is ) is a circuit of Gn , then the circuit product Ily(A ) is 
defined by 

REMARK 2.4. 

(i) EVidently Il/A)¥=O if and only if y is a circuit of G(A) . 
(ii) It is well known (e.g. [2]) that A is completely reducible if and only if 

after simultaneous permutation of rows and columns A is the direct sum of 
irreducible matrices. 

3. MAIN RESULTS 

LEMMA 3.1. Let A,B E IFnn, where B is combinatorially symmetric. Let 
(i) detA[y] = detB [YJ if y is a 1- or 2-circuit of G(A) or G(B). 
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Then 

(ii) II./A) = II./B) if y is a 1- or 2-circuit of Gn, and 
(iii) G(B) k G(A). 

Proof. (ii): It is easy to see that (i) implies that det A[ 'YJ = detB [YJ for 
all 1- and 2-circuits y of Gn. Hence aH = bjj for all i E < n ) . Thus aHaff - alta;; 
=bjjbi/-b;jb;i now implies that a;;aj;=b;jbj;, i=l=j, i,jE <n ) . 

(iii): Suppose that b;j=l=O. If i=j, then a;j=bij=l=O by (ii). Suppose that 
i=l=j. Then, by the combinatorial symmetry of b;;=O. But then, by (ii), 
ai/a;i = bi/b;;=I=O and so aij=l=O. • 

LEMMA 3.2. Let A,B E IFnn
, where B is combinatorially symmetric. 

Suppose that 

(i) detA['YJ=detB[YJ ify is a 1- or 2-circuit of G(B) or y is a chordless 
circuit of G(A). 

Then 

Proof. In view of Lemma 3.1, we may suppose that y is a chordless 
circuit of G(A), where Iyl ~ 3. Then for C=A or C=B, 

(iii) 

where f{J( C) is a sum of products of form ± IIa, (C)· .. II..., (C), and the ai are 
1- and 2-circuits. Hence, by Lemma 3.1, f{J(A) = f{J(B). We now obtain 
II)A) + IIy- l(A) = IIy(B) + IIy-l(B) from (iii) and our assumption (i). • 

The next lemma is our chief graph theoretic result. 

LEMMA 3.3. Let A,B Epnn, where A is completely reducible and B is 
combinatorially symmetric. Suppose that 

(i) detA[ y 1 = detB [y 1 if Y is either a 1- or 2-circuit of G(B) or y is a 
chordless circuit of G(A). 

Then 

(ii) G(A) = G(B). 
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Proof. By Lemma 3.1, G(B)CG(A). To prove G(A)C G(B) it is enough 
to show that G(A) is symmetric, for then the roles of A and B may be 
interchanged in Lemma 3.1. 

To prove G(A) is symmetric, we first show that if (3 is a chordless circuit 
of G(A), then (3 -1 is also a circuit of G(A). Suppose this result is false for the 
chordless circuit (3 of G(A). Clearly I (31 > 3, and by Lemma 3.2, 

Hence either II.B(B)~O or II.s-,(B)~O. But, by the combinatorial symmetry 
of B, II.B(B)~O implies that II.B-l(B)~O. It follows that IItr,(B)~O. Since 
G(B)CG(A), we deduce that II.s-,(A)~O, and hence (3 -1 is a circuit of 
G(A). 

Now let ai;~O, i~i. We shall prove that a;i~O. Since A is completely 
reducible, there is a circuit "I of G(A) of which (i, i) is an arc. Let "I be such a 
circuit of shortest length. If "I has a chord (k, 1), then there is a chordless 
circuit (3 of G(A) such that iJ C y, I (31 < 1"11, and (k,l) is an arc of {3. By the 
previous paragraph, (3 -1 is also a circuit of G(A), and so (l,k) is also a chord 
of "I. Since both (k,l) and (l,k) are arcs of G(A), there is a circuit a of G(A) 
of which (i,i) is an arc and lal < 1"11. This is contrary to our choice of "I. 
Hence "I is chordless and "1-1 is therefore also a circuit of G(A). It follows 
that a;i~O. Thus A is combinatorially symmetric and the lemma is proved . 

• 
REMARK 3.4. 

(i) The assumption that A is completely reducible cannot be omitted in 
the hypothesis of Lemma 3.3. As an example, let 

B=[ ~ ~ l 
(ii) In Lemma 3.3 the assumption that B is combinatorially symmetric 

cannot be replaced by the weaker assumption that B is completely reducible. 
Let 

1 
o 
o 
o 

o 
1 
o 
o 

Then G(A)~G(B) and G(A)~G(Bt). 

1 
o 
o 
o 

~1 o . 
o 
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THEOREM 3.5. Let A E pn, B E IFnn, where A is completely reducible 
and B is symmetric. Then the following are equivalent: 

(i) detA[y] = detB[y] if 'I is a 1- or 2-circuit of G(B) or 'I is a chordless 
circuit of G(A). 

(ii) The matrices A and B are diagonally similar. 

Proof. (ii)~(i): Trivial. 
(i)~(ii): Suppose (i) holds. By Lemma 3.3, G(A) = G(B). Let 'I be a 

chordless circuit of G(A). By Lemma 3.1, IIy(A) = IIy(B) if 'I is a 1- or 
2-circuit. We shall prove that the equality holds also if I'll ;;;. 3. In this case, 
by Lemma 3.2, 

where the last equality holds because B is symmetric. Further, for all C=A 
or C=B, 

where a1,oo.,ak are 2-circuits of G(A). Hence, by Lemma 3.1, 

(iv) 

By the elementary theory of quadratic equations, it follows from (iii) and (iv) 
that IIy(A)=IIy(B). 

Now let 13 be any circuit of G(A). Suppose that 1131 ;;;. 3. Since G(A) = 
G(B) is symmetric, it is easy to show that for C=A or C=B, 

II (C) .. · II (C) 
II (C)= YI Yk 

f3 II (C) .. · II (C)' 
al a,.-! 

(v) 

where '11,oo.,'1k are chordless circuits of G(A) and a1,oo.,ak_l are 2-circuits 
of G(A). By Lemma 3.1 and the previous paragraph, we now obtain that 
IIf3(A) = IIf3(B) for all circuits 13 of G(A). 

The diagonal similarity of A and B now follows by [5, (5.1)]. • 
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COROLLARY 3.6. Let IF be a totally ordered field, and let A and B in IFnn 

be symmetric matrices with nonnegative elements. Then the following are 
equivalent: 

(i) detA[y]=detB[YJ if y is a 1- or 2-circuit of G(B) or y is a chordless 
circuit of G(A). 

(ii) A=B. 

Proof. (ii)~(i): Trivial. 
(i)~(ii): By Theorem 3.5, there is a nonsingular diagonal matrix X E IFnn 

such that XAX- 1 = B. Suppose ai;,7'=O for some i,j E<n). Then xiai;x;-l= bit 
=b;i=x;a;ix;-l, whence xi

2=Xr It follows that bi;= ±aw But both ai;>O, 
bit> 0, and hence bit = ail" • 

REMARK AND EXAMPLE 3.7. 

(i) The chordless circuits of Gn are precisely the 1-, 2-, and 3-circuits. 
Hence, in this case, there are cn =n+n(n-l)/2+n(n-l)(n-2)/6=n(n2 

+5)/6 principal minors determined by the end chordless circuits. For 
G ~ < n ) X < n ) , the number of such minors is bounded above by cn . 

(ii) In Theorem 3.5, it is not possible to replace the assumption that B is 
symmetric by the weaker assumption that B is combinatorially symmetric, 
even if detA[w]=detB[w], for all w, 0cw~<n ). These equalities hold in 
the following example, in which G(A) = G(B) = Gn : Let 

r

IO 
-1 A= 
-3 
-1 

-1 
10 
-1 
-4 

-2 
-1 
10 
-1 

-1] -1 
-1 ' 
10 r

IO 
B= -1 

-2 
-1 

-1 
10 
-1 
-4 

-3 
-1 
10 
-1 

-1] -1 
-1 . 

10 

Let a=(1,3,2,4). Then IIa(A)=2, IIa(B)=3,IIa(Bt)=8, whence by (the 
trivial direction of the) theorem of [1] and [4] quoted, A is diagonally similar 
neither to B nor to Bt. The matrices A and B are M-matrices (for definition 
see [2]) and hence they furnish the example mentioned in the introduction. 

4. EXAMPLE AND PROBLEMS 

Let A and B be completely reducible matrices. The result of Maybee, 
Bassett, and Quirk [1] and of Fiedler and Ptlik [4] may easily be 
strengthened. Thus, if G(A) ~ G(B), to guarantee the diagonal similarity of A 
and B it is sufficient to assume IIy(A) = IIy(B) for y in a subset r of the set 
of all circuits of G(A). The set r can be chosen to have basis properties 
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standard in algebraic graph theory; for details see [5], particularly Corollary 
(2.4) and Remark (5.2). If G(A) = Gn , then r can be chosen to have 
n 2 

- n + 1 elements while the number of minors in condition (i) of Theorem 
(3.5) is of order n3 [see Corollary 3.7(i)]. But it does not appear to be easy to 
improve Lemma 3.3 or Theorem 3.5 by considering subsets of the sets 9f 
principal minors in conditions (i) of these results. lms is shown by the 
following striking example. 

EXAMPLE 4.1. Let n > 3 and let a E IF. Let A,B E IFnn be given by b;; =0, 
i= 1, . .. ,n, and b;;= 1, i*i, i,i= 1, ... ,n. Let a12 = a, a21 =2- a, and a;; = b;; 
otherwise. Observe that A is completely reducible and B is symmetric. 
Further, with the exception of y = (1,2), detA[y] =detB[y] for all 1-, 2-, and 
3-circuits y of Gn • But, if a * 1, then A and B are not diagonally similar, and 
if a=O or a=2, it is even false that G(B)~G(A). 

PROBLEM 4.2 (Inverse minor problems). 

(i) In view of Theorem 3.5 it is interesting to pose the following problem: 
Let 0' n be the set of w, 0 C w ~ < n >. Characterize the set of families 
{ b w : w E 0' n} such that there exists a symmetric B E IF" for which det B [w ] = 
bw, for wE0'n' 

(ii) It is possible to vary the problem. Let G be a symmetric graph, and 
let ~ be the set of y such that y is a chordless circuit of G (or, of course, 
some other subset of 0' n)' Characterize the set of families {b w : w E ~) such 
that there exists a symmetric B with G(B) = G and detB[w] = bw for wE~. 

(iii) Characterize the minimal subsets ~ of 0' n such that for completely 
reducible A E IFnn and symmetric B E IFnn, detA [w] = det B [w] for all w E ~ 
implies that A and B are diagonally similar. 

(iv) Finally, in view of [3, Corollary 6.7] it is interesting to consider 
similar problems for completely reducible M-matrices in place of symmetric 
matrices. 
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